Supplemental Information for:

Population genomics of the invasive Argentine ant (*Linepithema humile*) – adaptive evolution in the introduced supercolonies despite low genetic diversity

Ida Holmberg, Jenni Paviala, Jes Søe Pedersen, Heikki Helanterä, Lumi Viljakainen

Table of Contents:
Table S1: Sampling locations
Text S2: Analyses including Catalonia
Table S2.1: Genomic diversity (π and Θ_w) including Catalonia
Figure S2.2: Tajima's D density plots including Catalonia
Figure S2.3: Genomic differentiation (Fst) including Catalonia
Text S3: Comparing the results of genomic data and microsatellites
Table S3.1: Genetic marker diversity ($H_{exp} \& k'$)
Figure S3.2: Genomic diversity (π & Θ_w) versus genetic marker diversity (H _{exp} & k') excluding Catalonia
Figure S3.3: Genomic diversity (π & Θ_w) versus genetic marker diversity (H _{exp} & k') including Catalonia
Table S3.4: Genetic marker differentiation (Fst)
Figure S3.5: Genomic differentiation (Fst) versus genetic marker differentiation (Fst) excluding Catalonia
Figure S3.6: Genomic differentiation (Fst) versus genetic marker differentiation (Fst) including Catalonia
Table S4: Similar allele frequency changes (cmh & qbGLM)
Tables S5: Properties of the data
Table S6: Results of statistical tests
Tables S7: Genomic diversity ($\pi \& \Theta_w$) – The effects of different
window sizes
Table S8: Tajima's D statistics of genes
Table S9 : Tajima's D statistics of 20 kbp genomic windows
File S10: Targets of selection (Tajima's D)
Figures S11: Overlaps of the targets of selection (Tajima's D) – 20 kbp genomic windows
Table S12: Jaccard Indexes of 20 kbp genomic windows
Table S13: Enrichment Analysis of GO terms (Tajima's D)
Table S14: Genomic differentiation (Fst) statistics of 20 kbp genomic windows
File S15: The most differentiated genomic windows and genes (F _{ST})

Table S16: Enrichment Analysis of GO terms (F_{ST})

S1. Sampling locations of the Argentine ant supercolonies studied. Sampling was done from four geographic areas to represent the native and introduced ranges. In the native range, ten individuals were collected from the ten different nests (a total of 100 individuals) belonging to ten supercolonies from four different localities. In the introduced range, ten individuals were collected from the ten different nests belonging to the same supercolony (a total of 100 individuals). Finally, in the case of invasive supercolonies, these 100 individuals were pooled to represent final supercolony-specific samples. The native range sample captured total genetic diversity in the native range of species instead of representing one native supercolony. Sampled nests were a subset of those used in Vogel et al. (2010)*, but worker specimens were different.

Supercolony	Population	Geographic	Locality	Supercolony ID	Nest sample ID [10
name	genomic	range			workers from each nest]
	sample name	[native (N) or			
		introduced (I)]			
The native	Native	N	Argentina, Corrientes, Arroyo	Corrientes S1	14
supercolony			Cuay Grande		
The native	Native	Ν	Argentina, Corrientes, Arroyo	Corrientes S2	21
supercolony			Cuay Grande		
The native	Native	N	Argentina, Buenos Aires,	Otamendi S2	106
supercolony			Otamendi		
The native	Native	Ν	Argentina, Buenos Aires,	Otamendi S3	70
supercolony			Otamendi		
The native	Native	N	Argentina, Buenos Aires,	Otamendi S4	65
supercolony			Otamendi		
The native	Native	N	Argentina, Buenos Aires,	Otamendi S6	30
supercolony			Otamendi		
The native	Native	N	Argentina, Buenos Aires,	Otamendi S9	01
supercolony			Otamendi		
The native	Native	N	Argentina, Buenos Aires,	Boca S1	02
supercolony			Buenos Aires City, Boca		
The native	Native	N	Argentina, Buenos Aires,	Boca S2	07
supercolony			Buenos Aires City, Boca		
The native	Native	N	Argentina, Buenos Aires,	Santa Coloma	04
supercolony			Santa Coloma		
The European	European	1	France, Port-Leucate	European Main	58, 60, 61, 63, 64, 65, 68,
Main supercolony	Main				71, 76, 80
The Catalonian	Catalonia	I	Spain, Pals	Catalonia	03, 14, 15, 17, 18, 20, 22,
supercolony					24, 25, 33
The Chilean	Chile	I	Chile, Santiago	Chile	02, 04, 05, 06, 07, 08, 09,
supercolony					10, 11, 13

* Vogel, V., Pedersen, J. S., Giraud, T., Krieger, M. J. B., & Keller, L. (2010). The worldwide expansion of the Argentine ant. Diversity and Distributions, 16(1), 170–186. https://doi.org/10.1111/j.1472-4642.2009.00630.x

S2. Analyses including Catalonia

Materials and methods - including Catalonia

Genomic diversity (π and Θ_w) and test of neutrality (Tajima's D) were conducted for the shared positions of all four supercolonies, i.e., including Catalonia, in the same way as described in the main text. The only exception was the requirement for sequencing depth criteria, which dropped to 25% (from 60% used for analyses excluding Catalonia). This quite loose window requirement stems from Catalonia's uneven read alignment. In addition, the genomic differentiation (F_{ST}) was estimated in the same way as described in the main text. However, when looking for targets of selection from the extreme ends of the Tajima's D distributions, we left Catalonia out and considered only the three other supercolonies (see main text). In this way, we could minimise the bias in the results of selection analyses, as Catalonia had an uneven alignment covering a small fraction of the reference genome. Similarly, while looking for the most differentiated genomic regions (F_{ST}) from the extreme ends of the F_{ST} distributions, we left Catalonia out to avoid possible bias in the results.

Results and discussion - including Catalonia

Properties of the data and genomic diversity

After filtering, the sample-specific pileup files with shared positions of all four samples with a sequencing depth of at least 20 covered only 20% of the reference genome. Catalonia's read alignment to the reference genome was uneven, with a considerable variation in sequencing depth along the genome (see below Tables S5). After filtering, the multi-sample joint mpileup file (used for genomic F_{ST}) with shared positions of all four samples with a sequencing depth of at least 4 covered 56% of the reference genome (see Tables S5).

We found 256 545 SNPs from Native, which was about two-fold higher than the number of SNPs found in any of the invasive supercolony samples, European Main, Catalonia or Chile (Table S2.1. Statistics of genomic diversity (π and Θ_W) including Catalonia). Thus, the magnitude of differences remains similar to those in the analyses with higher reference genome coverage, excluding Catalonia (see main text). Both genomic diversity estimators, π and Θ_W , indicated that the native supercolonies are genetically more diverse than the invasive supercolonies (Mann-Whitney U-test: p<2.2e⁻¹⁶ in all pairwise comparisons of π and Θ_W estimated in 20 kbp windows between the native and invasive supercolonies) giving us similar conclusions as results in the main text (excluding Catalonia).

Table S2.1. Genomic diversity (π and Θ_W) including Catalonia. The genome-wide means and standard deviations (sd) of π and Θ_W and the number of SNPs used for estimations.

Sample	Mean π	Sd π	Mean Θ_w	Sd Ow	SNPs
Including Catalonia					
Native	0.0016	0.0009	0.0017	0.0010	256 545
European Main	0.0008	0.0007	0.0007	0.0007	128 124
Chile	0.0010	0.0010	0.0009	0.0009	141 101
Catalonia	0.0008	0.0008	0.0009	0.0008	115 054

Test of neutrality

The density curves for both 20 kbp genomic windows and annotated genes of the native and Catalonian supercolonies were located on the negative side. In contrast, the density curves of the European Main and Chilean supercolonies were located on the positive side, but the density curves of 20 kbp windows were skewed toward the negative side. In addition, the density curves of the native and Catalonian supercolonies were narrow with high kurtosis, while the density curves of the European Main and Chilean supercolonies were broad, with low kurtosis and more extreme values than the other two supercolonies (Figure S2.2. Density curves of Tajima's D including Catalonia). Thus, the patterns detected in the density plots for the native, European Main, and Chilean supercolonies covering less from the reference genome. While the lowest extremes of Tajima's D values indicated genomic regions and genes under positive selection, the genome-wide negative Tajima's D might signal population size expansion instead. The negatively located Tajima's D distributions of the Catalonian supercolony might indicate that this introduced supercolony is still expanding.

Figure S2.2. The density curves of Tajima's D values were estimated from (A) whole genomes with 20 kbp windows and (B) genes including Catalonia.

Genetic differentiation

We used pairwise F_{ST} values to evaluate genomic differentiation between supercolonies. These analyses revealed that the invasive supercolonies seemed to be more differentiated from each other than from the native supercolonies (Mann-Whitney U-test: p<2.2e⁻¹⁶ in all pairwise comparisons; Figure S2.3. The boxplots of genomic pairwise F_{ST} values including Catalonia, Table S14). Thus, also F_{ST} gave us similar conclusions as in the main text with the more comprehensive data.

Figure S2.3. The boxplots of genomic pairwise F_{ST} values including Catalonia.. The mean values are indicated with "x".

Using a Cochran-Mantel-Haenszel test, we detected similar allele frequency changes between the native and each of the invasive supercolonies. When the Catalonian supercolony was included, 65% of the SNPs found showed significant and similar allele frequency changes (BH-adjusted p-values<0.05; Table S4). As an alternative method to detect similar allele frequency changes between the native and each of the invasive supercolonies, we used qbGLM (See Table S4).

To summarise, the results of the data set, including Catalonia, led to conclusions similar to those in the main text, with the data set excluding Catalonia. However, due to its poor reference

genome coverage and following limitations, we decided not to keep Catalonia in all analyses and thus dropped it from the main text.

S3. Comparing the results of genomic data and microsatellite marker data

Materials and methods

Genetic marker data on five variable microsatellite loci (*Lhum*-3, *Lhum*-11, *Lhum*-19, *Lhum*-28, and Lhum-35) were obtained from Vogel et al. (2010) applying a similar sample size and design as the genomic samples, i.e. native with the same 10 supercolonies (10 worker individuals each) as subsamples and each of the three introduced supercolonies with 10 nests as subsamples. Estimations of genetic diversity (expected heterozygosity, H_{exp} , and allelic richness, k') and genetic differentiation (pairwise F_{ST}) were performed as in Vogel et al. (2010) with dispersal measures (SE) calculated by jackknifing over subsamples.

Vogel, V., Pedersen, J. S., Giraud, T., Krieger, M. J. B., & Keller, L. (2010). The worldwide expansion of the Argentine ant. Diversity and Distributions, 16(1), 170–186. <u>https://doi.org/10.1111/j.1472-4642.2009.00630.x</u>

Results

Genetic diversity

Table S3.1. Genetic marker diversity expressed as expected heterozygosity (H_{exp}) and allelic richness (k'), both on average per five loci. k' is adjusted to a minimum sample size of 10 individuals.

Sample	Hexp	SEHexp	k'	SE _k ′	Ν
Native	0.9036	0.0040	9.980	0.185	10
European Main	0.4644	0.0078	3.254	0.043	10
Chile	0.5426	0.0053	3.440	0.056	10
Catalonia	0.5710	0.0073	4.040	0.057	10

Figure S3.2. Genomic diversity (mean π and Θ_w estimated in 20 kbp windows for the whole genome) comparison with genetic marker diversity (average H_{exp} and allelic richness, k' per five loci), excluding Catalonia.

Figure S3.3. Genomic diversity (mean π and Θ_w estimated in 20 kbp windows for the whole genome) comparison with genetic marker diversity (average H_{exp} and allelic richness, k' per five loci), including Catalonia.

Genetic differentiation

Table S3.4. Genetic marker differentiation as pairwise F_{ST} , average per five loci. Please note that for the marker data, unlike the genomic data, F_{ST} is not affected by whether or not Catalonia is included in the analysis.

Sample pair	Fsт	SE	Ν
Native – European Main	0.2419	0.0066	10
Native – Catalonia	0.1945	0.0061	10
Native – Chile	0.1902	0.0083	10
European Main – Catalonia	0.4565	0.0066	10
European Main – Chile	0.3706	0.0055	10
Chile – Catalonia	0.3942	0.0041	10

Figure S3.5. Genomic differentiation (mean F_{ST} estimated in 20 kbp windows for the whole genome) comparison with genetic marker diversity (average F_{ST} per five loci), including Catalonia.

Figure S3.6. Genomic differentiation (mean F_{ST} estimated in 20 kbp windows for the whole genome) comparison with genetic marker differentiation (average F_{ST} per five loci), excluding Catalonia.

S4. The number of detected SNPs and associated p-values while looking for similar allele frequency changes between the native and invasive supercolonies using a Cochran-Mantel-Haenszel test (cmh) and a quasibinomial GLM (qbGLM).

In addition to a cmh-test, a quasibinomial generalised linear model (qbGLM) for each segregating site was used to detect significant allele frequency differences between the native and invasive supercolonies. qbGLM was done using the modified multi-sample joint mpileup files with poolFreqDiffTest_QBGLM.py script from the poolFreqDiff program (Wiberg et al., 2017). The minimum and maximum sequencing depth requirements were 4 and 250, respectively. Furthermore, the minimum count required to consider a SNP was 4. This method detected significant and similar allele frequency changes for 31% and 64% of the SNPs, including and excluding Catalonia, respectively (BH-corrected p-values<0.05).

Samples	Program	All p-values	P-values < 0.05	Adjusted p- values (BH) <= 0.05	Proportion of statistically significant SNPs (adj. p-val < 0.05)
All	cmh	956 798	649 416	625 808	0.6541
All excluding	cmh	1 475 443	973 984	932 655	0.6321
Catalonia					
All	qbGLM	1 082 636	466 243	334 875	0.3093
All excluding Catalonia	qbGLM	1 692 572	1 118 242	1 076 207	0.6358

S5. Properties of the data

Α.	The number of	raw and filtered	reads after	specific filtering steps.
----	---------------	------------------	-------------	---------------------------

Sample	Raw reads	Base quality 20 & min read length 70 bp	Mapping quality 20 & flag "properly paired"	Deduplication
Native	351 474 642	338 876 714	249 429 687	224 678 771
European Main	346 653 204	334 410 182	274 324 386	256 626 900
Chile	346 869 216	333 868 165	247 763 921	204 902 571
Catalonia	322 926 608	309 976 495	213 423 509	146 643 559

Supplemental Information for the manuscript: Population genomics of the invasive Argentine ant (Linepithema humile) – adaptive evolution in the introduced supercolonies despite low genetic diversity

B. The number of positions with different sequencing depths and the proportions of these positions from the reference genome (coverage) were calculated from the sample-specific indel-filtered pileup files before filtering for shared positions with a sequencing depth of at least 20.

Depth	0		1		2		>0		<20		>=20	
Sample	Positions	Coverage	Positions	Coverage	Positions	Coverage	Positions	Coverage	Positions	Coverage	Positions	Coverage
Native	13 096 157	0.0597	388 593	0.0018	306 435	0.0014	206 404 593	0.9403	10 316 199	0.0470	196 090 509	0.8933
European	11 288 881	0.0514	361 368	0.0017	283 907	0.0013	208 211 869	0.9486	10 184 652	0.0464	198 029 317	0.9022
Main												
Chile	11 881 078	0.0541	424 274	0.0019	326 747	0.0015	207 619 672	0.9459	13 629 922	0.0621	19 399 2171	0.8838
Catalonia	28 101 445	0.1280	24 501 135	0.1116	23 164 305	0.1055	191 399 305	0.8720	145 208 860	0.6615	46 269 712	0.2108

C. After specific filtering steps, the coverage of the reference genome and the mean sequencing depth of sample-specific alignments. Finally, the filtered sample-specific files containing shared positions with a minimum sequencing depth of 20 covered only 20% of the reference genome. When Catalonia was excluded, the filtered files of Native, European Main and Chile, containing shared positions with a minimum sequencing depth of 20 covered 85% of the reference genome.

	Before deduplication		After deduplication		Indel filtering		Shared positions and depth	
							filtering‡	
Sample	Coverage [†]	Mean depth	Coverage [†]	Mean depth	Coverage [†]	Mean depth	Coverage [†]	Mean depth
Native	96	91	96	87	94	87	20/85	137/94
European	96	100	96	97	95	97	20/85	163/104
Main								
Chile	96	85	96	81	95	81	20/85	131/87
Catalonia	88	63	88	56	87	54	20/-	209/-

⁺ The percentage covered of the reference genome

‡ Coverage and sequencing depth of shared positions, including/excluding Catalonia

D. After specific filtering steps, the reference genome coverage of the multi-sample joint mpileup files. After filtering for shared positions with a minimum sequencing depth of 4, the coverage of the mpileup file containing all four supercolonies covered 56% of the reference genome, and the mpileup file containing Native, European Main, and Chile covered 93% of the reference genome.

	Before indel filtering	Indel filtering	Depth filtering
	Coverage ⁺	Coverage ⁺	Coverage ⁺
All	96	94	56
All except Catalonia	96	94	93

⁺ The percentage covered of the reference genome

S6. Statistical tests

Comparison	Tested	Test	Statistic	Sample size	p-value
groups	parameter				
Native vs.	π	Mann-	W=78016761	n _{Native} =9402,	<2.2e ⁻¹⁶
European		Whitney U-		n _{EuropeanMain} =9382	
Main		test			
Native vs.	π	Mann-	W=73978979	n _{Native} =9402,	<2.2e ⁻¹⁶
Chile		Whitney U-		n _{Chile} =9467	
		test			
Native vs.	θw	Mann-	W=83527951	n _{Native} =9402,	<2.2e ⁻¹⁶
European		Whitney U-		n _{EuropeanMain} =9382	
Main		test			
Native vs.	θw	Mann-	W=80667746	n _{Native} =9402,	<2.2e ⁻¹⁶
Chile		Whitney U-		n _{Chile} =9467	
		test			
Native's	Tajima's D	Mann-	W=5965426	n _{Genome} =9404	p<2.2e ⁻¹⁶
genome vs.		Whitney U-		n _{Genes} =10935	
genes		test			
European	Tajima's D	Mann-	W=64310360	n _{Genomes} =9832	p<2.2e ⁻¹⁶
Main's		Whitney U-		n _{Genes} =10884	
genome vs.		test			
genes					
Chile's	Tajima's D	Mann-	W=59169477	n _{Genomes} =9467	p<2.2e ⁻¹⁶
genome vs.		Whitney U-		n _{Genes} =10956	
genes		test			
Native and	Overlap of	Two-Sample	X ² =9.627	Native-EurMain=109	p-value=0.0019
European	genes	Test for	df=1	n _{EurMain-Chile} =109	
Main vs.	(highest 1%	Equality			
European	of Tajima's	Proportions			
Main and	D)				
Chile					
Native and	Overlap of	Two-Sample	X ² =17.107	n _{Native-Chile} =110	p-value=3.5e ⁻⁵
Chile vs.	genes	Test for	df=1	N _{EurMain-Chile} =109	
European	(highest 1%	Equality			
Main and	of Tajima's	Proportions			
Chile	D)				
Native and	Overlap of	Two-Sample	X ² =41.995	N _{Native-EurMain} =545	p-value=9.2e ⁻¹¹
European	genes	Test for	dt=1	NEurMain-Chile=545	
Main vs.	(highest 5%	Equality			
European	of Tajima's	Proportions			
Iviain and	נט				
Chile			y ² 25 027	E 47	
Native and	Overlap of	Two-Sample	X=25.02/	Native-Chile=54/	p-value=5./e ^{-/}
Chile VS.	genes	rest for		NEurMain-Chile=545	
European	(nignest 5%	Equality			
Iviain and	or rajima's	Proportions			
Nativo and	D) Overlag of	Two Correcto	V ² -17 200	n 100	n value 2 2 -5
Furge and	overlap of	Tost for	A = 1/.299	IINative-EurMain=109	p-value=3.2e ³
European	genomic	rest for		TEurMain-Chile=109	
iviain vs.	windows				

Supplemental Information for the manuscript: Population genomics of the invasive Argentine ant (Linepithema humile) – adaptive evolution in the introduced supercolonies despite low genetic diversity

European	(highest 1%	Equality			
Main and	of Tajima's	Proportions			
Chile	D)				
Native and	Overlap of	Two-Sample	X ² =15.372	n _{Native-Chile} =110	p-value=8.8e ⁻⁵
Chile vs.	genomic	Test for	df=1	n _{EurMain-Chile} =109	
European	windows	Equality			
Main and	(highest 1%	Proportions			
Chile	of Tajima's				
	D)				
Native and	Overlap of	Two-Sample	X ² =92.808	n _{Native-EurMain} =545	p-value<2.2e ⁻¹⁶
European	genomic	Test for	df=1	n _{EurMain-Chile} =545	
Main vs.	windows	Equality			
European	(highest 5%	Proportions			
Main and	of Tajima's				
Chile	D)				
Native and	Overlap of	Two-Sample	X ² =20.492	n _{Native-Chile} =547	p-value=6.0e ⁻⁶
Chile vs.	genomic	Test for	df=1	n _{EurMain-Chile} =545	
European	windows	Equality			
Main and	(highest 5%	Proportions			
Chile	of Tajima's				
	D)				
Native vs.	Fst	Mann-	W=25382	n=10153	p<2.2e-16
European		Whitney U-			
Main		test			
Nativovc	Fst	Mann-	W=25382	n=10153	p<2.2e-16
Chile		Whitney U-			
Chine		test			
European	Fst	Mann-	W=25382	n=10153	p<2.2e-16
Main vs.		Whitney U-			
Chile		test			

S7. The effect of different sliding window lengths and the inclusion of deletion sizes for the results of π and Θ_w were tested with European Main and Catalonia.

A. The genome-wide average π values using shared positions for all four supercolonies with different window sizes and the "no discard deletions" parameter.

Window size	Sample	European Main	Catalonia
20 kbp		0.0008	0.0008
15 kbp		0.0008	0.0008
10 kbp		0.0009	0.0008
5 kbp		0.0009	0.0009
"no discard deleti	ions"	0.0008	0.0008

B. The genome-wide average Θ_w values using shared positions for all four supercolonies with different window sizes and the "no discard deletions" parameter.

Window size	Sample	European Main	Catalonia
20 kbp		0.0007	0.0009
15 kbp		0.0007	0.0009
10 kbp		0.0008	0.0009
5 kbp		0.0008	0.0010
"no discard deleti	ons"	0.0007	0.0009

S8. The genome-wide minimum, maximum, median, mean and standard deviation (sd) values of Tajima's D from the 20 kbp windows and the number of SNPs used for calculations, using shared positions including and excluding Catalonia.

Sample	Min	Max	Median	Mean	Sd	SNPs		
Including Catalonia								
Native	-2.2225	1.9528	-0.5745	-0.5498	0.4698	350 745		
European	-3.0459	4.2802	0.2661	0.0785	1.3514	169 276		
Main								
Chile	-2.9635	3.6980	0.4598	0.3174	1.1302	176 517		
Catalonia	-2.6092	1.2345	-0.8033	-0.7851	0.5374	185 461		
Excluding Cata	alonia							
Native	-2.4585	2.0845	-0.3799	-0.3764	0.3978	1 537 157		
European	-3.0226	3.3766	0.3550	0.1242	1.2234	722 735		
Main								
Chile	-3.0038	2.9987	0.5215	0.3258	1.0182	732 980		

S9. The minimum, maximum, median, mean and standard deviation (sd) values of Tajima's D over all genes in the genome and the number of SNPs used for calculations, using shared positions including and excluding Catalonia.

Sample	Min	Max	Median	Mean	Sd	SNPs		
Including Catalonia								
Native	-2.9099	3.6887	-0.4702	-0.3864	0.7811	263 790		
European	-2.9700	4.5208	0.0205	0.0959	1.3370	111 103		
Main								
Chile	-3.0177	3.8728	0.3572	0.3232	1.1051	115 092		
Catalonia	-2.8815	2.4116	-0.6984	-0.6152	0.7802	126 149		
Excluding Cata	lonia							
Native	-2.9099	3.6856	-0.2990	-0.2569	0.6839	1 188 303		
European	-3.0002	4.2852	0.1538	0.1866	1.2462	499 276		
Main								
Chile	-2.9465	4.1395	0.3963	0.3699	1.0276	516 415		

S10. See the separate Excel file (file S10) – the complete lists of all 20 kbp genomic windows and annotated genes of each supercolony sample with the lowest and highest Tajima's D values and the overlaps of these lists.

S11. Overlaps of the targets of selection – 20 kbp windows

A. Venn diagrams showed the overlaps of the 20 kbp windows in the (A) lowest 1%, (B) lowest 5%, (C) highest 1%, and (D) highest 5% extremes of Tajima's D values, excluding Catalonia.

B. Venn diagrams showed the overlaps of the 20 kbp windows with the highest Tajima's D of Native and the lowest Tajima's D values of the invasive supercolonies in (A) 1% extremes and (B) 5% extremes, excluding Catalonia.

S12. Pairwise Jaccard Indexes for 20 kbp genomic windows in the lowest 1% and 5% and highest 1% and 5% extremes of Tajima's D values.

The extreme end of	Sample pair	Jaccard
Tajima's D distribution		Index
Low 1%	Native & European Main	0.0161
Low 1%	Native & Chile	0.0215
Low 1%	European Main & Chile	0.1455
Low 5%	Native & European Main	0.0657
Low 5%	Native & Chile	0.0642
Low 5%	European Main & Chile	0.2503
High 1%	Native & European Main	0.0385
High 1%	Native & Chile	0.0983
High 1%	European Main & Chile	0.0442
High 5%	Native & European Main	0.0432
High 5%	Native & Chile	0.0618
High 5%	European Main & Chile	0.0667

S13.	Enrichment	Analysis	of	GO	terms
------	------------	----------	----	----	-------

GO ID	GO Name	GO Category	FDR (BH-adj. pval)	P-value	Nr tests	Test set
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0073	<0.0001	7	Native – the
						highest 1% of
						Tajima's D
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0039	<0.0001	14	Native – the
						highest 5% of
						Tajima's D
	olfactory					European Main –
	receptor					the highest 5% of
GO:0004984	activity	MOLECULAR_FUNCTION	0.0012	<0.0001	26	Tajima's D
	sensory					European Main –
	perception of					the highest 5% of
GO:0007608	smell	BIOLOGICAL_PROCESS	0.0024	<0.0001	26	Tajima's D
						European Main –
						the highest 5% of
GO:0005549	odorant binding	MOLECULAR_FUNCTION	0.0033	<0.0001	26	Tajima's D
	DNA metabolic					Chile – the highest
GO:0006259	process	BIOLOGICAL_PROCESS	0.0058	<0.0001	30	5% of Tajima's D
						Native & European
						Main – the highest
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0128	<0.0001	4	1% of Tajima's D
						Native & European
						Main – the highest
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0064	<0.0001	6	5% of Tajima's D
						Native & Chile – the
						highest 5% of
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0133	<0.0001	5	Tajima's D
						Native, European
						Main & Chile – the
						highest 5% of
GO:0015074	DNA integration	BIOLOGICAL_PROCESS	0.0001	<0.0001	8	Tajima's D

Supplemental Information for the manuscript: Population genomics of the invasive Argentine ant (Linepithema humile) – adaptive evolution in the introduced supercolonies despite low genetic diversity

Sample pair	Min	Max	Median	Mean	Sd		
Including Catalonia							
Native – European Main	0.0089	0.6848	0.1617	0.1747	0.076498		
Native – Catalonia	0.1020	0.6260	0.2691	0.2761	0.059928		
Native – Chile	0.0086	0.5201	0.1317	0.1422	0.0564287		
European Main – Catalonia	0.0721	0.9529	0.4332	0.4432	0.1190575		
European Main – Chile	0.0000	0.9979	0.2379	0.2701	0.1605818		
Catalonia – Chile	0.1027	0.9115	0.4133	0.4245	0.1017088		
Excluding Catalonia	Excluding Catalonia						
Native – European Main	0.0110	0.7059	0.1569	0.1677	0.0817383		
Native – Chile	0.0107	0.6605	0.1323	0.1419	0.0652877		
European Main – Chile	0.0000	1.0000	0.2207	0.2482	0.1620753		

S14. The genome-wide minimum, maximum, median, mean, and standard deviation (sd) values of pairwise F_{ST} , including and excluding Catalonia.

S15. See separate Excel file (file S15) – the complete lists of all 20 kbp genomic windows and annotated genes with the highest F_{ST} values between sample pairs.

Supplemental Information for the manuscript: Population genomics of the invasive Argentine ant (Linepithema humile) – adaptive evolution in the introduced supercolonies despite low genetic diversity

S16. Enrichment Analysis of GO terms (F_{ST})

GO ID	GO Name	GO Category	FDR (BH-adj. pval)	P-value	Nr tests	Test set
GO:0005515	protein binding	MOLECULAR_FUNCTION	0.0025	<0.0001	85	European Main & Chile– the most differentiated genes (5%)
GO:0005215	transporter activity	MOLECULAR_FUNCTION	0.0131	<0.0001	28	European Main & Chile– the most differentiated genes (5%)
GO:0006816	calcium ion transport	BIOLOGICAL_PROCESS	0.0220	<0.0001	5	European Main & Chile– the most differentiated genes (5%)
GO:0098662	inorganic cation transmembrane transport	BIOLOGICAL_PROCESS	0.0427	<0.0001	10	European Main & Chile– the most differentiated genes (5%)
GO:0034703	cation channel complex	CELLULAR_COMPONENT	0.0427	<0.0001	5	European Main & Chile– the most differentiated genes (5%)
GO:0005262	calcium channel activity	MOLECULAR_FUNCTION	0.0474	0.0001	4	European Main & Chile– the most differentiated genes (5%)