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Genetic changes that enabled the evolution of eusociality have long captivated
biologists. More recently, attention has focussed on the consequences of
eusociality on genome evolution. Studies have reported higher molecular
evolutionary rates in eusocial hymenopteran insects compared with their
solitary relatives. To investigate the genomic consequences of eusociality in
termites, we analysed nine genomes, including newly sequenced genomes
from three non-eusocial cockroaches. Using a phylogenomic approach, we
found that termite genomes have experienced lower rates of synonymous sub-
stitutions than those of cockroaches, possibly as a result of longer generation
times. We identified higher rates of non-synonymous substitutions in termite
genomes than in cockroach genomes, and identified pervasive relaxed selec-
tion in the former (24–31% of the genes analysed) compared with the latter
(2–4%). We infer that this is due to reductions in effective population size,
rather than gene-specific effects (e.g. indirect selection of caste-biased
genes). We found no obvious signature of increased genetic load in termites,
and postulate efficient purging of deleterious alleles at the colony level.
Additionally, we identified genomic adaptations that may underpin caste
differentiation, such as genes involved in post-translational modifications.
Our results provide insights into the evolution of termites and the genomic
consequences of eusociality more broadly.

1. Introduction
Eusocial insects represent only approximately 2% of all insect species but have an
enormous ecological impact, representing over half of all insect biomass [1].
Eusocial insect colonies comprise highly specialized castes, whereby some mem-
bers of the colony reproduce while the workers and soldiers focus on tasks such
as foraging, defence, brood care and nest construction [2]. These considerably
different behaviours arise from the same genome. The behavioural and genetic
changes that enabled the evolution of eusociality, and that have facilitated the
ecological dominance of these insects, have long interested biologists.

Many studies on the evolution of eusociality have focussed on the genomic
features that underpin this trait. However, in recent years, the consequences of
eusociality on genome evolution have also become the subject of active research
[3–6]. A key parameter of interest is the molecular evolutionary rates of eusocial
organisms compared with their solitary relatives [7,8]. Two main hypotheses
have been put forward in relation to the consequences of eusociality on evol-
utionary rates. The first hypothesis posits that the presence of very few
reproductive individuals within colonies should result in eusocial insects
having small effective population sizes (Ne). This would be expected to increase
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Table 1. Genome assembly and annotation metrics. Ab initio predictions that had no BLAST hits were not included in the numbers of annotated genes.

species
genome
length (Gb) N50

no. of
contigs

complete
BUSCOs (%)

fragmented
BUSCOs (%)

missing
BUSCOs (%)

duplicated
BUSCOs (%)

no. of
annotated genes

G. dilatatus 1.70 3.2 Mb 84 284 93.9 4.8 1.3 0.7 30 006

N. hanni 1.68 11.4 kb 270 019 69.0 19.5 11.5 0.7 38 314

P. cribrata 1.78 298 kb 204 297 85.0 10.9 4.1 1.8 39 852
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the strength of genetic drift in eusocial lineages, leading to higher evolutionary rates (e.g. through weaker purifying selection)
[3,5,9–12] (but see [13]). The second hypothesis states that the specific expression of genes in different castes and the reduction of
multi-caste pleiotropy should result in distinct selection pressures acting on these genes for the different castes (i.e. ‘indirect selec-
tion’), leading to the reduced efficacy of selection [6,7,14]. For example, selection on worker-biased genes is largely indirect in
reproductive individuals, such that selection may be weaker in worker-biased genes than in queen-biased genes. Moreover, genes
under relaxed selection in eusocial ancestors might more readily undergo caste-biased expression. Under this scenario, genes that
are caste-specific in eusocial species might have elevated evolutionary rates in both eusocial and non-eusocial taxa [8].

Most studies on the consequences of eusociality on genome evolution have focussed on hymenopterans, with relatively little
attention given to other eusocial insects. These studies have identified elevated rates of genome-wide evolution [3], as well as elev-
ated rates of evolution in differentially expressed caste-specific genes [7,8], supporting both of the aforementioned hypotheses.
However, the relative contributions of reduced Ne and differential gene expression to these elevated rates remain unclear. Further,
there has been limited use of phylogenomic approaches to investigate rates of genomic evolution in eusocial insects and their rela-
tives, despite the availability of methods for examining differing molecular evolutionary forces across large numbers of loci.
Phylogenomic methods can help to elucidate the timing of shifts in genomic rates, characterize signatures of selection associated
with rate changes and identify the specific genes affected.

An important eusocial insect group with significant ecological impacts is the termites. Their evolution of eusociality from cock-
roach ancestors [15–19], and their diploid chromosome make-up (in contrast to the haplodiploid eusocial species in Hymenoptera),
makes them a valuable comparative model system. However, past examinations of genome-wide molecular evolution in termites
have typically been based on a single termite representative [3,5], or have lacked comparisons with cockroach relatives [6]. Although
a number of termite genomes have been sequenced [20–23], genomes are available for only two cockroach species, the pests
Periplaneta americana (Blattidae [24]) and Blattella germanica (Ectobiidae [21]). A lack of genomic resources hinders our ability to
perform in-depth comparisons of termites and cockroaches to examine the consequences of eusociality on genome evolution.

Here, we facilitate comparative phylogenomic analyses of Blattodea by sequencing the genomes of three Australian species
from Blaberidae, the most speciose cockroach family. Panesthia cribrata (subfamily Panesthiinae) nests in and feeds on rotting
wood, but displays minimal social behaviour. Geoscapheus dilatatus and Neogeoscapheus hanni (subfamily Geoscapheinae) feed
on dried leaf litter and form burrows in the soil up to a metre deep, in which offspring remain with their mothers for several
months. The inclusion of P. cribrata in our analyses allowed us to control for the effects of wood nesting and wood feeding on
genome evolution, in the absence of eusocial behaviour.

We use these new data in conjunction with previously generated genomes from Blattodea to achieve three main objectives: (1)
increase our understanding of patterns of selection across termite and cockroach genomes; (2) to evaluate factors that have been
posited to influence molecular evolutionary rates in eusocial organisms, such as a reduced Ne and indirect selection of caste-biased
genes; and (3) to identify genomic adaptations that underpin the evolution of eusociality in termites. We expect that this study will
shed light on the evolution of termites and eusociality more broadly.
2. Results and discussion
(a) Genome assemblies and orthologue assignment
We produced novel de novo genome assemblies for G. dilatatus, N. hanni and P. cribrata using a combination of high-throughput
sequencing approaches (electronic supplementary material, table S1; figure S1). The genome quality for G. dilatatus was compar-
able to that of the well-studied pest cockroach species Periplaneta americana and Blattella germanica (electronic supplementary
material, table S2 [21,24]), while genome completeness and continuity for P. cribrata and N. hanni were lower (table 1). Annotated
protein-coding genes were BLASTed against the insect protein database, resulting in an average sequence identity of greater than
65% for each species (see electronic supplementary material, figure S2 for annotation QC results). Most annotated genes (91.7%)
were assigned to orthogroups, and relatively few were found to be species-specific (electronic supplementary material, figure S3).
Of the 24 455 orthogroups, 1491 were single-copy and present in all species; we used these single-copy orthologues in the
subsequent evolutionary analyses.
(b) Pervasive relaxed selection in termite genomes
By investigating patterns of non-synonymous (dN) and synonymous (dS) changes, we found evidence of pervasive relaxed selec-
tion on the termite terminal branches of the phylogeny. Our analyses included estimates of dN and dS for all single-copy
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Figure 1. (a) Density plot for the three-ratio dN/dS model for the cockroaches and termites. (b) Proportion of genes under significant relaxed selection for each of
the focal branches based on the RELAX analyses (after Holm–Bonferroni correction). (c) Phylogenetic tree of analysed termite and cockroach genomes (genomes
generated in this study in bold), with branches coloured by their median relaxed selection parameter (k) determined using RELAX, whereby k < 1 indicates relaxed
selection and k > 1 indicates intensified selection (the outgroup has been pruned from the tree). (d ) Venn diagram displaying overlapping orthologues under
relaxed selection on the termite terminal branches.
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orthologues in nine examined taxa: the three newly sequenced cockroach species (Geoscapheus dilatatus, Neogeoscapheus hanni and
Panesthia cribrata), two pest cockroach species (Periplaneta americana and Blattella germanica), three termite species (Cryptotermes
secundus, Coptotermes formosanus and Zootermopsis nevadensis), and one outgroup species (the orthopteran Laupala kohalensis).

We applied the free-ratio model in CODEML [25], allowing a separate dN and dS on each branch, and found that median dN
rates were elevated on the termite branches (excluding the termite stem; median = 4.19 × 10−4) compared with the cockroach
branches (excluding the Blattodea stem; median = 2.85 × 10−4). Conversely, the dS rate was found to be lower on the termite
branches (median = 2.66 × 10−3) than on the cockroach branches (median = 3.46 × 10−3). The median dN/dS for the termite branches
was 0.149, while that for cockroach branches was 0.081. This median termite dN/dS is considerably higher than previously reported
estimates for eusocial hymenopteran species based on genomic data such as bees (Apis, Bombus, and Tetragonula spp.; average cor-
rected dN/dS = 0.109 [12]; a separate group of Apidae spp.; median dN/dS = 0.081 [26]), ants (comprising Formicidae spp.; average
corrected dN/dS = 0.107 [12]) and wasps (comprising Polistinae and Vespinae spp.; average corrected dN/dS = 0.103 [12]), while the
median cockroach dN/dS falls within the range of estimates for solitary hymenopteran species [12,26]. However, caution should be
taken when directly comparing dN/dS estimates across studies based on different sets of genes with varying levels of conservation,
and which have employed different models/methods to estimate dN/dS.

Separate analyses of dN/dS utilizing a three-ratio model (allowing a separate ratio for the termite clade) was preferred over a
two-ratio model (allowing one ratio for the outgroup and one for the entire cockroach–termite ingroup) for 75.7% of the analysed
orthologues ( p < 0.05; 45.1% after applying a Holm–Bonferroni correction). The distribution of dN/dS on termite branches in this
analysis was wider and had a much higher mean than that for the cockroach branches (figure 1a). In 90.8% of the analysed ortho-
logues, the termite dN/dS was higher than the cockroach dN/dS (significantly higher for 73% when applying p < 0.05, and 44.5%
after applying a Holm–Bonferroni correction).

To investigate further the differences in dN, dS and dN/dS between termite and cockroach branches, we tested for relaxed selec-
tion using the ‘RELAX’ method [27], implemented in HyPhy [28,29]. We detected a large proportion of the single-copy
orthologues under relaxed selection on the termite terminal branches (24.09–30.74%) compared with the cockroach terminal
branches (1.88–3.96%) (after a Holm–Bonferroni correction for testing multiple branches; figure 1b). When we analysed an audited
subset of single-copy orthologues (i.e. gene alignments that were manually inspected and edited if required), we obtained similar
proportions (electronic supplementary material, table S3). This scale of relaxed selection is comparable to inferences from a pre-
vious study on hymenopteran eusocial species [12], which identified 23.21% (after a conservative Bonferroni correction) of the
analysed orthologues to be under relaxed selection (though direct comparison between these studies should be undertaken
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with caution). A separate study analysed relatively small sets of genes (13–78 single-copy orthologues [30]) in termites, and found
18–27% of the genes to be under relaxed selection in four of the termite species analysed, including the three termite genera ana-
lysed in our study. However, for the other four termite species analysed, lower proportions (0–12%) of the genes were identified as
being under relaxed selection (comparisons with cockroaches were not included). The difference in relaxed selection between ter-
mites and cockroaches in our analyses becomes more extreme when analysing all termite branches together (72.43% of orthologues
analysed) compared with all cockroach branches (0.74%). In relaxed selection analyses, a significant result of k < 1 is indicative of a
reduction in selection strength, while k > 1 indicates an intensification of selection strength. Median k values were found to be the
lowest on termite branches, and well below one (figure 1c).

Given that the three termite species in our study form a single monophyletic clade, we note the issue of phylogenetic non-inde-
pendence in some of our analyses. However, we do not believe that this affects the key findings outlined above. When analysing
individual branches, a large proportion of the genes were under relaxed selection in only one or two of the termite terminal
branches (figure 1d ). Hence, although reductions in Ne are likely to have occurred in the ancestral termite lineage following its
emergence approximately 134 mya [19], the genomic consequences of being eusocial are likely to have manifested independently
in each of the three analysed termite species since they diverged from one another approximately 97–107 mya [19].

Our analyses investigated a relatively conserved set of single-copy orthologues present among the highly divergent taxa
included. The scale of dN/dS and relaxed selection likely differs across genes that are faster evolving, species-specific, and/or
part of multigene families. We expect that the patterns and causes of relaxed selection in such genes would be similar to those
that we have analysed (see below).

(c) Relaxed selection in termite genomes is better explained by reduced Ne rather than indirect selection
We evaluated two main scenarios that may explain the pervasive selection in termite genomes: (1) a reduction in Ne, and (2) indir-
ect selection. A reduction in Ne would have a genome-wide effect, whereby the strength of genetic drift increases for every gene.
Conversely, indirect selection would have gene-specific effects. Only caste-specific genes are expected to experience reduced
selective constraints, as they are only expressed in a subset of the colony (e.g. worker-biased genes are predominantly expressed
by workers, not reproductives). We note that a niche- or functional-specialization scenario would also confer gene-specific effects
(elaborated in section ‘d’ below).

To investigate whether indirect selection underpinned signatures of relaxed selection in our data set, we identified and ana-
lysed 311 genes in our single-copy orthologue data set that had previously been identified to display either unbiased or caste-
biased differential expression [6,31] (noting that caste-biased genes in Coptotermes formosanus were not identified in these studies).
We found no significant difference between the proportion of caste-biased (33.3% for Zootermopsis nevadensis and 24.4% for Cryp-
totermes secundus) and unbiased (25.3% for Z. nevadensis and 20% for C. secundus) orthogroups under relaxed selection when
compared with proportions in the full single-copy orthologue data set (chi-squared tests, p = 0.29 for Zootermopsis nevadensis
and p = 1 for Cryptotermes secundus caste-biased genes; electronic supplementary material, table S4). Similar patterns were
found for genes only expressed in one caste (electronic supplementary material, table S4). Further, if indirect selection were the
main driver of these patterns of relaxed selection, we would expect to see considerably fewer genes affected. Previous RNAseq
analyses showed that many caste-biased genes are species specific [6] and/or part of multi-gene families [31]. Such genes were
not considered in our single-copy orthologue data set and require further investigation.

The pervasive scale of relaxed selection across the termite genomes is explained better by a reduction in Ne than by gene-
specific effects resulting from indirect selection. A reduction in Ne increases the intensity of genetic drift [32], and consequently
reduces the efficacy of both negative and positive selection [27,33]. Termites are expected to have a very low Ne relative to
their census population size due to the complex social structure of their colonies, the small number of reproductive individuals
(typically one king and one queen per colony), and their history of inbreeding within colonies [11,34,35]. Indeed, Romiguier
et al. [3] found that the termite Reticulitermes grassei had a large reduction in Ne, even compared with other eusocial species,
and postulated that this was due to the strict monogamy seen in this taxon.

Although a reduced Ne will theoretically not directly affect the substitution rate at neutral sites [36], a long-term low Ne has
been proposed to lead to the evolution of a higher mutation rate [37]. However, we found that dS values were lower in termites
than in cockroaches. This result can be explained by the considerably longer generation time of termites (5–10 years) compared
with cockroaches (typically less than 1 year). Although a longer generation time is expected to increase the mutation rate per gen-
eration (due to increased cell divisions of gametes, and greater time for DNA damage to accumulate), the per-year mutation rate is
expected to decrease [38,39]. However, a reduction of Ne appears to have counteracted this generation-time effect for non-neutral
sites in termites (based on observed dN rates).

(d) Alternative explanations for relaxed selection in termite genomes
Although reduced Ne is the most likely explanation for the pervasive relaxed selection observed in our study, we are unable to rule
out the possibility that indirect selection or other factors contributed to relaxed selection in at least some of the examined ortho-
logues. Although many genes were only under significant relaxed selection on one of the three termite branches (figure 1d ), there
were more genes under relaxed selection that overlap in all three termite species (n = 107) than expected by chance. Hence, some
‘core genes’ might be under relaxed selection due to other non-random processes, such as indirect selection and/or reduced func-
tional importance in termites. There was no evidence that caste-biased genes were undergoing relaxed selection or accelerated
evolution prior to becoming caste-biased, as alluded to by previous authors [8,40,41], based on evolutionary rates of the cockroach
orthologues (electronic supplementary material, figures S4, S5) and the minimal relaxed selection on the termite ancestral branch
(figure 1b,c).
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The intensity of selection is proportional to the product of Ne and the selection coefficient s [36]. Therefore, it is possible to
observe pervasive relaxed selection without a reduction in Ne, given a change in s that affects many loci. Previous authors
have hypothesized that the cooperative interactions of social species can buffer or compensate for the expression of deleterious
mutations, particularly in relation to immune responses [30,42–46]. The creation of a benign environment through social
cooperation (e.g. termite mounds) and/or buffering for the expression of deleterious alleles (e.g. through food allocation) will
lead to a reduction in selection pressures for the genes involved [46]. For example, termite social hygiene behaviours, such as
allogrooming, might result in relaxation of selection in certain innate components of their immune system [45].

Although there might have been large-scale shifts in s across termite genomes since divergence from their subsocial cockroach
ancestors, we have several reasons to believe that this is not the primary driver of the patterns of relaxed selection observed. First,
said patterns do not appear to be associated with specific habitats. The different termite species analysed occupy different niches:
Coptotermes formosanus constructs nests and forages in the soil; Zootermopsis nevadensis lives and feeds in dead dampwood; and
Cryptotermes secundus lives and feeds in dead drywood. Likewise, the five sampled cockroach species live in varying habitats,
from urban environments to wood and soil burrows. Hence, if pervasive relaxed selection were caused by a reduced s due to
differing selective pressures across different niches (and not a reduction in Ne), we might expect relaxed selection to be restricted
to one or two of the termite species, or observe comparable levels of relaxed selection in some cockroach species (e.g. Periplaneta
americana, a recently urbanized cockroach species, sister lineage to the termite species in our analysis). Second, if a reduced s across
many genes were due to the social benefits of group living (e.g. allogrooming), we might expect a larger overlap of orthologues to
be under relaxed selection (figure 1d; but see [30]), and a larger proportion of orthologues under relaxed selection in the termite
ancestral branches. Third, given the relatively conserved data set that we analysed (i.e. single-copy orthologues across taxa
approximately 350 million years divergent [47]), we expect most genes to be functionally important in termites (i.e. a relatively
stable s across the analysed phylogeny). Hence, a reduction in s across greater than 24% of the relatively conserved orthologue
data set is unlikely. Fourth, if some of the analysed orthologues were indeed associated with changes in niche or function, we
might also expect to see signatures of positive selection in termites; however, this was not the case (figure 2a). Therefore, although
we cannot rule out a pervasive reduction of s across the termite genome due to increased social cooperation or niche specialization,
or a combination of reduced s and indirect selection, our results suggest that the observed patterns of relaxed selection are
dominated by the genome-wide effects of a reduced Ne, rather than gene-specific effects.

(e) No obvious signature of increased genetic load in termites
A long-term small Ne and pervasive relaxed selection could result in an accumulation and fixation of deleterious alleles and a high
genetic load [3,33,48,49]. Unexpectedly, however, termites do not appear to have a higher genetic load than cockroaches based on
the number of derived putative deleterious substitutions (identified using PROVEAN [50]) in 581 Insecta BUSCOs (i.e. highly con-
served genes). Here, we are referring only to ‘realized load’ and not ‘masked load’ [49,51], given that we are comparing amino acid
sequences across an order of insects, and not considering heterozygosity. Termites had a higher number of total substitutions per
amino acid than the cockroach species (significantly higher for 12/15 pairwise comparisons, and non-significantly higher for 3/15
pairwise comparisons; electronic supplementary material, figure S6; table S5). However, the number of inferred deleterious
substitutions per amino acid was significantly lower or similar in termites compared with the cockroach species.

Therefore, despite the patterns of pervasive relaxed selection that we identified, there does not appear to be an obvious
signature of increased genetic load in termites compared with cockroaches. How then have termites, an ancient and evolutionarily
successful group, succeeded in diversifying and adapting to changing environments? An increased genetic load could have been
alleviated through purging, which involves the removal of recessive deleterious alleles exposed by inbreeding. Purging could be
particularly effective in termites due to a long-term history of inbreeding and variation in heterozygosity generated by inbreeding
[52,53]. Moreover, termites could have experienced purging at the colony level. The survival of dispersing reproductive individuals
that attempt to form a new colony relies on the survival of their offspring; colony survival hinges on the worker offspring gather-
ing resources, building the nest structure, and raising offspring. Therefore, if we consider the colony as the basic unit of the
population rather than individual termites (as in [34,54–56]), when primary (alate-derived) reproductives disperse and breed, pur-
ging could occur by the failure of colonies established by unfit offspring. Indeed, there is evidence that closely related primary
reproductives establish colonies less frequently than non-related primary reproductives as a result of inbreeding depression
[57] (but see [58–61]). This hypothesis requires further investigation.

The lack of an obvious increased genetic load in termites may also be due to the insensitivity of the methods we applied,
particularly given the complexities of delineating benign and deleterious substitutions. Further investigation into the functional
effects of mutations in coding regions (e.g. experimental evidence) may help to characterize the extent to which derived mutations
are deleterious, and clarify any differences in genetic load in these species [51]. Further, we reiterate issues of phylogenetic non-
independence in our data set, though we believe that this has a negligible effect on these genetic load inferences (detailed in the
electronic supplementary material).

( f ) Positive selection and gene expansions/reductions in termite and cockroach genomes
In our analyses of positive selection that allowed a separate dN/dS on terminal branches leading to cockroach and termite taxa, we
did not detect substantial positive selection in termite genomes (detailed further in the electronic supplementary material). The
number of orthologues under positive selection varied between 1.1% and 9.1% across the terminal branches (figure 2a), with
the clade comprising P. cribrata, G. dilatatus, and N. hanni displaying the highest number. Further, no significant differences
were found when comparing the proportions of genes under positive selection that had previously been demonstrated to be
unbiased or differentially expressed between castes (electronic supplementary material, table S4).
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Figure 2. (a) Proportion of orthologues (n = 1491) on various branches undergoing positive selection, determined using aBSREL analyses (see electronic supplemen-
tary material, table S6, for names of genes undergoing positive selection in termite taxa). (b) Number of gene expansions (green) and contractions (red) on each
branch of the cockroach/termite tree (see electronic supplementary material, table S7, for names of genes that had significant expansions/contractions in termite
taxa). The number of gene expansions/contractions combined results from the small and large orthogroups analysed.
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Previous studies on eusocial species have highlighted the importance of epigenetic mechanisms, particularly DNA methyl-
ation, for controlling caste-specific gene expression [21,56,62–67]. Of the 8538 orthogroups that we identified to be displaying
gene family size changes (figure 2b; detailed further in the electronic supplementary material), numerous expanding gene families
in the termite lineages were related to protein ubiquitination (electronic supplementary material, table S7; e.g. E3 ubiquitin-protein
ligase, and Ubiquitin carboxyl-terminal hydrolase 45), an important post-translational mechanism, as well as other gene families
involved in gene expression regulation (e.g. Histone H4 transcription factor and KAT8 regulatory NSL complex subunit 3). Protein
ubiquitination results in protein degradation or modification. Histones are often ubiquitinated, which subsequently alters chroma-
tin structure and gene function, and may therefore influence patterns of DNA methylation [68,69]. Previous studies have
demonstrated that these post-translational modifications and histone structure changes influence the development of castes in
the honey bee [70–72] and carpenter ant [73,74]. Evidently, various gene expression mechanisms beyond DNA methylation,
such as ubiquitination, could be fundamental to the development of castes, and therefore warrant further research.
3. Concluding remarks
Incorporating additional genome resources has proven valuable in our comparative genomic analyses of termites and cockroaches.
Sequencing and analysing genomes from the sister group of termites, representatives of the wood-feeding genus Cryptocercus, will
help to elucidate the ancestral signals of the relaxed selection that we have identified, and provide insights into the evolutionary
origins of caste-biased genes. Further, given that the termites represent only a single transition to eusociality, expanding the
analyses to include genomes of other eusocial groups (e.g. eusocial Hymenoptera, rodents and shrimp) could provide insight
into convergent patterns of eusocial evolution (e.g. [75]).
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Investigating termite populations with varying Ne will help to define the relationship between the pervasive relaxed selection
identified and the group’s demography. Population genetic analyses will also enable categorization of realized and masked genetic
load to clarify whether termites exhibit purging of deleterious alleles, and whether this occurs at the colony level. In addition,
characterizing selection coefficients of various genes will help to tease apart genome-wide and gene-specific consequences of
evolving eusociality, shedding light on patterns of relaxed selection.

Our findings corroborate several previous studies that suggested an association between eusociality and a reduced Ne, result-
ing in relaxed selection [3,5,12,38]. Although accurate estimation of Ne is particularly challenging for eusocial species [76],
integrating such estimates, or relevant proxies (e.g. [5]), could help to clarify the patterns of relaxed selection that we have inferred,
and the association between Ne and the evolution of eusociality. This, in turn, would help to illuminate the extent to which shifts in
Ne and the emergence of eusociality have shaped genomic evolution in termites.
rnal/rspb
Proc.R.Soc.B
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4. Material and methods
(a) Sample collection and DNA extraction
Samples of P. cribrata were collected from North Manly, NSW, in August 2020 by N. Lo. Samples of G. dilatatus were collected from
Gilgandra, NSW, in September 2019 by H. A. Rose. Samples of N. hanni were collected from Mt Molloy, QLD, in January 2020 by
J. A. Walker and N. Lo. Muscle tissue was removed from the leg of one adult female of each species for DNA extraction. DNA was
extracted using a phenol/chloroform extraction protocol (detailed in the electronic supplementary material).

(b) DNA sequencing approaches
Three different DNA sequencing approaches were employed to generate the cockroach genomes: linked-read sequencing, chromosomal
conformation capture sequencing, and long-read sequencing (electronic supplementary material, table S1). We used two technologies for
linked-read sequencing: Transposase Enzyme-Linked Long-read Sequencing (TELL-Seq™ [77]) and single-tube long fragment read (stLFR
[78]). These technologies are based on co-barcoding short-read sequences that derive from the same DNA fragment, providing long-range
information to enable assembly of long DNA regions.

We used Hi-C sequencing [79], a chromosomal conformation capture sequencing method based on proximity ligation. Hi-C sequen-
cing supports scaffolding of genomic regions that are in close spatial proximity. Hi-C library preparation was performed using the Arima
Hi-C Plus kit (Arima, USA) following the manufacturer’s protocol for large animal tissue, using the DpnII and HinfI enzymes. Preliminary
sequencing and subsequent analysis using qc3C [80] was performed to estimate the quantity of Hi-C sequencing required.

We utilized the Pacific Biosciences (PacBio) HiFi long-read sequencing technology [81], which uses circular consensus sequencing to
generate long-reads that are greater than 99% accurate. The library preparation was performed using the SMRTbell Express Template Prep
Kit 2.0 following the manufacturer’s instructions (Pacific Biosciences). Additional information on the TELL-Seq, stLFR, Hi-C and PacBio
HiFi library preparations can be found in the electronic supplementary material.

(c) Genome assembly and annotation
Different genome assembly pipelines were utilized for the different species depending on the sequencing resources available (electronic
supplementary material, figure S1). The first step for all three species was a de novo assembly based on linked-read data, performed using
the Supernova assembler v. 2.1.1 [82]. For the genome of P. cribrata, we performed a separate de novo assembly based on the PacBio Hifi
sequencing data using Improved Phased Assembler (IPA) v. 1.3.1 (Pacific Biosciences, 2022), then merged this long-read assembly with
the linked-read assembly using quickmerge [83]. For the genome of G. dilatatus, gaps in the Supernova de novo assembly were filled with
low-coverage PacBio Hifi data using TGS-GapCloser v. 1.1.1 [84], then the assembly was scaffolded with Hi-C sequence data using
SALSA2 [85,86]. All three genome assemblies were annotated using FGENESH++ v. 7.2.2 [87,88], carried out on the Nimbus cloud service
(provided by the Pawsey Supercomputing Centre). We generated various statistics to assess assembly continuity using QUAST v. 4.3 [89],
and assessed assembly completeness using BUSCO v. 4.0.6 (utilizing the Insecta lineage data set [90–93]). Additional information on
genome assembly and annotation methods can be found in the electronic supplementary material.

(d) Orthology assignment
Proteomes of these three newly generated blaberid annotated genomes were combined with proteomes from six other species extracted
from InsectBase 2.0 [94], including: American cockroach (Periplaneta americana), German cockroach (Blatella germanica), Nevada termite
(Zootermopsis nevadensis), Formosan termite (Coptotermes formosanus), a drywood termite (Cryptotermes secundus) and a cricket (Laupala
kohalensis) as an outgroup (electronic supplementary material, table S2). The cricket proteome was utilized as an outgroup rather than
a proteome from a more closely related species (e.g. Clitarchus hookeri) due to its relatively high genome completeness. The longest isoform
for each gene was extracted using the primary_transcript.py script supplied by OrthoFinder v. 2.4 [95].

Orthologous protein sequences among all nine species were allocated using OrthoFinder with default settings. Resultant orthogroups were
annotated based on the most frequent gene annotation within the orthogroup. Single-copy orthologue sequences were identified and aligned
using OrthoFinder, implementing the MAFFT sequence alignment method [96]. The corresponding nucleotide coding sequences (CDS) of
these single-copyorthologueprotein sequenceswere extracted fromeachof the respective genomes, andalignedusing the codon-aware sequence
alignmentmethod supplied byHyPhyv. 2.5.32 [28,29]. These single-copyorthologueCDSwere utilized for our subsequent analyses of selection.

(e) Gene expansions and contractions
The gene counts generated using OrthoFinder were used to investigate gene family expansions and contractions under a birth–death
model using CAFE v. 5.0 [97]. To prepare the input tree for CAFE, the rooted species tree generated by OrthoFinder was converted
into an ultrametric tree using the make_ultrametric.py script supplied by OrthoFinder. Gene families with ≥ 100 genes in any one lineage
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were extracted using a CAFE python script (clade_and_size_filter.py) and analysed separately, because high variance of gene copy
number can lead to non-informative parameter estimates. The orthogroup data sets were analysed with CAFE, implementing a Poisson
root frequency distribution (-p), a model to account for genome assembly and annotation errors (-e), and a lambda tree (-y) specifying
three separate lambda estimations for the termites, cockroaches, and outgroup (following results from CODEML analyses).

( f ) Positive and relaxed selection
We estimated dN/dS values for the aforementioned single-copy orthologues extracted from the nine analysed genomes using CODEML,
which is part of the PAML package [25]. We used a fixed tree topology, based on previous phylogenetic estimates (figure 2b [18,19,98]),
and implemented various dN/dS partitions across the tree in separate analyses. First, we implemented the free-ratio model, which esti-
mates a separate dN and dS value for each branch across the phylogeny. We ran CODEML, implementing the free-ratio model, three
times on 1484 single-copy orthologue alignments (seven alignments were removed due to missingness), then extracted the estimated
dN and dS values from the run with the highest likelihood score. To calculate the dN and dS rates, we scaled these values with branch
lengths from chronograms derived from Evangelista et al. [19] and Beasley-Hall et al. [98].

Second, we implemented two- and three-ratio dN/dS models, whereby specific sets of branches are nominated as foreground branches
(i.e. the branches ‘of interest’), and other branches are nominated as background branches. In the two-ratio model, we set the branch to the
outgroup (Laupala kohalensis) as the background branch, allowing a single dN/dS value to be estimated across Blattodea. In the three-ratio
model, we allowed separate dN/dS values to be estimated for the termite clade (excluding the termite stem branch) and the cockroach
branches (i.e. the rest of Blattodea). We ran CODEML, implementing the two- and three-ratio models, for all 1484 single-copy orthologue
alignments. For each orthologue, we used likelihood-ratio tests to evaluate whether separate values for dN/dS for the termites and other
taxa in Blattodea fit the sequence data better than a single dN/dS value for Blattodea.

We investigated positive selection for each gene on different branches using an adaptive branch-site random-effects model (aBSREL)
[99], implemented in HyPhy. aBSREL estimates dN/dS values and tests whether a proportion of sites have evolved under positive selection
for each user-specified test branch in the tree. First, we analysed the four termite branches (i.e. assigned them as the ‘foreground’ branches)
to investigate signatures of positive selection related to the evolution of termites. Second, we analysed a larger subset of branches across
the cockroach and termite phylogeny (i.e. 12 branches assigned as ‘foreground’ branches) to investigate broader patterns of positive selec-
tion in the group. Resultant p-values were corrected for multiple branches being tested using the Holm–Bonferroni method (based on the
5% level of significance). We repeated each analysis using three models accounting for multinucleotide mutations: multiple-hits ‘Double’,
multiple hits ‘Double + Triple’, and the standard model. Analyses implementing the best-fitting model for each orthologue were retained.

To test for genes with evidence of relaxed selection, we applied the RELAX method [27], implemented in HyPhy [28,29], to each align-
ment separately. RELAX fits three dN/dS classes to the phylogeny then tests for relaxed/intensified selection on a user-specified test
branch. We ran RELAX for 12 different test branches in separate analyses (figure 1c). Resultant p-values were corrected for multiple
branches being tested using the Holm–Bonferroni method (based on the 5% level of significance). To evaluate whether patterns of relaxed
selection were due to errors in our automated sequence alignments, we repeated the RELAX analyses on a subset of audited orthologue
alignments. We manually inspected and aligned sequences of 105 orthologues, including 20 randomly selected orthologues that were
found to be under relaxed selection in all three termite species, 22 that were found to be under relaxed selection in two termite species,
and 65 that yielded no evidence of relaxed selection. We subsequently carried out a RELAX analysis on the realigned orthologues, imple-
menting the standard model for multinucleotide mutations. Furthermore, we ran RELAX for all termite branches together (i.e. multiple
test branches were considered in a single analysis) and for all cockroach branches together (a Holm–Bonferroni correction was
implemented as detailed above).

(g) Analysis of differentially expressed genes
We identified and analysed caste-biased and unbiased genes characterized by Harrison et al. [6] and Maekawa et al. [31] in our single-copy
orthologue data set based on the putative annotations. We tested whether there were significantly more or fewer caste-biased orthogroups
(and unbiased orthogroups) under relaxed or positive selection compared with the whole data set using chi-squared tests, implemented in
the R package ‘stats’ [100].

To investigate the evolutionary history of these caste-biased orthogroups (and unbiased orthogroups), we assessed if they were associ-
ated with a higher or lower rate of evolution in cockroaches (see [8]). We did this by estimating total tree lengths for the cockroaches for
each single-copy orthologue using IQ-TREE v. 2.2.2 [101]. Additional information on estimating tree lengths can be found in the electronic
supplementary material. In addition to the tree-length analysis, we investigated the selection signatures of these caste-biased orthogroups
in cockroaches, and compared them with the whole data set using chi-squared tests as above.

(h) Measuring the ‘genetic load’
To investigate genetic load among the sampled taxa, we analysed amino acid substitutions in BUSCOs from the Insecta lineage data set.
These highly conserved genes are expected to be under purifying selection, and most derived alleles are likely to be deleterious [102,103].
Here, we focus on ‘realized load’ and not ‘masked load’, as heterozygosity was not considered [49,51].

For this analysis, we extracted BUSCOs from the Insecta lineage data set in each of the sampled taxa using BUSCO v. 5.4.2. We then
polarized the amino acid substitutions of the aligned BUSCOs relative to the corresponding BUSCOs from the cricket outgroup. We ana-
lysed the derived amino acid substitutions to infer realized genetic load based on three metrics: (1) the total number of derived
substitutions per amino acid; (2) the number of putatively deleterious substitutions per amino acid; and (3) the ratio of putatively dele-
terious to benign substitutions. We used PROVEAN v. 1.1.5 [50] to classify substitutions as either ‘benign’ (PROVEAN scores >−2.5) or
‘deleterious’ (PROVEAN scores≤−2.5) based on how phylogenetically conserved the allele is among a database of homologous protein
sequences [104–106]. Additional information on estimating genetic load can be found in the electronic supplementary material.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.

Data accessibility. Genomes assemblies and annotations for the three Blaberidae species (Geoscapheus dilatatus,Neogeoscapheus hanni andPanesthia cribrata)
are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.sqv9s4n9t [107]. The genome assemblies are also archived on

https://doi.org/10.5061/dryad.sqv9s4n9t
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GenBank under BioProject PRJNA1065107 (accession numbers JAZBJU000000000, JAZBJV000000000 and JAZBJW000000000 for Geoscapheus dilata-
tus, Neogeoscapheus hanni and Panesthia cribrata, respectively), and all associated sequence data are archived on the SRA database (BioSample
accessions SAMN39450771, SAMN39450772 and SAMN39450773 for Geoscapheus dilatatus, Neogeoscapheus hanni and Panesthia cribrata, respectively).

Additional data are provided in the electronic supplementary material [108].
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