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We analysed the wild bee community sampled from 1921 to 2018 at a
nature preserve in southern Michigan, USA, to study long-term community
shifts in a protected area. During an intensive survey in 1972 and
1973, Francis C. Evans detected 135 bee species. In the most recent
intensive surveys conducted in 2017 and 2018, we recorded 90 species.
Only 58 species were recorded in both sampling periods, indicating a
significant shift in the bee community. We found that the bee community
diversity, species richness and evenness were all lower in recent samples.
Additionally, 64% of the more common species exhibited a more than 30%
decline in relative abundance. Neural network analysis of species traits
revealed that extirpation from the reserve was most likely for oligolectic
ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-
nesting bees were more likely to persist. Having longer phenological
ranges also increased the chance of persistence in polylectic species. Further
analysis suggests a climate response as bees in the contemporary sampling
period had a more southerly overall distribution compared to the historic
community. Results exhibit the utility of both long-term data and machine
learning in disentangling complex indicators of bee population trajectories.

1. Introduction
Global reductions in pollinator populations are an increasingly documented
threat to both food production [1] and terrestrial biodiversity [2]. These
declines prompt interest in wild bee population trends to inform the science
and practice of bee conservation [3]. Despite increased attention, trend
analysis is frequently limited by short sample periods, offset sampling that
does not cover whole flight periods and infrequent sampling. Additionally,
due to inconsistent sampling per specific location, many studies of bee
population trends have analysed datasets aggregated regionally or globally.
These regional datasets are decidedly useful for examining trends in whole
bee communities [4–6] or in specific insect groups (e.g. bumblebees [7,8]),
but can introduce additional variability that complicates the detection of
population changes.
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Many European regions have rich historical records of insect populations that provide evidence for declines. For example,
a 75% decline in insect biomass was found in German forests since 1990 [9], and grid-based occupancy monitoring in the UK
detected decreases in rare and habitat-specific bees and hoverflies concurrent with increases in more common species [5]. In
the US, limited long-term monitoring has led to alternate approaches, including national modelling of habitat suitability for
wild bees [10], and comparing museum specimens from historical sampling over time [7,8,11,12]. Some datasets in the US
have provided insights into disruptions in plant–pollinator networks [13,14] and declining insect abundance [15,16] in specific
locations.

The Edwin S. George Reserve (ESGR) was highlighted in the 2007 review of United States pollinator status published by
the National Research Council [17] as one of the sites for addressing long-term trends in US pollinators because of the rich
record of the historical bee community dating back to the 1920s. There was a particular focus on bee collection and their floral
associations by Francis C. Evans, a faculty member at the University of Michigan (UM) who collected between 1957 and 1989,
with an increase in collection intensity in 1972 and 1973 [18,19]. This rich dataset provided a unique opportunity for us to return
to the ESGR in 2017 and 2018 to resample the bee community and conduct community analyses across a near century of records
from the same location.

The data also provide opportunities to go beyond documenting trends. By integrating multifaceted trait data into an
interpretative neural network analysis [20] of species extirpation, we explored how machine learning can provide ecological
insights by disentangling complex drivers of community change. Furthermore, analysis of such data from an ecological preserve
allows for examining long-term community dynamics in a protected area, rather than the more common studies in managed
landscapes. Natural preserves are a critical component of broader conservation strategies, but questions remain regarding their
conservation potential in the face of larger regional and global trends [21–23].

This study was specifically designed to (i) determine whether contemporary resampling of the ESGR revealed changes in the
wild bee community at this site, (ii) evaluate whether long-term bee community changes can be detected using the museum
records available for the ESGR, and (iii) determine how species’ traits influence species persistence at the preserve.

2. Methods
See electronic supplementary material, Methods for description of ESGR.

(a) Contemporary sampling
An open area on the north side of the ESGR (GPS coordinates: 42.461808, −84.011128) was the primary site for this study as it
corresponds to the location of ‘Evans Old Field’, one of the areas historically sampled for bees. The field was described by Evans
as a 7.7 ha abandoned field with a mid-successional community of plants surrounded by oak-hickory woods [19]. It is now
1.3 ha of semi-open habitat with significant encroachment of the surrounding oak-hickory woods and invasive autumn olive
(Elaeagnus umbellata Thunb.). The site was visited every other week during the summers of 2017 and 2018 to sample bees. In
2017, the first sampling day was June 1 and the final sampling day was September 25. In 2018, the first sampling day was May 8
and the final day was October 3. We expanded sampling in 2018 to include a wider diversity of bees with narrower phenological
periods.

During each visit, we sampled bees using three methods. First, we walked to the centre of the open field and randomly
selected a direction to start the first 25 m transect. Three other 25 m transects were then established based on the first one,
each at a 90 degree angle from the neighbouring transect for a total of 100 m sampled, with each transect segment moving
away from a central location. Each transect was walked for 10 min each, a total of 40 min of sampling. We used aerial insect
nets to collect bees found within 1.5 m of the transect, and time was stopped for specimen processing. The host plant was
recorded for all specimens captured from flowers. Flowering plants were identified to the lowest taxonomic level in the field
using Newcomb’s guide [24] and the PlantNet app [25], usually to species. Second, we spent 20 min collecting bees from plants
of any species in the general vicinity of the open field. Third, to most closely match the methods used by Evans (see below),
we spent 30 min sampling bees at each of the primary blooming plant species located in the field. Total time spent conducting
this final sampling method varied based on the number of primary blooming plants at each visit, with a minimum of 30 min if
there was only one primary plant. This sampling method was always done last and included any plants that we collected more
than one bee from that day. All bees were identified to species (or lowest possible taxonomic level) using relevant keys (see
electronic supplementary material, Methods). All specimens collected in 2017 and 2018 are currently held in the Isaacs Lab at
Michigan State University (as of 2024), and will eventually be deposited at the A.J. Cook Arthropod Collection at Michigan State
University for long-term inclusion in that collection.

(b) Historical data
The University of Michigan Museum of Zoology Insect Collection, Ann Arbor, MI, holds over 4000 bee specimens from
the historical collections at the ESGR, and specimens were databased as part of this study (see electronic supplementary
material, Methods). Historical data were checked for entry errors and outdated taxonomies. Specimens with questionable
species determinations were re-examined and re-identified using relevant keys (see above) where possible. Bees that could not
be confidently identified to the species level were excluded from the dataset, and entries that were missing the date of collection
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were also removed. Excluded entries accounted for less than 1% of the specimens. There were notable gaps in records at the
ESGR, as there were no focused survey efforts since Evans’s last efforts in 1989 and only occasional specimen records from 1990
to 1999. There were no surveys and no records for the ESGR after 1999 and prior to this study in 2017/2018. All specimens from
the ESGR were included in this dataset, not only those specifically collected at the Evans Old Field.

In addition to analyses of the 4000-plus records from the ESGR since 1921, we also conducted more focused analyses
comparing Evans’s dataset from his 1972 and 1973 collection effort to our contemporary collections in 2017 and 2018. Evans’s
original dataset from 1972 to 1973 was available through UM records, and we used this for our focused analyses comparing
historic (1972/1973) years to the contemporary sampling years (2017/2018), including comparison of floral host plants. The
dataset is unique compared to the records from the museum, because Evans did not always collect observed bees if he was
confident in their identification (especially Bombus spp. and oligolectic species, e.g. Andrena rudbeckiae Robertson, 1891 and
Dufourea monardae (Viereck, 1924) [19]), and these records come only from the site now called Evans Old Field, whereas the exact
sampling locations within the ESGR of many other specimens in the collection are not known. Therefore, his original dataset
provides a more complete representation of the community he encountered at the Evans Old Field location.

Evans describes his sampling as: ‘records of the dates and duration of flowering were made at frequent intervals (2–3 days
every week) throughout the flowering season … Observation of visitation by bees was usually made between 9:00 am and 4:00
pm and on any given day was limited to a maximum of 30–40 minutes per flower species … no orderly system of monitoring
was developed. More attention was given to abundant resources when they were being heavily visited than was paid to them
near the beginning or end of their flower periods or to less frequently encountered species’ [19].

(c) Data analyses
We conducted analyses across the near century of bee records (1921–2018), with separate analyses comparing the major
sampling periods in 1972/1973 (‘historical’ period) and 2017/2018 (‘contemporary’ period). See the electronic supplementary
material, figure S1 for a graphic representing our data structure and analyses. We discuss possible limitations to our study
based on differences in collection efforts between each focused sampling period (historical versus contemporary) in electronic
supplementary material, Methods.

(i) Community change across a century of data

We employed two different methods to analyse the museum records. Each method accounts for biases in the data in different
ways. Our first approach was similar to that used by Bartomeus et al. [4]. To account for changes in practices across a century
of records (1921–2018), such as including only a synoptic collection in the museum, we removed any repeat specimens from
the dataset. These were records of the same species collected on the same date (e.g. if there were five Bombus impatiens Cresson,
1893 records for 3 June 1979, we only kept one of these records in the dataset for analyses) (see methods in Bartomeus et al.
[4]). Then, to account for uneven sampling, we binned specimens into seven groupings of consecutive years to achieve more
even sample numbers in each bin prior to comparison of species richness [4] (electronic supplementary material, figure S1; table
1). We then rarefied all bins to the bin with the lowest sample size (n = 320) using the rarefy function (package: vegan [26])
in R [27] to calculate the mean species richness and standard error (SE) of the mean. Sampling primarily occurred between
April and September, though there were occasional specimen collections in October and November. The numbers of specimens
collected each month are reported in the electronic supplementary material, table S1. To account for uneven sampling across
all months, we also report species richness and rarefied species richness, as mentioned above, on a reduced dataset that only
includes specimens collected from May to September.

Our second approach for determining changes in the community across the near century of records was primarily to reduce
the influence of under-sampled years. We accomplished this by calculating rarefied species richness per year to compare
equal sample sets for richness, using the R package vegan. To limit the effects of low sample years, we included years with
20, 30, 40, 50, 60 or 70 observations. Due to apparent quadratic patterns, richness was regressed across sample years using
generalized additive models (GAMs) with year as a smoothing factor and minimized generalized cross-validation (GCV) for
fitting (function: gam, package: mgcv [28–30]).

(ii) Measuring change in community composition between contemporary and historical sampling periods

We compared the contemporary sampling (years 2017 and 2018) to Evans’s historical dataset (1972 and 1973). We chose these
years to compare due to similarities in sampling methods and intensity. However, only data from months with sampling efforts
in both the contemporary and historical data sets were included (May, June, July, August and September). We rarefied the
species richness for the historical data and the contemporary data (function: rarefy, package: vegan) to the lowest sample size
(contemporary data: n = 1271). We also calculated Shannon diversity (Hill number) in R for each sampling effort (function:
hill_div; package: hilldiv [31]), which accounts for both species richness and evenness in the population. A higher diversity
estimate would indicate high species richness and evenness, whereas lower diversity can be due to low richness or evenness
or both. We rounded to whole numbers to represent an estimate of the number of species (as Hill numbers represent the
effective number of species). Shannon diversity was statistically compared between datasets using the Hutcheson t-test for
two communities in R (function: Hutcheson_t_test, package: ecolTest [32]). Additionally, we calculated Pielou’s evenness index
((Shannon diversity) ÷ log(species richness)) for both datasets in R.
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Non-metric multidimensional scaling (NMDS) ordinations were used to visualize differences in species composition between
the historical and contemporary datasets (vegan package). We then used permutational multivariate analysis of variance
(PERMANOVA; function: adonis, package: vegan) [33] in R to determine whether the bee communities were significantly
dissimilar in ordination between the two sampling periods. Since PERMANOVA is sensitive to differences in dispersion among
groups, regardless of ordination, we first tested for homogeneity of dispersion using the betadisper function (package: vegan).
This is a multivariate analogue of Levene’s test for homogeneity of variances that implements PERMDISP2 [34]. Homogeneity
of dispersion paired with significant differences between groups according to the PERMANOVA would therefore indicate that
the community composition differed between historical and contemporary samples. A dummy species was added to the species
matrix prior to analyses, and analyses were based on Bray–Curtis dissimilarity, with 999 permutations. We also used the envfit
function (package: vegan) to determine which members of the bee community were significantly (p < 0.01) contributing to
ordination in the NMDS. We fit vectors on the NMDS plot according to species contributions, with the length of the vector
corresponding to the strength of the contribution. As Bray–Curtis can be sensitive to overall abundance and relative abundance,
we also conducted the same analyses as above using relative abundance (relative abundance = (raw species abundance) ÷ (total
abundance of all species for that month) × 100).

To compare the dominant species within the two communities, we calculated the percentage composition of each species to
the overall community in the historical sampling years and the contemporary years. These values were compared for species
that made up over 2%. We also calculated the percentage change in the relative abundance of species that were collected in
both the historical and contemporary samples. To calculate relative abundance, we summed the number of records for each
species collected in each sampling period (records were summed for 1972/1973 and for 2017/2018). We then calculated the
relative abundance by dividing the summed species record by the total number of specimens in that collection period. This was
to account for more sampling effort (more days of sampling and more specimens collected) in the historical period. We then
calculated the percentage change in relative abundance for species with at least 30 records across the two sampling periods.
Species were designated as declining if they had an abundance decline of more than 30% and increasing if they had an increase
of more than 30%. Species in between were considered stable. This cutoff was chosen to match the IUCN designation for
vulnerable species [35].

(iii) Trait database

Natural history characteristics and traits were collected and collated for the species in our study. Trait data were sourced via
literature review, expert knowledge, specimen measurement, the Global Biodiversity Information Facility [36] and geographic
measurements taken using the sf package in R [37]. Finally, for all species present in the historical (1972/1973) period, we created
a binary ‘extirpation’ variable by numerically labelling the species as persistent (0) or extirpated (1) depending on their sample
status in the contemporary (2017/2018) sample period. See electronic supplementary material, Methods, figure S2, and tables S2
and S3 for a full description of each trait and the process used to obtain the information.

Trait data were used in the following two types of analyses: (i) at the species level we used traits as potential predictors of
species persistence or local extirpation in the ESGR between the historical and contemporary periods, and (ii) at the community
and species levels, we compared trait composition between the historical and contemporary sampling periods and across the
entire near century of data.

(iv) Trait-based predictors of species extirpation: artificial neural network analysis

At the species level, we used traits as potential predictors of species extirpation from the ESGR between the historical
(1972/1973) and contemporary (2017/2018) periods. Initial use of mixed modelling approaches (given the mixed categorical
and continuous trait data) proved incapable of efficiently exploring the broad possibilities while achieving explanatory power.
Ordination methods fared better, but presented their own limitations (though, see Boersma et al. [38] for more on ordination
analysis in trait space). PERMANOVA and NMDS explained little variance (see electronic supplementary material, Results and
figure S3) and PCA analysis was limited by the high dimensionality required to achieve any explanatory power and the number
of predictors that highly contributed to multiple principal components (electronic supplementary material, figure S3).

Table 1. Rarefied bee species richness at the ESGR, across binned years.

bin number of specimens years number of sampling days species richness rarefied SR (mean ± SE)

1 385 1921–1959 174 94 87.8 ± 2.2

2 362 1960–1971 148 100 95.6 ± 1.9

3 557 1972 61 122 103.0 ± 3.3

4 375 1973–1974 66 106 99.9 ± 2.1

5 375 1975–1981 110 115 109.3 ± 2.1

6 390 1982–1989 128 120 110.6 ± 2.6

7 320 1990–2018 40 98 98.0 ± 0.0
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Therefore, to study the relationship between bee traits and extirpation, we pursued neural networks due to their flexible
non-parametric nature, ability to handle both categorical and continuous data and increased capability to capture variance and
feature effects despite lingering collinearity and limited data, respectively. Here we provide only a general description of our
neural network analysis in R (‘nnet’ package [39]; please see electronic supplementary material, Methods for further details).
We used single-layer neural networks with a limited number of nodes (3–6 nodes; see electronic supplementary material,
figure S4) to restrain overfitting [40] and a decay rate during training ranging between 5 × 10−2 and 5 × 10−4. Species trait
data were cleaned/prepared (see electronic supplementary material, Methods) to function as ‘input features’ (analogous to
predictor variables) in order to predict species extirpation in the ESGR. To control the number of input features and avoid
collinearity between categorical variables (see electronic supplementary material, Methods), we combined categorical varia-
bles into the following four dichotomous-categorical traits: ‘polylectic ground-nesting’, ‘polylectic cavity-nesting’, ‘oligolectic
ground-nesting’ and ‘kleptoparasitic’. We did not include oligolectic cavity-nesting bees as a separate input feature because only
three sampled species matched the designation. After data cleaning, 11 traits remained as input features, including our four
dichotomous-categorical traits and seven quantitative traits: intertegular distance (ITD; mm), species’ North American (NA)
latitudinal maximum/minimum, species NA longitudinal maximum/minimum, phenological mean date (day of the year) and
phenological range (day of the year; see electronic supplementary material, table S3).

For each unique feature set (i.e. unique set of species’s traits and extirpation/persistence data; see §3), we determined the
simplest network structure that consistently limited error while producing high predictive performance (i.e. >95% accuracy).
This structure was then initialized with distinct random initial weight connections between nodes and uniquely trained 1000
times [41]. In each unique network, feature influence over model prediction was measured with Olden importance values
(NeuralNetTool package [41]). The Olden method produces continuous values with positive values indicating a positive
relationship with the active state of the predicted variable (i.e. species extirpation) and negative values indicating the opposite
(i.e. species persistence). For every unique network, we standardized Olden importance values by rescaling them between
−1 and 1 in order to preserve relative trait importance and test for consistency of effect across networks (see electronic
supplementary material, Methods). For brevity, we refer to this rescaled Olden value as RSO importance value.

To obtain high predictive accuracy, neural networks can rely on both subtle or complex relationships in training data that
do not necessarily represent relevant ecological relationships in nature. However, by focusing on the clearest relationships in
our RSO values, such as the highest absolute values (abs) and lowest dispersion, we can aid in the selection of relevant trait
variables to statistically ‘vet’ for significant ecological relationships. Specifically, we selected traits with median abs (RSO) >0.5
as candidate predictor variables in binomial regressions. Exact equation structure of the binomial regressions was developed
heuristically with the aid of partial dependence plots (‘iml’ package [42]) and fundamental domain knowledge (see electronic
supplementary material, Methods and figures S5 and S6).

We tested RSO importance values from all trained network structures in our analysis for robustness against the potentially
confounding issues of phylogenetic autocorrelation and the influence of rare species in our dataset. Using a recent molecular
bee phylogeny [43], we found no phylogenetic signal in extirpation/persistence across species in our neural network analysis
(see electronic supplementary material, figures S7 and S8). Furthermore, we explored any effects of phylogenetic signal in our
traits over network training, accuracy and RSO importance values using Phylogenetic Eigenvector Maps (MPSEM package [44])
as separate or additional input features in our neural networks [45]. Additionally, we considered the effects of outlying rare
species on RSO importance values by comparing RSO importance values to those from a corresponding analysis with singletons
and doubletons removed. See the electronic supplementary material, Methods for full descriptions.

(v) Trait composition across sampling periods

We compared the distributions of individual quantitative traits between the two sampling periods at two levels: the sample
community level and the species level (see electronic supplementary material, figure S9 for graphic representation). The sample
community level accounts for sample abundance and defines community trait distributions as a function of all sampled bee
individuals per period (electronic supplementary material, figure S9a). On the other hand, the species level does not account
for sample abundance and instead defines community trait distributions across all the uniquely sampled bee species per period
(electronic supplementary material, figure S9b). Trait distributions between the major historical (1972/1973) and contemporary
(2017/2018) sampling periods were compared at the sample and species level. Trait distributions across the seven sample period
bins (see methods above; table 1; electronic supplementary material, figure S1) used during analyses of the near century of data
were compared at the species level only.

Furthermore, we used ordination methods to develop a holistic understanding of the trait composition between the major
historical and contemporary periods. Specifically, we separated community composition via averages of quantitative traits and
percentage makeup of each categorical trait (e.g. nesting location or lecty) by sample period and month. We visualized trait
composition differences between the historical and contemporary communities via NMDS (see methods described above) and
used PERMANOVA to test for statistical differences after confirming no differences in dispersion.

(vi) Change in floral hosts

To test if there was a significant change in species richness of floral hosts (flowers that bees were netted from), we used
a chi-square test to compare floral species richness across the 4 years (1972, 1973, 2017 and 2018). This was conducted in
GraphPad Prism. Percentage of specimens collected from each floral host in each year was also calculated to compare the
dominant host species across years.
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3. Results
We conducted analyses across the near century of bee records (1921–2018) and separate analyses comparing the major sampling
periods in 1972/1973 (‘historical’ period) and 2017/2018 (‘contemporary’ period). See the electronic supplementary material,
figure S1 for a graphic representing our data structure and its analyses.

(a) Significant changes in community composition across a century of sampling
In our first analysis of community composition, we compared records across seven binned periods to account for changes in
sampling intensity (see §2). The number of specimens per bin ranged from 320 to 557, the number of unique sampling days per
bin ranged from 40 to 174 and bins included between 1 and 38 years of data (table 1; electronic supplementary material, figure
S10). Rarefied species richness ranged from 87.8 ± 2.2 SE in bin 1 (years 1921–1959) to 110.6 ± 2.6 SE in bin 6 (years 1982–1989).
There was an unimodal distribution of species richness over time, peaking in bins 5 (years 1975–1981) and 6 (years 1982–1989;
table 1). The species richness and rarefied species richness of a reduced dataset that only included specimens collected from
May to September showed a similar trend as the full dataset, which includes all collection months (electronic supplementary
material, table S4).

In our second analysis of community composition, we included all museum records without removing duplicate records of
species collected on the same days. Instead, we analysed temporal changes using rarefied species richness across years with a
minimum of 20, 30, 40, 50 (electronic supplementary material, figure S11), 60 and 70 specimens. Across all variations, we again
found a unimodal pattern of species richness. Initially, richness rose across the binned periods and peaked in the early 1970s,
only to decline thereafter.

(b) Significant community composition change when comparing similar historical and contemporary sampling
Rarefied bee species richness was greater in the historical sampling years (1972/1973) with an average of 119.1 ± 3.2 SE species
compared to the contemporary sampling years (2017/2018) with an average of 91.0 ± 0.0 species. Shannon diversity (Hill’s
number) was significantly greater for the historical data (59 species) compared to the contemporary data (21 species; X2 =
18.05, df = 1, p < 0.001). Both of these community estimates indicate that the wild bee population had more species and more
population evenness in the historical community compared to the contemporary one.

There were 76 species collected in the historical sampling that were not collected in the contemporary sampling. There
were also 30 species collected in the contemporary sampling effort that were not collected in the historical effort (electronic
supplementary material, table S5).

The historical and contemporary bee communities did not differ significantly in the level of dispersion (PERMDISP; F1,9 =
1.55, p = 0.25), but were significantly different from each other in community composition (PERMANOVA; R2 = 0.26, F1,9 = 2.86,
p = 0.007; figure 1a). Seven species significantly (p < 0.01) contributed to ordination of the NMDS using the envfit function:
Lasioglossum pilosum (Smith, 1853), Lasioglossum lineatulum (Crawford, 1906), Ceratina dupla (Say, 1837), Halictus confusus (Smith,
1853), Halictus rubicundus (Christ, 1791), Colletes simulans (Cresson, 1868) and Andrena hirticincta (Provancher, 1888). All of these
species were more abundant in the historical sampling years compared to the contemporary sampling years, with some being
more frequently captured in the early summer (L. pilosum, L. lineatulum, C. dupla, H. confusus and H. rubicundus) and others more
frequently captured in late summer (A. hirticincta and C. simulans; figure 1). Conducting the analyses using relative abundance
instead of true abundances did not result in substantial differences to the results reported above (electronic supplementary
material, figure S12).

The historical data had more species (13 species) that represented over 2% of the specimens collected compared to the
contemporary data (eight species), as supported by a greater evenness index in the historical data (Pielou: 0.83) compared to
the contemporary data (Pielou: 0.68). There were only three overlapping species that were included in the common species
(representing more than 2% of specimens) for both collection periods: Augochlorella aurata (Smith, 1853), Bombus bimaculatus
(Cresson, 1863) and H. ligatus (Say, 1837; figure 1). The most abundant species in the historical data were Lasioglossum pectorale
(Smith, 1853; 8% of specimens) and C. dupla (6% of specimens). Decreased evenness in the contemporary data was especially
driven by the increase in B. impatiens, which represented 29% of the contemporary specimens. Augochlora pura (Say, 1837; 9% of
specimens), Ceratina calcarata (Roberston, 1900; 8% of specimens) and Ceratina strenua (Smith, 1879; 8% of specimens) were also
abundant in the contemporary data (figure 1).

(c) Species relative abundance changes between the historical and contemporary efforts
There were 58 species collected in both the historical and contemporary sampling efforts. Only 22 of these had at least 30
records across the two sampling periods and were thus included in the calculation of relative abundance change (electronic
supplementary material, table S6). Within this subset of species, 64% had a decline in relative abundance (>30% decrease), with
an average percentage decrease of 81% (± 5.1 SE). Fourteen percent of the species were considered stable, and 23% of species
were increasing in relative abundance, with an average percent increase of 1130% (± 612.8 SE). Species with the greatest declines
included L. pilosum, H. confusus, C. dupla, Hylaeus affinis (Smith, 1853) and L. pectorale, which all had a more than a 95% decline in
relative abundance between sampling periods (electronic supplementary material, table S6). Species with the greatest increases
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in relative abundance included A. pura, L. versatum (Roberston, 1902), B. impatiens and Bombus citrinus (Smith, 1854), which all
increased by more than 1000% (electronic supplementary material, table S6).

(d) Species traits as indicators of local extirpation in neural network analysis
Neural networks trained on the full trait/extirpation dataset were 99% accurate on average in predicting species extirpation/per-
sistence between the historical and contemporary sample periods. Analysis indicates RSO values were robust to phylogenetic
signal in traits (electronic supplementary material, figure S13) and the removal of rare species (electronic supplementary
material, figure S14). The most influential three traits (based on abs (median RSO)) were all dichotomous-categorical traits
(figure 2): polylectic cavity-nesting bees, kleptoparasitic bees and oligolectic ground-nesting bees. Polylectic cavity-nesting bees
were associated with predicting persistence, while kleptoparasitic bees and oligolectic ground-nesting bees were associated
with predicting extirpation. Polylectic ground-nesting bees did not show a consistent association. We corroborated these results
via Fisher’s exact tests: polylectic cavity-nesting (one-sided, p = 0.003), kleptoparasitic (one-sided, p = 0.033), oligolectic ground-
nesting (one- sided, p = 0.029) and polylectic ground-nesting (p > 0.05). Further corroboration is apparent in raw trait/extirpation
data (prior to data preparation for neural networks), with cavity-nesting species (figure 3a) and polylectic species (figure 3b)
persisting at higher levels. Note, eusocial species also persisted (figure 3c), which also follows from the neural network results
given that all eusocial species are polylectic.

RSO values for continuous traits (e.g. ITD) did not indicate clear relationships with extirpation/persistence in neural
networks trained on all bee species present in the historical sample period (i.e. no traits’ abs (median RSO > 0.5). However,
by training neural networks within each nest/diet dichotomous network (see electronic supplementary material, Methods
and figures S5 and S6), network output identified multiple potential trait variables of interest (i.e. abs (median RSO > 0.5))
for polylectic bees (see electronic supplementary material, figures S15–S17), robust to both phylogenetic signal (electronic
supplementary material, figure S20) and the removal of rare species (electronic supplementary material, figure S21). Best-fit
GLMs using these traits (table 2) primarily indicate that increases in the phenological range are associated with decreased
probability of extirpation for polylectic ground (beta = −1.23; p = 0.022) and polylectic cavity-nesting bees (beta = −4.41; p
= 0.039). For oligolectic ground-nesting (electronic supplementary material, figure S18) and kleptoparasitic bees (electronic
supplementary material, figure S19), despite consistently high predictive accuracy and limited effects of phylogenetic signal
(electronic supplementary material, figure S20), RSO values displayed distinct differences with the removal of rare species
(electronic supplementary material, figure S21) and none of the flagged traits, including phenological range, produced
significant relationships with extirpation/persistence via GLMs.
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Figure 1. Community composition. Visual representation of dissimilarity between the bee community species composition (a) and trait composition (b) in the ESGR
during historical (1972/1973) and contemporary (2017/2018) collections, based on Bray–Curtis dissimilarity. Plot in (b) uses trait variables from the neural network
analysis with the following two differences: (i) instances of each categorical trait were counted as percentage of community composition, and (ii) latitude and
longitude ranges instead of maximum and minimum values were used to avoid negative numbers (necessary for Bray–Curtis). Individual dots represent data collection
months, and ellipses indicate the 95% confidence intervals. Arrows indicate the most significant bee species (a) or bee traits (b) (p < 0.01) driving the ordination of
points. Arrow lengths correspond to the strength of the correlation between the species/traits and the ordination. Trait abbreviations in (b) are as follows (all per month
community): oligoPerc, percentage of oligolectic bees in community; polyPerc, percentage of polylectic bees in community; avgLatR, average latitudinal range; avgPhR,
average phenological range; avgPhM, average phenological mean date; avgITD, average ITD. (c) Proportions of species identified in the wild bee communities at the
ESGR during two sampling periods, the historical (1972/1973) and the contemporary (2017/2018) samples. Species that represented more than 2% of the community
are listed and coloured.
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(e) Change in bee community trait composition
At the level of full sample communities from the historical (1972/1973) and contemporary (2017/2018) periods (electronic
supplementary material, figure S9a), ordination analysis shows significant differences in overall community trait composition
(PERMDISP: F1,8 = 0.88, p = 0.38; PERMANOVA: F1,8 = 3.82, R2 = 0.32, p = 0.04). Reflecting the results found via neural net-
work analysis (but lacking relational detail), the NMDS displays significant differences along categorical variables, with more
oligolectic bees represented in the historical community (figure 1b). Further corroborating neural network results, contemporary
sample communities exhibited a significantly longer phenological range (figure 1b; electronic supplementary material, figure
S22), particularly for polylectic and kleptoparasitic bees but not oligolectic bees (electronic supplementary material, figure
S22a-S22d). Analysis of the sample data revealed that this longer phenological range is largely derived from an increase
in abundance of bees flying later in the year (electronic supplementary material, figure S22e-S22h). Additional differences
between sample periods include an increase in average bee size (ITD; electronic supplementary material, figure S23) in the
contemporary sample community (and consequently proboscis length and foraging distance) found in both kleptoparasitic
and ground-nesting bees. However, in ground-nesting bees, this was entirely caused by the substantial increase in B. impatiens
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(electronic supplementary material, figure S23b). Finally, while latitudinal range only played minor roles in predicting species
extirpation between periods, changes in sample community abundance revealed significant shifts towards populations with
more southerly latitudinal ranges (electronic supplementary material, figure S24). Specifically, there were changes in both NA
latitudinal maximum (W = 1 874 662, p = 2.02 × 10−12) and NA latitudinal minimum (W = 2 211 893, p < 2.2 × 10−16) distributions
between major sample periods, with an average southerly shift of roughly 2.44 and 5.7 degrees for latitudinal maximum and
minimum, respectively. No substantive differences were present in longitudinal ranges.

When considering only the traits of species present in each major sampling period and not accounting for the abundance
of individual species (referred to here as the ‘species level’ community comparison; electronic supplementary material, figure
S9b), we gained unique insights with the ability to bin species as appearing only in the historical period, only the contemporary
period, or both sample periods. First, while phenological range expansion is still apparent at the species level in recent
sampling periods (Kruskal–Wallis chi-squared = 10.717, df = 2, p = 0.005), the expansion comprises earlier, rather than later
flying species, driven mainly by earlier flying species added in the contemporary sampling period (electronic supplementary
material, figure S25). Second, at the species level, changes in latitudinal range are comparatively minor compared to a persistent
eastward trend between sample periods (electronic supplementary material, figure S26). This eastward trend is consistent even
considering species presence across all sample years, 1921–2018, via unique species per the seven bins used in table 1 (electronic
supplementary material, figure S26).

(f) Change in host plants between historic and contemporary sampling periods
There was a non-significant (p > 0.05) trend towards more host genera in the historic sampling years (1972: 26 host plants; 1973:
29 host plants) compared to the contemporary years (2017: 13 host plants; 2018: 18 host plants) (X2 = 7.49, df = 3, p = 0.058). The
proportion of bees collected from native plants was highest in 2017 (74% of specimens collected), followed by 1972 (60%), 1973
(53%) and finally 2018 (46%). The dominant host plant community shifted between the historic and contemporary sampling
years, with the most dominant host plants in the historic sampling effort being Hieracium (15% of specimens collected from it),
Potentilla (13%) and Solidago (12%). In the contemporary sampling period, the most dominant host plants were Centaurea (30%),
Liatris (17%) and Monarda (11%; electronic supplementary material, figure S27).

4. Discussion
In the ESGR, we found species richness followed a unimodal distribution across our full sample period (1921–2018), peaking
in the 1970s and declining thereafter. Comparisons between focused collection efforts in 1972/1973 and 2017/2018 also indicate
significant declines in richness and evenness.

Our recent resampling captured a bee community much more dominated by a few species, particularly in the genus Bombus.
Bombus species have been a focal group for measuring abundance and distribution trends in recent decades [7,8,46,47]. Similar
to previous surveys, we did not detect Bombus affinis Cresson, 1863, and the last record for this species in the ESGR was 1987
(electronic supplementary material, table S7), though its last record in the state was 1999 [8]. Comparing trends for other Bombus
species indicates similarities with previous work showing increases in B. bimaculatus and B. impatiens [8,47]. Bombus impatiens
is considered a species of least conservation concern and is increasing in abundance in most of its historic range as well as
spreading into new areas [7,47,48]. Interestingly, our data shows stable Bombus perplexus Cresson, 1863 and Bombus vagans

Table 2. Best fit models for each dichotomous bee group using neural network-identified trait variables, for collections made at the ESGR.

polylectic cavity: extirpation~phenoRange + phenoRange:phenoMean+NALatMin

coefficients β (estimate) Std Err z p AIC D2

intercept −2.672 1.101 −2.428 0.015 23.79 0.51

phenological range −4.41 2.135 −2.065 0.039

NA latitudinal minimum −1.974 1.26 −1.567 0.117

phenological range × Phenological Mean 6.821 3.544 1.925 0.054

polylectic ground: extirpation~phenoRange + phenoMean+NALongMax

coefficients β (estimate) Std Err z p AIC D2

intercept 0.894 0.505 1.769 0.077 74.46 0.11

phenological range −1.233 0.53 −2.324 0.02

phenological mean 0.883 0.562 1.572 0.116

NA longitudinal maximum −0.568 0.332 −1.712 0.087

No significant relationships were found in oligolectic ground-nesting bees or kleptoparasitic bees.
Data used in regressions are centred and scaled.
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Smith, 1854 populations in the ESGR despite broader declines found at the state level [8]. The stability of these species may be
due to the protected status of the ESGR, with minimal human impacts since its establishment as an ecological reserve in 1930.

Other notable species trends include significant declines in two Lasioglossum species (L. pilosum and L. pectorale), H. confusus,
C. dupla and H. affinis. During concurrent sampling on blueberry farms in west Michigan [49], we found similar evidence of
decline for C. dupla and H. affinis, but we found that L. pilosum, L. pectorale and H. confusus were stable in relative abundance
between 2004 and 2018. Differences in land use between cultivated agricultural fields and this protected preserve may be
driving these species differences, as well as this study covering a much longer timespan. In total, over half (64%) of the
species included in the species-level abundance analysis comparing abundance in the historical (1972/1973) to the contemporary
(2017/2018) sampling effort had a greater than 30% decline in relative abundance. Additionally, 58% of species recorded in the
ESGR since 1921 were not captured in the 2017/2018 effort. However, 12% of the species not found at the ESGR in 2017/2018
were captured within 30 km of Evans Old Field between 2017 and 2024 according to data on GBIF, and 62% of these extirpated
species were captured within 100 km during this period (electronic supplementary material, table S5). This suggests that these
species may have been extirpated from Evans Old field, while remaining abundant in habitats nearby. Additional analyses on
potential drivers of these occupancy discrepancies, including landscape effects, would need to be conducted to fully understand
what led to individual species extirpations. Phylogenetic groups did not appear to share similar fates, with congeners having
vastly different trends in abundance.

To ascertain trait-based drivers behind species extirpation since the 1970s historical sampling period, we used neural
networks to manage the high number of inputs, mixed data types and possible interactions of our trait data. Network output
consistently linked extirpation to our categorical traits with kleptoparasitic and oligolectic bees linked to extirpation, while
polylectic bees (particularly cavity-nesting) exhibited much higher frequencies of persistence. Within dichotomous-categorical
variables, further analysis identified quantitative traits related to extirpation (electronic supplementary material, figures S12–
S20). Particularly, increasing phenological range (i.e. flight period duration) consistently predicted persistence of polylectic bees
(electronic supplementary material, figure S28). Beyond aiding in our trait analysis, the neural network analysis highlights how
to leverage machine learning’s predictive power into illuminating key relationships in complex empirical ecological data [20].

Ecological or life history traits have been used previously to understand what makes a species vulnerable. Similar to past
studies regarding lecty [4,13], oligolectic and polylectic bees were extirpated and persisted at higher rates, respectively. On the
other hand, Burkle et al. [13] found greater losses of cavity-nesting species, whereas we found they were more likely to persist.
However, Burkle et al.’s [13] study occurred in a grassland-dominated landscape influenced by agricultural intensification, while
our study was in a more forested ecological preserve. In polylectic cavity-nesting bees, our neural network analysis identified
links between larger phenological ranges and persistence, similar to Bartomeus et al. [4]. A larger temporal foraging window
could preferentially benefit bees with a wide diet breadth.

Analysis of continuous traits at the community and species levels revealed unique results. While the shift towards a
more southern-distributed sample community provides predictable evidence of a community impacted by climate change
(electronic supplementary material, figure S24), the consistent eastern shift seen at the species level was unexpected (electronic
supplementary material, figure S26). Loss of more western species may be due to general declines in species dependent on
the prairie/plains habitat of the Midwest and Plains states, which has long been dominated by agriculture, while states in the
Northeast have recovered much of their natural habitat following widespread deforestation and conversion to agriculture from
the mid-1600s to the mid-1800s [50].

Drivers of species composition shifts specific to the ESGR are not clear, but there are several potential causes. Forest
succession at the ESGR over the sampling timespan may have favoured bees associated with forests rather than the historically
more open savannah-dominated landscapes of southern Michigan. This site has not been managed to maintain open spaces,
as evidenced by the reduction in open area at Evans Old Field from 7.7 to 1.3 ha. Landscape and plant community shifts
associated with forest succession likely impacted the bee community [51–53], with generally higher species richness associated
with open/early successional landscapes. For example, previous evidence finds Ceratina species partitioned based on available
nesting habitats [54]: C. dupla most commonly nested in teasel (Dipsacus sp.) in the sun, and C. calcarata nested most commonly
in raspberry and sumac in the shade. This may explain the change in abundance of Ceratina between 1972/1973 and 2017/2018.
Ceratina dupla was the most abundant Ceratina sp. in 1972/1973, and C. calcarata was the most common 2017/2018.

Bee communities are largely the product of the floral rewards in the plant community [13,55], but measuring plant commun-
ity change was not a focal element of the records used in this study. However, we do have sufficient data to detect a major
shift in host plant community composition between our historical (1972/1973) and contemporary (2017/2018) sample periods.
For oligolectic bees especially, the shift in plant species may be a primary driver of community change. However, without a
more consistent collection of plant data across the century, plant compositional shifts between sampling events may have been
missed, and a full temporal evaluation of changes in the bee-plant network could not be completed.

Environmental factors may also have affected community assemblages, including changes in annual precipitation (see
electronic supplementary material, Methods). However, during the years of focused sampling (1972/1973 and 2017/2018) and
the years prior (1971 and 2016), data suggest limited variability in precipitation to drive changes in community assembly.
Specifically, all major sampling years and the year proceeding were all within one s.d. of the 30 year average (875.96 mm ±
150.01 s.d.), except for 1971, which was a below-average year (627.08 mm; electronic supplementary material, figure S29) [56].

While challenges remain in working with historical data (see electronic supplementary Discussion), this study provides
an example of how ecologists can combine historical data and current analytic capabilities to explore trends in wild bee
populations. Our analysis provides strong evidence that despite limits on local disturbance, wild bees in protected ecological
preserves can exhibit substantial community change across recent history. At the ESGR, change manifested as declines in
richness, evenness and abundance since the 1970s. Our analysis indicates that declines filter through species traits and reflect
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broader trends such as range shifts brought on by climate change and land use. Resources like the ESGR and the long-term
records derived from them are invaluable tools for ecologists to study wild bee population trajectories and traits that may drive
species vulnerability.
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