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Abstract

Ecological networks of species interactions are popular and provide pow-
erful analytical tools for understanding variation in community structure
and ecosystem functioning. However, network analyses and commonly used
metrics such as nestedness and connectance have also attracted criticism.
One major concern is that observed patterns are misinterpreted as niche
properties such as specialization, whereas they may instead merely reflect
variation in sampling, abundance, and/or diversity. As a result, studies po-
tentially draw flawed conclusions about ecological function, stability, or
coextinction risks. We highlight potential biases in analyzing and inter-
preting species-interaction networks and review the solutions available to
overcome them, among which we particularly recommend the use of null
models that account for species abundances.We show why considering vari-
ation across species and networks is important for understanding species
interactions and their consequences. Network analyses can advance knowl-
edge on the principles of species interactions but only when judiciously
applied.
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Bipartite network:
interactions or links
between species in two
clearly delineated
(often trophic) levels

Network
metric/index:
mathematical
descriptor quantifying
a property of the
network

Null model:
randomization of the
network under certain
constraints; useful to
distinguish pattern
from chance in
interactions

Functional
consequence:
ecological outcome of
species interactions,
often related to a
specific ecosystem
function (e.g.,
herbivory, parasitism,
pollination, seed
dispersal)

Link strength:
relative frequency
(number of
interactions), intimacy,
and/or importance of a
link between species;
used as the link weight

Observed
interaction: a link
between species that
has been confirmed by
direct observation in
the study site

Inferred interaction:
a link predicted from
external data but not
observed on site; often
used in food-web
studies

1. NETWORKS: WHO INTERACTS WITH WHOM, AND HOW
OFTEN (OR NOT)?

Analyses of networks of species interactions feature prominently in ecological research
(Bascompte & Jordano 2013, Delmas et al. 2019, Ings & Hawes 2018, Vázquez et al.
2022). Network studies are being conducted across most subdisciplines of ecology, includ-
ing (but not restricted to) community ecology (Spiesman & Gratton 2016, Staab et al. 2016),
biodiversity–ecosystem functioning research (Fornoff et al. 2019, Fründ et al. 2013), biogeog-
raphy (Trøjelsgaard et al. 2013, Windsor et al. 2023), restoration ecology (Kaiser-Bunbury et al.
2017, Pocock et al. 2012), invasion biology (Heleno et al. 2013, Olesen et al. 2002), applied
ecology (Feit et al. 2021, Ramirez et al. 2022), and conservation biology (Harvey et al. 2017,
Petsopoulos et al. 2021). To enable the quantification and comparison of species interactions, a
large set of mathematical descriptors have been postulated (e.g., Bersier et al. 2002, Blüthgen et al.
2006, Jordano 1987). The advent of easy-to-use, open-source software—including the popular R
packages bipartite (Dormann et al. 2009) and igraph (Csardi & Nepusz 2006), as well as the Pajek
software (Batagelj & Mrvar 2004)—has further facilitated formal network analyses (Delmas et al.
2019). These advances have boosted the whole of ecology, spurred the creation of large datasets
(Poisot et al. 2021), and stimulated the development of new theory (Krishna et al. 2008).

Detailed reviews on the application of ecological network analyses exist elsewhere (Bascompte
& Jordano 2007, Delmas et al. 2019, Dormann et al. 2017, Vázquez et al. 2022, Windsor et al.
2023). Instead of reiterating them, we focus on pitfalls in network interpretations arising from
effects of sampling, abundance, and diversity. Network analysis is still occasionally presented as
a silver bullet in ecology, associated with high expectations for solving a huge set of questions.
Against the backdrop of contagious network optimism, however, are a number of critiques, con-
cerns, and caveats about network analyses and their ecological interpretation (Blüthgen 2010,
Blüthgen et al. 2008, Brimacombe et al. 2022, Dormann et al. 2017, Fründ et al. 2016, Pringle
& Hutchinson 2020, Vázquez 2005, Vázquez & Aizen 2003). We believe that progress in un-
derstanding the causes and consequences of species interactions is still hampered by conceptual
shortcomings and biases, superficial or even spurious interpretations of network patterns, and an
ignorance of the incompleteness of interaction data. After briefly introducing bipartite networks
of species interactions and food webs, and describing how network metrics/indices are biased by
incomplete sampling, species abundances, and diversity, we argue that the consequences of false
interpretations of patterns are relevant and include flawed conclusions on ecological principles,
ecosystem functioning, and stability. We then outline several methods, metrics, and null models
that can compensate for these shortcomings.We suggest a framework based on abundance, diver-
sity, specialization, and exclusiveness as separate dimensions of network complexity to facilitate
a biological interpretation of networks and their functional consequences. In the end, we briefly
allude to scale and aggregation of network data and to networks that do not consist of interactions
between species.

2. SPECIES-INTERACTION NETWORKS VERSUS FOOD WEBS

A species-interaction network is composed of cooccurring species that are recorded to interact in
a defined space at a specific time. Each network typically summarizes one predefined interaction
type or ecosystem function, rarely mixtures of different ones (see the sidebar titled Bipartite
Networks). The frequency of interactions (i.e., the link strength) is typically characterized by the
observed number of interacting individuals per species or other quantitative measures of activities
such as visitation rates or parasitism events. Empirical data on observed interactions in an ecosys-
tem provide a great advantage over inferred interactions and help to weigh each link by its relative
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Trait: measurable
phenotypic property of
a species; can be
morphological,
chemical, behavioral,
etc.

Missing link: link that
is absent in the
observed network but
possible; detection
would require more
sampling

BIPARTITE NETWORKS

Typical (bipartite) networks represent interactions between two functionally defined levels such as trophic inter-
actions, mutualism, parasitism, commensalism, or symbiosis. Examples include plants and pollinators (Guy et al.
2021, Peralta et al. 2024), plants and seed dispersers (Muñoz et al. 2017), plants and herbivores (Robinson & Strauss
2020), and hosts and parasites or parasitoids (Staab et al. 2016). Others include plants with extrafloral nectaries and
ants (Dáttilo et al. 2019), dung beetles and dung types (Frank et al. 2018), plants and mycorrhizal fungi (Toju et al.
2018), and cleaner fish and cleaned fish (Quimbayo et al. 2018), to name just a few.

frequency or its potential ecological relevance (i.e., total effect as the product of interaction fre-
quency and per-interaction effect) (Vázquez et al. 2005). Generally, we suggest using weighted
network metrics/indices (Blüthgen et al. 2008, Dormann et al. 2009, Lau et al. 2017) if the data
contain meaningful link weights, as there are few reasons (if any) to use unweighted metrics.

Food-web graphs, however, are different, even though they are sometimes mingled with
species-interaction networks. In a food web, interactions between species are usually inferred
from literature data, assumptions regarding traits, or from their mere cooccurrence (Pringle &
Hutchinson 2020). Strengths of interactions are sometimes estimated only based on body masses
(e.g., big eats small), metabolic rates, or population densities (Cohen et al. 2009). Food webs have
been critically discussed in the past for their lack of realism, coarse resolution, and incompleteness
(Martinez et al. 1999, Paine 1988, Polis 1991, Pringle &Hutchinson 2020). Increasingly, however,
food webs include observed interaction frequencies or other quantitative measures. Among several
achievements, chemical and molecular analyses of gut contents or feces have started to enhance
the precision of consumer interactions for omnivorous taxa or where interactions are hard to ob-
serve and quantify directly (Pringle & Hutchinson 2020, Wirta et al. 2014). DNA barcoding and
meta-barcoding have also helped to generate data for network studies (Bell et al. 2017,Gripenberg
et al. 2019, Harting et al. 2024) and improved our knowledge about interactions or their spatial
and temporal resolution.

The shift in food webs from inferring links to observing links and the reliance on detection
come with a significant cost that is also prevalent in species-interaction networks: Observed inter-
actions and their frequencies are inevitably limited by the sampling effort and incompleteness of
the data. Given the costs of sampling effort, it is surprising that few attempts have been made to
compare observed links—particularly the unknown contribution of unobserved missing links—
with predicted links known from other sites, from the literature, or from underlying models.
For any kind of interaction network, it may be timely and valuable to compare both empirically
observed and theoretically predicted links.

3. DETERMINANTS OF INTERACTION PATTERNS:
FACTS, FICTIONS, AND SAMPLING

Species-interaction networks build upon the empirical observation of interactions. Like any
observational data collection in ecology (e.g., Hulbert 1971), sampling of interactions is prone to
biases. One major potential bias—but one that is often overlooked—is the taxonomic scope of a
study, namely how representative the interaction data are for an ecological process. Studies often
record or analyze only a fraction of interacting species, e.g., flower visits of hummingbirds but not
concurrent visits of bees. For biodiversity surveys, it is well appreciated that complete detection of
all species irrespective of a taxonomic focus, if even achievable, requires high sampling effort (Chao
& Jost 2012, Gotelli & Colwell 2001). The same sampling limitation applies to interaction data;
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Forbidden link: link
that is absent in the
observed network
because it does not
exist; i.e., a true 0

Network size: total
number of species in
the network, usually
the sum of the species
from both levels in
bipartite networks

Specialist: a species
that, irrespective of its
abundance, interacts
with relatively few
species (or with an
exclusive species) in
the other level of a
bipartite network

hence, any empirical network is incomplete (Chacoff et al. 2012,Chiu et al. 2023).The probability
that two species interact in nature undoubtedly depends on their presence and abundance or
activity. Moreover, the probability of detecting an interaction increases with the overall sampling
effort of a study in the same way as the probability of detecting a species in a diversity assessment
(Blüthgen et al. 2008, Chacoff et al. 2012, Gotelli & Colwell 2001). Sampling and abundance to-
gether determine the likelihood that an interaction is recorded in an empirical network, and how
often (Peralta et al. 2024). Surprisingly, this fact is commonly ignored in network interpretations
and needs to be considered carefully for comparisons both between networks and between the
species within a network. Particularly from the viewpoint of zeros in the network (i.e., unobserved
links), it is crucial to distinguish whether interactions are truly absent or just not observed due to
sampling constraints and undersampling (Cirtwill et al. 2019,Olesen et al. 2011,Wirta et al. 2014).
As illustrated by Jordano (2016), unobserved links may be either missing links, and may be de-
tected with more sampling, or forbidden links due to linkage constraints, irrespective of sampling.
Only forbidden links require a biological explanation, e.g., a defense mechanism, interspecific
competition, phenotypic, or phenological mismatch, to understand why species do not interact
(CaraDonna et al. 2021, Jordano 2016). The search for biological determinants behind a network,
including the constraints that prevent certain interactions, therefore requires true patterns to be
distinguished from biases due to variation in abundance, sampling, diversity, and choice of network
indices.

3.1. Abundance and Sampling

The probability that two species interact is a function of their relative abundances (Vázquez et al.
2009), and the likelihood of detecting these interaction increases with the sampling effort taken
by the investigator. Species abundance and sampling effort have fundamentally different mean-
ings (Gotelli & Colwell 2001), but variations in these quantities have similar effects on network
data: Low abundance and/or low sampling produce more incomplete networks. Independent
abundance data are often missing and replaced by the total frequency of individuals recorded
interacting, which prevents a clear distinction between abundance and sampling effects. Many
mathematical descriptors of networks (network indices) (Lau et al. 2017) are biased by sampling
method and effort (Ballantyne et al. 2015,Gibson et al. 2011, Rivera-Hutinel et al. 2012,Vizentin-
Bugoni et al. 2016) and sensitive to the number of species and links (Brimacombe et al. 2022,
Dormann et al. 2009, Fründ et al. 2016, Kuppler et al. 2017). This hampers direct comparisons
across networks that differ in the number of species involved (network size), except when sampling
and abundance are taken into account (Vanbergen et al. 2017).

For example, does a species with a single observation represent a specialist in the network?
Ecologists would agree that one datum is an insufficient basis to answer this question.Yet, sampling
incompleteness and rarity are surprisingly often ignored in the interpretation of networks. Rare
species are thus frequently confused with specialists, and without additional information, whether
these species are truly specialized or the putative specialization is an artifact of rarity cannot be
easily inferred (Blüthgen 2010). In fact, upon scrutiny,most rare species turn out not to be special-
ized (Benadi et al. 2014, Dorado et al. 2011, MacLeod et al. 2016). Perceived rarity of links is also
contingent on network size and sampling, as networks that involve more species typically contain
fewer observations per potential link (Blüthgen et al. 2008).To prevent potential bias, the exclusion
of rare (infrequently observed) species from network analyses has repeatedly been proposed (e.g.,
Bergamini et al. 2017, Robinson & Strauss 2020). However, rare species are the norm rather than
the exception in communities and contribute to network architecture, consumer diets, ecological
processes, and stability (Hutchinson et al. 2022, McCann et al. 1998). The risk of confusing low
information density with specialization is greatest for rare species and diminishes only gradually
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with higher abundance and sampling (Blüthgen et al. 2008), so any abundance threshold for
inclusion is arbitrary and potentially misleading. On the other end of the continuum, species can
appear to be more generalized simply because they are abundant, and they are not necessarily
abundant because they are generalized (Simmons et al. 2019). Therefore, instead of excluding
rare species, we suggest that species abundance and/or sampling should be explicitly addressed in
network analyses.

Even when sampling effort is high, many links between species are missed, particularly for
rare species. Relative to the possible interactions based on exhaustive sampling, the number of
locally observed interactions is still small (Poisot et al. 2017, Spiesman & Gratton 2016). This
underscores the necessity of accounting for uneven sampling and differences in interaction fre-
quencies, if networks are to be compared (Chacoff et al. 2012). Considering variation in sampling,
abundance, and network size is particularly important when networks from different localities are
analyzed across space and time or along environmental gradients (Pellissier et al. 2018, Tylianakis
& Morris 2017), which is often the case in studies addressing questions of land use or macroecol-
ogy (Windsor et al. 2023). Here, differences in sampling and mode of data collection can easily
account for more variation in network structure than biological determinants (Doré et al. 2021).
Similarly, within a given network, species cannot be compared without considering their relative
abundances (Blüthgen et al. 2006). Otherwise, specialization may be confused with rarity, which
has led to doubtful conclusions regarding extinction risks. For instance, the assumption that flower
visitors with a single link are specialists that may go extinct if their preferred plant shifts its phe-
nology (Memmott et al. 2007) has led to fundamentally flawed conclusions on climate change
risks; many of these rare visitors even represented opportunistic rather than obligate consumers
of floral resources (Blüthgen 2010).

3.2. Species Diversity

Apart from abundance, but not independent of it (Srivastava & Lawton 1998), a second critical
determinant of any network pattern is the number of species involved. Network complexity is of-
ten defined in terms of the number or diversity of links. An increase in network complexity may
reflect higher sampling effort, higher total abundance, and/or higher diversity (richness, even-
ness) of species, along with a greater number or diversity of links per species, termed generality
(Figure 1). All these metrics are biased by sample coverage and abundance in a similar way to
biodiversity metrics (Blüthgen et al. 2008, Chiu et al. 2023).Most network metrics (Table 1) scale
with the number of species involved (Figure 2), except the complementary specialization metrics
(network-level H2

′ and species-level d′), which are conceptually independent of total abundance
and diversity. Complexity and generality thus increase both with higher species diversity and with
lower specialization (H2

′), while generality and specialization are orthogonal.

3.3. Weighted Metrics Are Preferable

Failing to account for abundance (e.g., Simmons et al. 2019) and sampling (e.g., Vizentin-Bugoni
et al. 2016) per network and per species in a network affects both weighted (quantitative, i.e.,
where links are scaled by interaction frequencies) and, even more strongly, unweighted (binary)
network metrics, which consider only the presence or absence of links (Dormann et al. 2009). The
missing links (0 interactions) contrast with realized links (1 interaction) in unweighted metrics,
whereas variation between rare and missing links is more subtle for weighted analyses (Pinheiro
et al. 2022). Unweighted metrics are more, not less, sensitive to differences in sampling com-
pleteness and abundance (Banasek-Richter et al. 2004, Dormann et al. 2009, Fründ et al. 2016,
Vizentin-Bugoni et al. 2016). Not surprisingly, comparisons across weighted versus unweighted
networks (or networks that weight interactions differently) might reveal contrasting network
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a  Abundance (a)

b  Diversity (H' )

c  Specialization (H2' d' )

d  Generality (g)

Components of network complexity

H2
Complexity = interaction diversity Number of links

Evenness

Figure 1

Conceptual representation of network complexity and its potential determinants. Higher network
complexity, defined as the diversity of interactions,H2, might result from an increase in total abundance
(a), species diversity (b), and/or generalization of interactions [including lower network- or species-level
specialization,H2

′ and d′ (c), respectively, or higher diversity of links per species, and thus (d) generality, g]
(Table 1). Each of these determinants may pinpoint different underlying ecological mechanisms; e.g.,
resource densities may be responsible for total abundance, environmental heterogeneity for species diversity,
and trait differentiation of prey or resource species for generality of consumers. Animal and leaf silhouettes
taken from https://www.phylopic.org (CC0 1.0).

structures (Castro-Urgal et al. 2012, Dáttilo et al. 2014) but need to be examined always in the
light of sampling effects.

3.4. Ecological Determinants of Network Patterns

To understand the underlying ecological causes of a pattern—rather than its mere existence—
it is crucial to distinguish whether it is triggered by unequal sampling alone, by abundance, or
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Table 1 Commonly used metrics for bipartite networks, with values for the plant–pollinator networks shown in
Figure 3 [an observed network based on data from Olesen et al. 2002 and a Patefield null model with the same marginal
totals as the observed network (Patefield 1981)]

Symbol Metric What it shows Null model Observed
S Species number/network

size
Total number of plant species (S1 = 10) and

pollinator species (S2 = 12): S = S1 + S2
22 (fixed) 22

A Interaction number Total number of interactions observed 1,139 (fixed) 1,139
L Link number Total number of links in the network 93 30
C Connectance Proportion of observed links in relation to all

potential links: C = L/(S1 · S2)
0.78 0.25

eH2 Interaction diversity Effective number of links (exponential Shannon
index); describes the quantitative network
complexity (analog of L)

49.4 19.9

E2 Interaction evennessa How evenly the complete matrix is filled,
proportionally to a scenario in which all links
have the same weight (quantitative analog of
C): E2 = eH2 /(S1 · S2)

0.41 0.17

Nu,Nw Nestedness, unweighted/
weighted

The extent to which species with fewer links have
a subset of links to species with more links
(rather than exclusive links)

6.0°, 0.82 26.7°, 0.42

Q Modularity, weightedb The extent to which links are grouped into
relatively exclusive clusters

0.06 0.50

gu, gw Generality, unweighted/
weighted

Diversity of links per species (weighted:
exponential Shannon index, like eH2 )

7.8 ± 2.0,
5.4 ± 1.3

2.5 ± 1.6,
1.7 ± 1.7

H2
′ Standardized network-level

specialization
Complementary specialization, i.e., how exclusive

the links of each species are; standardized to
constraints by marginal totals

0.02 0.53

d′ Standardized species-level
specialization

How exclusive each species is compared to the
others; related to H2

′
0.03 ± 0.03 0.46 ± 0.12

The specialization–generalization continuum can be defined as the niche breadth and thus depicted by any metric of link diversity, i.e., L, eH2 or g, or by
1 – C and 1 – E2 (Chiu et al. 2023), which are both standardized by the number of potential links (if all species interact). In contrast, the specialization
metrics, d′ and H2

′, and modularity, Q, focus on the aspect of niche overlap and thus are used to compare each species to all others in the same network.
Both d′ and H2

′ emphasize the exclusiveness of interactions (i.e., nonoverlap, niche partitioning) and are standardized by marginal totals. Most metrics (L,
C, eH2 , E2, and g) represent sums or averages across all species, and L, eH2 , and g scale with sampling, S, and A, but not d′,H2

′, E2, and Q (Figure 2). Here,
species-level metrics (g, d′) are summarized as mean ± standard deviation of 12 pollinator species (i.e., higher level). For more detailed explanations and
many more metrics, we refer to Blüthgen et al. (2008), Dormann et al. (2009), and Lau et al. (2017).
aEvenness is often defined for raw Shannon entropy (H2), not effective diversity (eH2 ) (but see Jost 2010). This would result in the definition
E2 = H2/log(S1 · S2), which yields 0.81 in the null model versus 0.63 in the observed network.
bMethod by Dormann & Strauss (2014), generally correlated with H2

′.

by diversity (Blüthgen 2010, Fründ et al. 2016, Jordano 2016, Vázquez et al. 2009). The ecolog-
ical interpretations of abundance and diversity effects can differ. Abundance may be associated
with energetic effects such as available resource densities, while diversity may mirror variation
in resource or environmental heterogeneity and thus niche complementarity. Therefore, both
represent partly independent and ecologically meaningful causes that help to interpret emergent
network patterns. Abundance is a main determinant of many network patterns (Blüthgen et al.
2008, Vázquez & Aizen 2003, Vázquez et al. 2009), particularly when the reciprocal specialization
of the network is not high (Simmons et al. 2019). This critical limitation of networks reinforces
the need to control for abundance and diversity in network interpretations (Winfree et al. 2014)
rather than to assume that certain factors play a role. Nevertheless, realized species interactions
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eH2 = 5, g = 1 eH2 = 7.9, g = 1.6 eH2 = 11.8, g = 2.4 eH2 = 17.7, g = 3.6 eH2 = 25, g = 5
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Figure 2

Dimensions of network specialization/generalization and complexity across 20 hypothetical networks (each with n = 100 interactions in
total). The five networks per row have the same total number of species (network size S), but their link configuration varies from
highest specialization (H2

′ = 1, i.e., 1 – H2
′ = 0) to highest generalization (1 – H2

′ = 1) along the x axis.H2
′ is conceptually

independent of S and thus orthogonal to the y axis. However, the diversity of links per network (interaction diversity H2) and per
species (generality g) increases with both increasing S and increasing 1 – H2

′ and is not orthogonal to the x and y axes (inset). Both eH2

and g are the effective diversities of links, calculated per network or per species, respectively, based on the Shannon diversity. Hence,
their maxima are constrained by the total number of species, e.g., eH2 = 25 and g = 5, if each of the five species has five links. These
maxima are found for the scenario where all links are realized with the highest possible evenness (at 1 – H2

′ = 1).

are also promoted and constrained by multiple biological factors, including phenotypic traits and
evolutionary history (Ehrlich & Raven 1964, Junker et al. 2013, Peralta 2016). Specialization mir-
rors characteristics of each species, i.e., traits. Including species trait measures in network analyses
increases our understanding of the studied interactions and thus specialization patterns, especially
for relatively specialized interactions that depend on morphological matching and mismatching,
such as flower visitation by hummingbirds (Dalsgaard et al. 2021). Similar to biodiversity research,
trait-based approaches have advanced our understanding of species interactions, and the under-
lying concepts and methods have been summarized elsewhere ( Junker et al. 2013, Marjakangas
et al. 2022, Schleuning et al. 2015).

It is now easy [for example, with the functions networklevel and specieslevel in the R package
bipartite (Dormann et al. 2009)] to calculate dozens of network indices, some of which are depicted
inFigure 2 andTable 1 (see Blüthgen et al. 2008,Lau et al. 2017).We believe that this opportunity
is sometimes misused, and many indices that are not directly related to studies’ hypotheses—
or even are conceptually flawed—are calculated, possibly to fish for significant results. This is
not only bad practice but also inflates type I error rates (false-positive results), an issue that is
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ObservedNull model

Figure 3

An observed network (right) and a null-model scenario (left). Values of commonly used metrics for these
networks are shown in Table 1. The network is representative of empirical data, as it includes a few common
and several rarely observed species and interactions (sorted by marginal totals). The null model uses the
same combination of species and their abundances (fixed marginal totals, based on the Patefield null model).
Consequently, specialization in the null model is lower than in the observed network [higher C, E2, eH2 , and
g; lower d′,H2

′, and Q (Table 1)]. The example networks show interactions between 12 pollinator (orange)
and 10 plant species (green) observed by Olesen et al. (2002).

fundamental to classical biostatistics and yet very rarely considered in network analyses (Simmons
et al. 2018). Furthermore, many network indices are mathematically related and thus in practice
correlated (Dormann et al. 2009). This is particularly expected for all unstandardized metrics that
scale with sampling, abundance, and species diversity, as stated above.To cope with the correlation,
multiple indices have sometimes been combined into a single variable via principal component
analysis (Postic et al. 2020, Toju et al. 2018). In our opinion, this hinders the interpretation of the
network structure and properties because different metrics have different implications (Table 1).
To circumvent high type I error rates,we urge researchers to focus on selected indices that aremost
appropriate for testing their particular hypotheses. To achieve this, we suggest using a framework
of a few selected network dimensions with complementary information (e.g., generality, network
specialization, and complexity) and explicitly examining variation in total abundance and species
diversity (Figures 1–3).

4. NESTEDNESS AND CONNECTANCE: PATTERNS OR ARTIFACTS?

Among the most widely reported descriptors of network topology are nestedness and connectance
(Figure 4a), which started as unweighted (binary) metrics and were later supplemented with
weighted counterparts. Connectance (see the sidebar titled Connectance and Stability) is the
proportion of the links observed relative to the total number of links possible in a network
( Jordano 1987). Nestedness describes a specific configuration of the links, in which species with
few links have only a subset of the links of species with more links (rather than having unique
links) (Bascompte et al. 2003). In random networks, connectance and nestedness are correlated
(Almeida-Neto et al. 2008, James et al. 2012), and their relationship differs between interaction
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types (Thébault & Fontaine 2010). Low connectance is often simply interpreted as high special-
ization (i.e., relatively few links are realized). Nestedness is often interpreted as specialization
asymmetry, suggesting that specialists preferentially associate with more generalized partners
(or resources) rather than with specialized partners—the opposite of reciprocal specialization.
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Figure 4 (Figure appears on preceding page)

Summary of analytical approaches in published empirical species-interaction network studies over time.
(a) Nestedness and connectance continue to be frequently used network indices. (b) Consideration of null
models (not distinguishing among null-model types) has been constant over time, as has the proportion of
studies in which potential bias due to variation in abundance, sampling, and diversity has not been addressed
at all. (c) Weighted links are now standard in the majority of networks. The number of assessed studies is
indicated by the bars in panel c (with values above bars specifying the exact number; before 2007 there were
only a few studies per year, which have been aggregated into a single category for better visualization). The
figure is based on a systematic survey of the published empirical species-interaction network literature (see
the Supplemental Material) and is not intended as a comprehensive map of the thematic or biogeographic
representation of network research [which is available elsewhere (Poisot et al. 2021)].

CONNECTANCE AND STABILITY

A debate has focused on whether connectance stabilizes or destabilizes communities, originating fromMay’s (1973)
pioneering work on destabilizing random networks and contrasting findings for different types of interactions
(Allesina & Tang 2012, May 1973). In contrast to population equilibrium models, simulated extinction models
show a higher robustness of more connected food webs, consistent with functional redundancy (Dunne et al. 2002).
Hence, the mere number of links may affect network stability, particularly when simulations are performed on how
species extinctions affect the number of coextinctions of species that depend on the missing species (Schleuning
et al. 2016). However, the robustness of an empirical network to simulated extinction may also mirror the overall
sampling intensity, abundance, and/or the number of species (Carpentier et al. 2021), since the number of links
increases with sampling. Again, to understand the biological mechanisms behind this variation in stability, it is
important to separate the effects of abundance, diversity, and specialization (see Figure 1).

However, both nestedness and connectance are strongly influenced by abundance and richness
and thus a prominent example of a potential basis for flawed interpretation (Blüthgen 2010).

The simplest explanation for the observed nestedness is that it is an artifact of the species
abundance distribution with few common and many rare species (Dáttilo et al. 2014) and/or the
incompleteness of network data, combined with a certain degree of generalization or neutrality
(Pinheiro et al. 2019). In fact, simulations of random interactions between sets of common and
rare species produce a perfectly nested network, which has been shown by null-model simulations
to be constrained by the total interaction frequencies per species (Blüthgen et al. 2008). Com-
pared with such null-model patterns, virtually all empirical networks are significantly less nested
[antinested sensu Poulin & Guégan (2000)], not more nested, than by chance alone (Table 1),
calling into question the alleged stabilization of a nestedness pattern. Nestedness itself may be
viewed as a random null model (Lewinsohn et al. 2006). Thus, it is surprising that nestedness
in interaction networks was—and still is—incautiously interpreted as specialization asymmetry
that is able to stabilize biodiversity (see the sidebar titled Nestedness and Stability), ignoring the
fact that abundance or sampling alone suffice as an explanation (Krishna et al. 2008). The same
problem is evident for the degree distribution, which describes the number of links per species
(Vázquez 2005).

5. ADDRESSING VARIATION IN ABUNDANCE, SAMPLING,
AND DIVERSITY

Real-world networks invariably differ in the number of species and links. Variation in the number
of individuals and the diversity of species is an inherent property of communities and not, per
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NESTEDNESS AND STABILITY

The paradigm that nestedness promotes diversity in mutualistic networks has not stood up to scrutiny ( James et al.
2012, Staniczenko et al. 2013). The supposedly stabilizing role of nestedness relies on false assumptions in the un-
derlying models: The influential theoretical analyses reporting a stabilizing role of nestedness compared to other
configurations (e.g., Bascompte et al. 2003, Bastolla et al. 2009, Rohr et al. 2014, Thébault & Fontaine 2010) ig-
nored the fact that there is interspecific competition for mutualists, as for other limited resources. Competition for
mutualistic partners can be severe, e.g., competition among plants for pollinators (Mitchell et al. 2009) or among
symbionts for hosts (Stanton et al. 2002). The stabilizing role of nestedness emphasizes an indirect selective ad-
vantage from specialization on a generalized partner: A consumer species that specializes on a resource shared by
many other consumers should benefit from the partner’s population stability.However, such a specialized consumer
likely suffers from interspecific competition for limited resources, and the few network models that have consid-
ered limitation by resources or mutualistic services have rejected a stabilizing role for nestedness (Benadi et al. 2013,
Staniczenko et al. 2013, Valdovinos et al. 2016).

se, a problem for the analysis, interpretation, and comparison of interaction networks. However,
as outlined above, it is important to separate true differences in network structure from differ-
ences that could be a mere consequence of variation in sampling, abundance, or species diversity,
which is still not consistently being addressed in empirical studies (Figure 4b). The same is true
for all comparative ecological studies (Gotelli & Colwell 2001, Hulbert 1971): When testing the
influence of an environmental variable or an experimental treatment on, for example, species di-
versity, one has to disentangle whether the (statistical) effect of the treatment on species diversity
is direct or mediated indirectly via a change in abundance. For network analyses, a toolbox to
account for sampling effects and variation in abundance and species numbers among networks is
available. Broadly, approaches to address differences among networks involve the inclusion of co-
variates, the accumulation or rarefaction of links, and in particular, comparison to appropriate null
models.

5.1. Covariates

Considering appropriate covariates for sampling effort, abundance, or species diversity in the sta-
tistical analysis of network indices is straightforward and the easiest way to address variation across
networks (sensu Burnham&Anderson 1998). In practice, including total abundance as a covariate
distinctly increases the predictive power of models for network indices (Ceballos et al. 2016) or
may render previously significant results nonsignificant (Heleno et al. 2013, Lázaro et al. 2016);
the latter suggests that the inference is driven by abundance and not by any other hypothesized
property (Morris et al. 2014).However, if the underlying positive relationship between total abun-
dance or diversity and network metrics is biologically meaningful, its significance is masked and
issues of collinearity may arise. Path models including a direct path of the respective covariate on
the network index (Peralta et al. 2020, Schwarz et al. 2020) are thus better suited for maintaining
cross-correlations when assessing potential biases. To account for differences in sampling, using
sampling intensity as weights has also been proposed (Schleuning et al. 2012), but this provides no
direct indication of the relationship between the covariate and the tested network index. Instead of
covariates in the same model, some studies analyzed residuals of network indices after regressions
with potential confounding factors (e.g., Olesen et al. 2002, Osorio et al. 2015), which is at best
controversial (Freckleton 2002), as it can lead to biased parameter estimates.We thus recommend
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Species richness
estimation:
mathematical
procedure to
determine the
expected (asymptotic)
number of species
under infinite
sampling

using the confounding variable directly in a path model or as a covariate in a multiple regression
model.

5.2. Accumulation and Rarefaction

Links in a network accumulate with sampling, making it possible to compare different networks
via link accumulation and asymptotic extrapolation of expected link number (Chacoff et al.
2012). This follows the same logic as the use of species-accumulation curves and sample-based
or individual-based species richness estimation when comparing community data differing in
number of samples and individuals (Chao & Jost 2012, Gotelli & Colwell 2001). By using link
accumulation and estimation of expected links, the sampling completeness (i.e., observed links
divided by estimated links) of networks can be determined and compared. This metric itself can
be used as a covariate controlling for potential sampling effects (Baronio et al. 2021). If individual
networks in a study differ markedly in sampling completeness, this is a clear indication that
network indices cannot be directly compared, as an influence of sampling cannot be ruled out.
Because the number of species in a network reaches an asymptote much earlier than the number
of interactions (Chacoff et al. 2012, Dáttilo et al. 2019), classical species-accumulation curves
alone are not sufficient to compare networks or to judge how complete a network is.

Conceptually similar to link accumulation is rarefaction. Instead of extrapolation, rarefaction
subsamples networks to a directly comparable number of species or interactions (Fornoff et al.
2019, Vanbergen et al. 2014), but unlike extrapolation, it maintains the structure of unobserved
links in the network. Often, rarefaction uses the network with the fewest links or species to
determine the size of the subsampled networks. Indices calculated on rarefied networks are
directly comparable, and this method reduces the bias due to variation in sampling, abundance,
or species diversity (Olito & Fox 2015) but may still include bias due to variation in sampling
coverage (Chao & Jost 2012, Chiu et al. 2023). We caution against using extrapolation (adding
unobserved links) in an attempt to correct standardized network indices and dissimilarity metrics
(e.g., H2

′, d′) (Table 1) or metrics that describe the link configuration (e.g., modularity) to the
same level of sample coverage. Extrapolation of links forces species within a network to become
more similar to each other, potentially ignoring the fact that lower probabilities for specific links
(or forbidden links) are an important part of the specialization pattern. In this respect, rarefaction
of existing interactions is better suited and less biased than extrapolation. For unstandardized
metrics (e.g., eH2 , g) (Table 1) and functional or phylogenetic diversities (Chiu et al. 2023),
extrapolation may be appropriate, however.

5.3. Null Models: Different Types of Randomness

Null models (Figure 3) are generally useful for distinguishing signal from chance (Gotelli &
Graves 1996). Notably, many patterns in empirical networks can be reproduced in null models
by the skewed abundance distribution of species and links (Blüthgen et al. 2008, Vázquez et al.
2007, Wells et al. 2014). This is the case not only for generalized interactions, where a certain
degree of randomness is expected, but also for specialized interactions such as between hosts
and parasites (Canard et al. 2014). When correctly employed, null models are probably the
optimal standard method for addressing differences across interaction networks (Figure 4b). In
a null model of an observed network, the interactions are redistributed, while preserving specific
characteristics of the network such as the number of species or number of links. Thus, null models
represent neutral interaction patterns, allowing one to benchmark whether the characteristics of
an observed network are due to biological properties of the interacting species or due to chance
(Blüthgen et al. 2008, Gotelli & Graves 1996). The distribution of values for a metric drawn
from null-model iterations is compared with the observed metric (see Figure 3, Table 1, and
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OBSERVED METRICS VERSUS NULL MODELS

How can we compare observed network metrics and null models? Most commonly, each network is individually
compared against its null model. In addition, null-model trends can be compared in parallel to observed metrics
(Gotelli & Graves 1996), e.g., by plotting how network metrics change over gradients against the average levels
obtained by null models. It is also possible to standardize observed metrics against null models in one metric by 1-
transformation or using z-scores. Both quantify the extent to which an observation differs from an average random
pattern (Dalsgaard et al. 2017). In 1-transformation, the mean index value obtained from the null model is simply
subtracted from the observed value, such that 1 =Xnull −Xobs (Schleuning et al. 2012, Vizentin-Bugoni et al. 2016).
For z-scores,1 is divided by the standard deviation of the null-model values; i.e., z = 1/SDnull (Ulrich et al. 2009).
In particular, z-scores can be used to directly compare metrics across networks. However, 1 and z may not always
be independent of species number: 1 can increase and SDnull can decrease with species number (Song et al. 2017).
Thus, networks with a very large variation in size should be compared only with care, e.g., via normalization by
dividing the observed value by the maximum value under the null model (Song et al. 2017).

the sidebar titled Observed Metrics Versus Null Models), and if they poorly overlap (typically
less than 5% on both tails of the distribution), this is taken as evidence for a nonrandom pattern.
Different kinds of null models, however, constrain parameters of a network differently and have
very different implications (Molina & Stone 2020). We highlight only four possibilities here:
(a) For binary networks, which were standard in the early years of network analyses (Figure 4c),
there are null models that simply redistribute or shuffle the number of links recorded. Reshuffling
can also be applied to quantitative networks. Hence, these null models preserve the total number
of links per network but not the number of links per species. Obviously, this does not take
abundance limitation into account, and a species with a single observation may receive many links
in the null models. Only a few null models effectively account for sampling and abundance. An
important requirement for null models is that all theoretically possible numerical configurations
of a network are covered and have the same probability (Carstens 2015, Molina & Stone 2020).
These strict properties are met for (b) the Patefield null model (Patefield 1981) (generated
using the r2dtable function in the R package bipartite), which we recommend to test whether
variation in any network metric can be explained by sampling, abundance, or diversity alone.
Originally designed for statistics replacing chi-square tests, the Patefield algorithm uses the
fixed marginal totals of the species-interaction matrix to preserve the relative abundance of each
species and consequently also the diversity of species. (c) A null model proposed by Vázquez et al.
(2009) is conceptionally similar but uses interaction probabilities calculated from a multinomial
distribution rather than fixed marginals (mgen in bipartite) and is computationally demanding;
how to correctly compute probabilities is also not fully resolved (Dormann 2023). (d) Some null-
model types additionally fix the total number of links and thus preserve a more network-typical
specialization level, e.g., low connectance (vaznull and swap.web in bipartite). Assumptions in
these null models are more constrained than in the Patefield and Vázquez et al. null models
and may, in addition to violating the property of all configurations having the same probability,
deviate more strongly from the observed network than expected by chance (Dormann 2023).
The specific choice of null model is crucial, as comparisons to different null models can have
fundamentally different outcomes (e.g., Joppa et al. 2010, Kratochwil et al. 2009). To conclude,
for network metrics that are sensitive to abundance, sampling, and diversity, we strongly suggest
comparisons between the observed network and Patefield null models (Figure 3; Table 1).
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Note that integer-based null models such as Patefield and rarefaction/extrapolation methods
may be inappropriate when the data are in the form of decimal numbers rather than integers,which
is the case for proportional values such as interaction rates (number of individuals divided by obser-
vation time). Anymultiplications of such decimal values to obtain integers prevents the calculation
of meaningful significance levels for such null models (Leonhardt et al. 2011). However, data for
visitation rates or other derived link measures are often based on raw counts; therefore, null mod-
els and rarefaction may be applicable for the underlying raw count data, which are generally more
suitable for describing networks than rates. A further important assumption for using null models
in networks as statistical evidence for a nonrandom configuration is that interactions are indepen-
dent replicates. For instance, workers from one insect colony might aggregate on an individual
plant (nonindependently), but multiple counts of individual insects from the same colony then
strongly inflate any metric of specialization and contrast to a null model that spreads individuals
from a single colony overmany plants.Ant–plant networks and other related interactions involving
colonial organisms thus need to carefully consider what biological entity represents independent
interactions (Blüthgen et al. 2007).

6. DO SCALE AND AGGREGATION MATTER?

In many studies, interactions are pooled over space and time for each network unit, but the scale of
the data aggregation varies substantially. The spatial and temporal scale of a network is crucial for
its interpretation (Morales & Vázquez 2008). For mobile organisms, a meaningful minimum spa-
tial scale may be important for sampling interactions and for experimental approaches (Blüthgen
& Staab 2021, Dáttilo et al. 2019, Guy et al. 2021). Species interactions vary more across space
than does the presence of the interacting species alone (Poisot et al. 2017). In turn, when net-
works are small scale—assuming that all mobile individuals of all species can potentially interact
in a space—interpretations based on traits, preferences, and specialization are more straightfor-
ward than for spatially aggregated data that potentially include otherwise-segregated species pools
from different habitats or environmental conditions,making it impossible to distinguish forbidden
from missing links ( Jordano 2016).

Similarly, temporal aggregation of interactions can combine species in a network that are natu-
rally segregated by life stage, time of day, or seasonal phenology (CaraDonna et al. 2021, Schwarz
et al. 2020). Spatial or temporal variation can be tested and examined, ideally by explicitly com-
paring spatiotemporally distinct (sub)networks rather than analyzing a single aggregated network.
Although smaller subnetworks may aggravate the problem of incompleteness, a focus on simulta-
neous interactions facilitates direct interpretations of traits, competition, and specialization. For
example, many species are temporally specialized [even within the hours of a day (Schwarz et al.
2021)] but may appear as generalists in aggregated networks (CaraDonna &Waser 2020). Short-
term flexibility of species reveals variation in species roles and network properties, and aggregation
may mask biologically meaningful patterns that would otherwise be apparent. In turn, species may
appear specialized in one year but be associated with many other species in another, which would
be missed in aggregated networks (Petanidou et al. 2008). Such annual variation may, to some
extent, mirror the stochasticity of interactions (Chacoff et al. 2018). Very few studies have com-
prehensively sampled the same sites in a standardized way, consecutively, over longer time spans,
and insights from such time series are very valuable (e.g., CaraDonna&Waser 2020,Chacoff et al.
2018, MacLeod et al. 2016).

In addition to aggregation across space and time, network properties depend on the taxonomic
resolution of the nodes. Aggregation of species into higher-level taxonomies such as genera or
families results in less-specialized networks (Renaud et al. 2020). While this outcome is trivial,
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as interacting nodes and thus their interactions are being summed, meaningful comparison across
individual networks with different taxonomic resolution necessitates consideration of the extent to
which taxonomic aggregations bias the results.This fundamental problem of taxonomic resolution
has been debated intensively for food webs (Martinez 1993, Pringle & Hutchinson 2020) but
applies to any interaction type. On the other end of taxonomic resolution, evidence has started to
accumulate that species interactions are influenced by intraspecific variation (Barbour et al. 2016,
Cao et al. 2018); for example, certain plant genotypes are more susceptible to herbivores, which
is a further argument against aggregating networks across large scales.

7. FROM PATTERN TO MECHANISM AND FUNCTION

Much of the interest in interaction networks comes from three directions: (a) understanding why
certain species interact or not, e.g., which traits (Marjakangas et al. 2022) or cues promote or
prevent interactions; (b) understanding the functional consequences, e.g., whether a more gener-
alized network contributes to a higher functional performance or community stability (Fründ et al.
2013); and (c) whether and how interactions change along environmental gradients (Tylianakis &
Morris 2017). Hence, the networks are fundamental in understanding the transition from causes
to consequences of species interactions. Additionally, feedback loops from consequences to net-
works and even back to traits may also be interesting to study from a dynamic or (co)evolutionary
point of view. Our argument for disentangling abundance and diversity from network patterns
(Figure 2; Table 1) to understand complexity, specialization, and the role of traits also holds for
attempts to understand how network topology affects function (community/traits → network →
function). For instance, if the transition from community to network is driven mainly by abun-
dance, it seems likely that the contribution of communities via networks to ecosystem function
is based on abundance, too. While network metrics are sometimes used as surrogates for ecosys-
tem functions, this assumption has rarely been empirically supported (Theodorou et al. 2017).
In general, for causal relationships between network and function beyond mere correlations,
understanding the underlying importance of variation in abundance and diversity is key.

To draw conclusions about the paths from network to function, it is important to know the
ecological consequences of the recorded interactions. For example, most so-called seed-dispersal
networks are actually observations of frugivory that only rarely assess the functional outcome
(i.e., seed death versus dispersal and germination) (Simmons et al. 2018). Likewise, most supposed
pollination networks are mere observations of flower visits. Functional plant–pollinator networks
based on pollen transport differ from flower–visitor networks (Bosch et al. 2009), often beingmore
specialized than comparative networks based on visits, as only a subset of visitors actually transport
pollen (e.g., Ballantyne et al. 2015, Zhao et al. 2019). To reveal species’ functional roles, dedicated
experiments are needed. For example, Fründ et al. (2013) artificially combined species in cages,
while others manipulated the presence or abundance of species in the field (Barbosa et al. 2017,
Timóteo et al. 2016). The same is true for the effect of environmental variables on interaction
networks and their functional consequences: While the vast majority of empirical studies have
been observational and often agnostic to biotic and abiotic context, large-scale experiments have
shown, for example, that network structure can vary strongly depending on the presence of species
extrinsic to the network (Guy et al. 2021).

8. OTHER TYPES OF NETWORKS

Our review focuses on bipartite networks with two levels, in which nodes consist of species (e.g.,
plants and herbivores).Thus, these networks contain a single type of interaction.The real world is,
of course,muchmore complex,which is now increasingly treated in network analyses, for example,
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Individual-based
network: nodes in a
bipartite network
represent individuals
of the same species,
e.g., visitors to flowers
of single plant
individuals

Social network: nodes
represent individuals
(or groups of
individuals) of the
same species
(unipartite network);
often applied in
behavioral studies

MULTILAYER, MULTIPARTITE, AND META-NETWORKS

Almost all species simultaneously interact with a multitude of other species across trophic levels. Such multiple
interaction networks can be combined to form multilayer networks that may span several trophic levels (Pilosof
et al. 2017) or multipartite networks (Timóteo et al. 2023), in which interactions are linked via a joint trophic
level (e.g., plant–herbivore–parasitoid, with herbivores being the link). While not explicitly scrutinized by us, mul-
tilayer and multipartite networks are inherently composed of bipartite interactions, and consequently, they are as
sensitive to variation in sampling, abundance, and diversity as bipartite networks. Similar limitations apply to meta-
networks, a further emerging type of interaction network (Librán-Embid et al. 2021).Meta-networks usually consist
of a collection of subnetworks, similar to meta-communities, which represent a collection of smaller communities.
Thus, meta-networks often describe the turnover or persistence of interactions rather than network structure (e.g.,
specialization) per se.

in multilayer, multipartite, and meta-networks (see the sidebar titled Multilayer,Multipartite, and
Meta-Networks). We caution against simple interpretations of networks that represent unknown
mixtures of different types of interactions or no interactions at all. For example, cooccurrence
networks are highly problematic for many reasons (Blanchet et al. 2020). While cooccurrence
is a necessary prerequisite for any interaction to take place, whether species truly interact de-
pends on multiple biotic and abiotic factors that cannot usually be deduced from species’ mere
presence (Goberna & Verdú 2022). Furthermore, cooccurrence networks lack basic properties of
interaction networks such as interaction type (e.g., antagonistic versus mutualistic) and interaction
strength.

There are more networks that do not represent interactions but for which network analyses
and metrics may be useful to illustrate and characterize associations. Usually, these networks are
similarly prone to the same shortcomings regarding sampling and abundance (or diversity) out-
lined here and require similar treatment to overcome them. Examples include the distribution of
species across different microhabitats (Wehner et al. 2016), the differentiation of chemical pro-
files across species (Leonhardt et al. 2011), resource use of omnivorous consumers (Rosumek et al.
2018), individual-based networks (Smith-Ramírez et al. 2014), and social networks (Bierbach et al.
2014).

9. OUTLOOK

Did we learn anything new from network studies in the last decade? And are we at the point that
we understand the mechanisms behind who interacts with whom? Can we predict population and
community changes, extinctions, or functional consequences from the study of networks? These
goals may be seen as very ambitious, and network analyses alone may not suffice. However, there
are good studies that have identified causes of interactions along environmental gradients (Benadi
et al. 2014,Fornoff et al. 2019,Vanbergen et al. 2014) or that improve our understanding of ecosys-
tem functioning, particularly by using experimental approaches (Guy et al. 2021, Fründ et al. 2013,
Kaiser-Bunbury et al. 2017). Networks continue to be popular in ecological research, with an in-
creasing use of weighted metrics (Figure 4c), and analyses of linkage rules, functional traits, or
stability consequences play important roles. Although we have emphasized caveats in this review,
we stress that if correctly applied, network analyses can make a meaningful contribution to knowl-
edge of the biological principles and functional consequences of species interactions. Feasible
consequences of specialization patterns include species’ dependence on specific partners, func-
tional stability, and sensitivity to coextinction.However, if rarity and specialization are confounded
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or confused, erratic conclusions may be drawn about species’ extinctions due to climate change
or biotic changes. A significant number of empirical analyses so far have blurred the functional
distinctions between sampling, abundance, diversity, and specialization, which must be isolated to
understand the underlying mechanisms of variation in species interactions. Rarefaction and ex-
trapolation methods have become a good standard in biodiversity analyses. For networks, similar
awareness and care are needed.Rarefaction and null models, appropriate weightedmetrics, or tests
that explicitly examine abundance and diversity are key to deriving a more realistic and substantial
understanding of the causes and consequences of network patterns, which is crucial for predictions
based on specialization, stability, and the functional consequences of species interactions.
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