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Abstract 

Spatially continuous patterns of genetic differentiation, which are common in nature, are 

often poorly described by existing population genetic theory or methods that assume 

panmixia or discrete, clearly definable populations. There is therefore a need for 

statistical approaches in population genetics that can accommodate continuous 

geographic structure, and that ideally use georeferenced individuals as the unit of 

analysis, rather than populations or subpopulations. In addition, researchers are often 

interested describing the diversity of a population distributed continuously in space, and 

this diversity is intimately linked to the dispersal potential of the organism. A statistical 

model that leverages information from patterns of isolation-by-distance to jointly infer 

parameters that control local demography (such as Wright’s neighborhood size), and 

the long-term effective size (Ne) of a population would be useful. Here, we introduce 

such a model that uses individual-level pairwise genetic and geographic distances to 

infer Wright’s neighborhood size and long-term Ne. We demonstrate the utility of our 

model by applying it to complex, forward-time demographic simulations as well as an 

empirical dataset of the Red Sea clownfish (Amphiprion bicinctus). The model 

performed well on simulated data relative to alternative approaches and produced 

reasonable empirical results given the natural history of clownfish. The resulting 

inferences provide important insights into the population genetic dynamics of spatially 

structure populations.  
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Introduction 

 

In many species, individual (or gamete) dispersal is geographically limited, leading to 

spatial structure. This spatial structure can in turn give rise to a pattern of isolation by 

distance (Wright, 1943, 1946; Meirmans 2012), in which a focal individual is, on 

average, more closely related to an individual sampled nearby than it is to another 

individual sampled farther away. Much of early population genetic theory was derived 

under the assumption of random mating, which may have adequately described the 

model organism populations common in empirical population genetic studies of the time 

(e.g., Drosophila in vials; Prout 1954; Merrell 1953; Dobzhanksy & Spassky 1962) but is 

less well-suited to describing spatially continuous genetic structure. While several 

theoretical approaches have relaxed these assumptions by modeling the population as 

partitioned into “demes'' with some constant rate of migration between them (e.g., 

Wright’s [1943] “island model” and Kimura & Weiss’ [1964] “stepping-stone model”), 

each approach still maintained panmixia within demes, and neither effectively captures 

population genetic dynamics in continuous space. The island and stepping-stone 

models inspired a series of statistical approaches that rely on partitioning samples into 

discrete populations with some level of genetic differentiation (sometimes estimated) 

between them (e.g., Wright 1951; Pritchard et al. 2000; Pickrell & Pritchard 2012; Peter 

2016). These approaches have been expanded to estimate the degree of admixture 

between these discrete populations (e.g., ADMIXTURE – Alexander et al. 2009), where 

individuals inferred to have ancestry proportions in multiple inferred clusters are 

described as “admixed.” However, when the true pattern of genetic variation is 
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continuous across the landscape, the inferred K clusters in a method like STRUCTURE 

or individual admixture proportions in ADMIXTURE are mere artifacts of the sampling 

scheme (Frantz et al 2009, Bradburd et al 2018). An example of this phenomenon in 

action can be found in studies that group human genetic variation by continent, which 

often generates an apparent pattern of discrete clusters (Rosenberg et al. 2002; Li et al. 

2008); however, when individuals are the unit of investigation, human genetic ancestry 

is continuous and defies simple continental or population groupings (Ramachandran et 

al. 2005; Lewis et al. 2022; Carlson et al. 2022).  

Wright (1943) and Malécot (1946) were the first to consider population models in 

which individuals were continuously distributed across one- and two-dimensions in 

geographic space. Wright (1943, 1946) introduced the concept of “neighborhood size” 

(𝒩) as a statistic to describe natural populations; 𝒩 was meant to capture the number 

of potential parents within a given radius of a focal individual, where that radius was 

defined by the dispersal distance in two-dimensions. Their early theoretical work has 

since been expanded by Malécot (1948), Maruyama (1971), Nagylaki (1975; 1978), 

Felsenstein (1976), Barton et al. (2002), Barton et al. (2013), among others. Despite 

these theoretical advances, relatively few statistical methods exist for examining 

populations in continuous space. Wright’s neighborhood size (𝒩) provides important 

information about the dispersal potential and the rate of genetic drift in continuously 

distributed populations at a localized level, and is therefore a useful quantity to know, 

both for conservation purposes and a general understanding of the evolutionary context 

of a particular population or species. 
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Rousset (1997; 2000) introduced a method for the estimation of Wright’s 

neighborhood size as the inverse of the slope of a regression between pairwise FST / (1 

– FST) and the logarithm of pairwise geographic distance. While this method is limited in 

that it assumes a constant population density, it has the useful benefit of providing a 

single estimate of 𝒩 for the entire population (Shirk & Cushman 2014). Many popular 

programs enable researchers to estimate 𝒩 by implementing this expected relationship 

(e.g., SPAGeDI – Hardy & Vekemans 2002; Rousset & Leblois 2011). Importantly, the 

decision of which measure of FST to use is non-trivial and can produce dramatically 

different results (Pearse & Crandall 2004; Bhatia et al. 2013). Furthermore, researchers 

must decide to estimate FST between individuals or artificially designated 

subpopulations. The former is very sensitive to individual measures of genetic diversity, 

which can be particularly noisy and impacted by bioinformatic decisions that affect the 

presence of missing data and rare variants (Bhatia et al. 2013); this noisiness can be 

smoothed by lumping individuals into subpopulations, but this “lumping” approach is not 

ideal when sampling covers a large geographic area and there is a continuous pattern 

of isolation-by-distance (Pearse & Crandall 2004). An alternative method, introduced by 

Shirk & Cushman (2014) and implemented in sGD (Shirk & Cushman 2011), estimates 

𝒩 following a user-specified neighborhood radius, and then used the Burrow’s method 

of linkage disequilibrium (Cockerham & Weir 1977) to estimate the number of breeding 

individuals of the sample. However, this method does not utilize the information from the 

shape of the isolation by distance curve like Rousset’s. Furthermore, it relies on the 

investigator having strong prior knowledge on the dispersal potential of the organism 
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such that they can adequately predict how to discretize space and, thus, how many 

samples should be included within the neighborhood estimation.  

Another quantity that, like Wright’s neighborhood size, is useful for understanding 

and conserving species is the effective population size (Ne). In a conservation setting, 

Ne may serve as a rough proxy for census size and the adaptive potential of threatened 

populations (Exposito-Alonso et al. 2022; Theodoridis et al. 2021). Others have used Ne 

to investigate the relationship between range size or dispersal ability (Leigh et al. 2021; 

De Kort et al. 2021). Estimation of the inbreeding effective size Ne (Wright 1931) often 

relies on its relationship with genetic diversity, which, when the mutation rate is µ and 

the population is at mutation-drift equilibrium, is given by 4Ne𝜇 (termed the “population 

mutation rate”; Kimura & Crow 1964). This definition is distinct from the variance Ne, 

which describes the rate of genetic drift between successive generations (Crow & 

Kimura 1970; Wang & Caballero 1999; Charlesworth 2009). A common estimator of the 

population mutation rate is Watterson’s 𝜃w, which is K / an where K is the number of 

segregating sites in the sample and 𝑎! = ∑ "
#

!$1
#%1   (Watterson 1975). However, 

Watterson’s 𝜃w is naive to the spatial structure of the sample and is known to be 

upwardly biased relative to random mating expectations when neighborhood sizes are 

very low (Battey et al. 2020). Another estimator of the population mutation rate is 𝜋), 

which is 𝜋) = !
!$1

∑ 𝑥#𝑥&𝜋#&#& , where n is the number of samples, xi and xj are the 

frequencies of the ith and jth sequence, and πij is the number of nucleotide differences 

between the ith and jth site (Nei & Tajima 1981). At mutation-drift equilibrium and 

assuming no selection, 𝜃w = 𝜋) = 4Ne𝜇.  
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In continuously distributed populations, inbreeding Ne is not independent of 𝒩 as 

each is impacted by dispersal (Barton et al. 2002; Wilkins 2004). When dispersal is 

high, Ne converges to the population census size (Nc) but tends to be much larger when 

dispersal is low. Similarly, because dispersal dictates the radius of 𝒩, higher rates lead 

to more potential parents being included within 𝒩. An ideal model of spatial population 

structure would thus be individual-based such that researchers would not need to 

arbitrarily group individuals into subpopulations and would co-estimate Wright’s 

neighborhood size and inbreeding Ne while explicitly accounting for the shared influence 

of dispersal across timescales.  

In this paper, we take steps towards this goal by introducing a model that jointly 

estimates 𝒩 and long-term Ne from data on pairwise π and geographic distance 

between individuals. We validate the model’s performance using individual-based 

forward-time simulations and evaluate our model’s performance against Rousset’s 

(1997) method when FST is estimated between individuals. Finally, we apply our model 

to an empirical dataset of Red Sea clownfish (Amphiprion bicinctus; Saenz-Agudelo et 

al. 2015).  

 

Methods 

 

Model Intuition 

The population genetic pedigree is ultimately shaped by an organism’s life-history, 

including its dispersal potential, generational structure, and mating strategies. Because 

mutations occur along the branches of the genetic genealogy contained within the 
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population pedigree, the shape of the pedigree fundamentally determines the diversity 

of a sample as well as a whole host of additional summary statistics (Fig. 1). The field of 

statistical population genetics is predicated on the idea that information about processes 

shaping the population pedigree (e.g., selection, demography) leave their imprint in 

patterns of genetic diversity and divergence observable in a modern-day sample.  

 For populations that are spatially structured such that there is autocorrelation 

between geographic location and genetic ancestry, the pedigree becomes distorted 

relative to random-mating expectations. This pedigree distortion occurs in two phases: 

the scattering phase and the collecting phase (Wakeley 1999, Wilkins 2004; Wilkins & 

Wakeley 2002). Going backward in time from the present, the scattering phase happens 

first, and is characterized by lineages that are geographically near one another 

coalescing more rapidly than expected under random mating (i.e., with a probability 

greater than 1 / 2Ne; Wilkins 2004; Wilkins & Wakeley 2002). This signature is 

especially strong when dispersal is low, as nearby individuals are more likely to be more 

closely related than a pair of individuals selected from the population at random (with 

respect to geography). The parameter that governs the rate of coalescence in this 

phase of the population pedigree is Wright’s neighborhood size, which is defined as 

𝒩 = 4𝜋𝜌𝜎2, where π is the mathematical constant, ρ is population density, and σ is the 

standard deviation of the effective dispersal distance defined by a normal distribution 

with mean zero (Wright 1940, 1943, 1946, 1949). Forwards-in-time, 𝒩 describes the 

number of potential mates within a circle of radius 2σ2, within which breeding occurs 

approximately at random with respect to geographic position. Backwards-in-time, 

Wright’s neighborhood size can be thought of as the “pool of possible parents” of a focal 
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individual (i.e., the number of reproductively mature individuals within two effective 

dispersal distances of the focal individual in any direction).  

Further in the past — exactly how far depends on the rate of dispersal and the 

habitat geometry (Wilkins 2004) — the coalescent process shifts to the second phase, 

known as the collecting phase, in which the rate of coalescence is independent of the 

geographic distribution of the modern-day sample of individuals. This independence 

arises because, following a focal individual’s pedigree backward through time and 

across space, the geographic distribution of its genetic ancestors expands until it 

ceases to be correlated with that focal individual’s location (Fig. 1b; Bradburd & Ralph 

2019). In the collecting phase, relatedness between lineages is well-represented by a 

neutral coalescent process (Kingman 1982), in which the rate of coalescence per 

generation is 1 / 2Ne and the average time to the most recent common ancestor is 4Ne 

generations. 

This two-phase distortion of the shape of the pedigree relative to random-mating 

expectations affects estimates of the genetic diversity of the population.  In a spatially 

structured population at migration-drift equilibrium, dispersal limitations shrink the depth 

of the coalescent tree locally (i.e., individuals nearby are more related on average than 

expected under panmixia) while expanding it globally (farther away, individuals are 

more distantly related than expected). As a result, estimates of 𝜋)  or θ. are highly 

dependent on the spatial scale of sampling, and are generally downwardly biased 

relative to the equilibrium π in the collecting-phase; this effect is particularly strong when 

dispersal is very low relative to the length of the range and the geographic area 

encompassed by the genotyped samples is small (Exposito-Alonso et al 2022). 
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Our model (explained below) relies on the relationship between the spatial 

population genetic pedigree and the isolation-by-distance curve (Fig. 1b, 2). At short 

geographic distances, there is strong spatial autocorrelation of relatedness - this 

captures the scattering-phase of the spatial pedigree, and it decays rapidly (Fig. 1b). As 

the curve flattens, geographic distance ceases to be explanatory of relatedness and the 

population approaches expectations under panmixia - this is capturing the transition to 

the collecting-phase. The shape of the decay of relatedness over short spatial scales 

carries information about 𝒩, whereas the inferred asymptote of relatedness over large 

geographic distances represents a diversity equilibrium (what we term “collecting-phase 

π”, πc), and is most informative about long-term inbreeding Ne.  

 

Model 

We first introduce the model of isolation-by-distance (IBD) that we use - both its form 

and its assumptions, then describe how we fit this model to observed genomic data. 

Briefly, our model is closely related to previous theoretical models of genetic 

differentiation in continuous space (e.g., Wright 1943; Malécot 1946; Barton et al. 2002, 

2010, 2013; Ringbauer et al. 2017), and describes the decay in pairwise homozygosity 

with the geographic distance between samples assuming a homogeneous landscape 

with isotropic dispersal. We implement this model in a Bayesian framework to estimate 

the posterior distribution of model parameters conditioned on observed pairwise sample 

homozygosity and pairwise geographic distance between samples. 

Our model seeks to capture two important components of spatially structured 

populations: 1) that samples covary in their allele frequencies, with a covariance that 
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decays with geographic distance during the scattering phase, and 2) that there exists an 

equilibrium level of minimum divergence between individuals that is established during 

the collecting phase (Fig. 1). Furthermore, our model assumes that populations exist in 

continuous space in two-dimensions and that dispersal is random and diffusive. In a 

single dimension, tracking diffusive dispersal backwards-in-time, two lineages will 

eventually exist in the same location at the same time at some point in the past. 

However, in two-dimensions, lineages diffusing via Brownian motion will never arrive in 

the same place at the same time (e.g., Nagylaki 1978, Barton et al. 2002). Modeling a 

spatial coalescent process in two dimensions is therefore tricky. This issue has been 

circumvented in the past (Wright 1943; Malécot 1946) by assuming that individuals 

need not be in the exact same location at the same time, but merely within a given 

radius of one another. Within this radius, individuals are assumed to interact in a way 

that is independent of the geographic distance between them, so that the probability of 

coalescence can be described as 1 / 2ρ (Barton et al. 2002), where ρ is population 

density. For habitats that are relatively homogenous, such that geographic distance is 

the primary explanation of covariance, with constant ρ and s through time and across 

space, the probability of samples i and j being identical-by-descent (F'() can be 

estimated by 

𝐹#& =
1

4𝜋𝜌𝜎) 𝐾* 452𝜇
𝑑#&
𝜎 8 

( 1 ) 

where K0 is the modified Bessel function of the second kind of order 0, dij is the pairwise 

geographic distance between samples i and j, and π is the mathematical constant 

(Wright 1943, Malécot 1946, Barton et al. 2002). Barton et al. (2002) notes that this 
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approximation diverges as 𝑑#& → 0; to account for this, following Ringbauer et al. (2017) 

we designate a short distance, κ, within which the rate of coalescence becomes a 

constant 𝛾 that no longer depends on the geographic distance between samples. We 

refer to 𝛾 as the “in-deme” rate of coalescence. Theoretically, 𝛾 should converge on 1 / 

2ρ and an optimal value for κ would be approximately 2σ (Barton et al. 2002).  

 The classic Wright-Malécot formula (Eqn. 1) describes the probability of identity-

by-descent, which, in an infinite population, theoretically decays to zero. However, our 

model breaks the assumptions of the Wright-Malécot model in two important ways. 

First, we assume that populations are finite, meaning that there will be a maximum time 

at which all individuals in the population are identical-by-descent. Second, we choose to 

model identity-by-state, rather than identity-by-descent, as we assume more empiricists 

will have access to identity-by-state information than identity-by-descent (particularly in 

non-model organisms). Therefore, we must incorporate into our model a background 

rate of genetic similarity at which all individuals in the population are identical-by-state. 

The expected homozygosity of a pair of samples, i and j, is thus 

𝐻<#& = 𝐹#& + >1 − 𝐹#&@𝑠 

( 2 ) 

where 𝑠 = "
+
∑ 𝑝!) + (1 − 𝑝!))+
!%"  and pn is the population frequency of an allele at the nth 

of N loci (Ringbauer et al. 2018). The quantity s represents the “background” rate of 

sequence similarity and can be thought of as the complement of the amount of genetic 

diversity in a population at equilibrium: 1 − 𝑠 = 2𝑝!(1 − 𝑝!) = 𝜋,, which we define as 

“collecting-phase π” and is related to long-term Ne. Unlike 𝜋)  (mean pairwise genetic 

distance in a population, Nei & Tajima 1981), estimates of 𝜋, (defined by the asymptote 
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of the IBD curve, which showcases the transition to the collecting phase; Fig. 1) should 

be insensitive to the size of a sampled area.   

  

Inference and Implementation 

We assume users’ data consist of allele frequencies taken across L unlinked, biallelic 

single nucleotide polymorphisms (SNPs) genotyped across a set of N samples. Each 

sample may consist of a single individual or a group of individuals collected at a single 

location. Allele frequencies may be estimated from genotype data (e.g., the frequency of 

the lth allele in the nth sample is simply the number of times that allele is observed 

divided by the total number of genotyped haplotypes in that sample at that locus) or 

from pooled sequencing data. From these data, we compute the sample pairwise 

homozygosity, which is the complement of the pairwise diversity between the samples 

(i.e., 1 − 𝐷-.). We note that users working with low-coverage sequence data may wish 

to generate estimates of Dxy without conditioning on allele frequencies (e.g., Buerkle & 

Gompert 2012; Ellegren 2014). Pairwise homozygosity between samples i and j gives 

the probability that, at a locus chosen at random, a pair of alleles sampled at random 

from i and j respectively, are the same. We calculate it as: 

𝐻<#& = 1 −
1
𝐿G𝑓I#,ℓ>1 − 𝑓I&,ℓ@ + 𝑓I&,ℓ>1 − 𝑓I#,ℓ@

1

ℓ%"

 

( 3 )  

where, 𝐻<#& gives the sample homozygosity between samples i and j calculated across 

all L loci, and 𝑓I#,ℓ gives the sample allele frequency in the ith sample at the lth locus. 

Pairwise homozygosity is a measure of absolute genetic similarity, so it is not sensitive 
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to the sampling configuration. Additionally, 𝐻< is proportional to the allelic diversity 

defined in Bradburd et al. (2018), so we proceed by assuming it can be reasonably 

modeled as Wishart-distributed, and the framework we use for statistical inference is 

similar to that of Bradburd et al (2018) (see also Ringbauer et al [2018]). 

Specifically, we construct a parametric expected homozygosity matrix using a 

modified version of the Wright-Malécot model of isolation by distance introduced in 

Equation 2 and calculate the likelihood of the sample homozygosity as a draw from a 

Wishart distribution parameterized by the parametric homozygosity. Concretely, we 

write that the probability of identity by descent between samples i and j, 𝐹#&, is 

𝐹#& = J
𝛾,																												if	𝐷#& ≤ 𝜅

𝐾*>√𝑚𝐷#&@
𝒩

,													if	𝐷#& ≥ 𝜅
 

( 4 )  

where g is the “in-deme” rate of identity by descent (i.e., the probability of being identical 

by descent at distances short enough that mating can reasonably be considered 

panmictic, 𝐷#& ≤ 𝜅), and 𝐹#& for 𝐷#& ≥ 𝜅 is given by the Wright-Malécot function 

introduced in Equation 2. We then construct our parametric homozygosity between 

samples i and j, Ω#&, as 

Ω!" = F!" + %1 − F!"(s + δ!"η! 

( 5 ) 

where s is the rate of identity by state not due to identity by descent, δ'( is the Kronecker 

δ, and η' is a parameter (often called a “nugget” in the geostatistical literature, Diggle et 

al 1998) that captures inbreeding specific to the ith sample. We then calculate our 

likelihood as 
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P%H. ∣∣ Ω ( = 𝒲%LH. ∣∣ Ω, L ( 

( 6 ) 

where L is the number of independent genomic loci used in the calculation of H<. 

We take a Bayesian approach to infer the parameters of this model. The 

posterior probability density of our parameters is given by 

𝑃% 𝛾,𝑚,𝒩, 𝜂 ∣∣ 𝐻. ( ∝ 𝑃 ;𝐻. ∣∣ Ω(𝛾,𝑚,𝒩, 𝜂⃗) > 𝑃(𝛾)𝑃(𝑚)𝑃(𝒩)𝑃(𝜂⃗) 

( 7 ) 

where Ω(γ,m,𝒩, ηZ⃗ ) denotes the dependence of Ω on its constituent parameters 

(γ,m,𝒩, ηZ⃗ ), and 𝑃(θ) denotes the prior probability of a given parameter θ. Table S1 

describes the prior probability distributions we implement for each parameter in our 

model. We implement this model in Rstan (Stan Development Team 2023) and use 

STAN’s Hamiltonian Monte Carlo algorithm to characterize the posterior distribution of 

the parameters. 

Because pairwise homozygosity often varies over a very small absolute range 

(e.g., 0.99-0.999), we take several steps to facilitate inference on the parameters of the 

model. First, we estimate the parameters m, γ, and ηZ⃗  in log space, which should help 

chains mix over the posterior density. Second, we scale both the sample homozygosity 

Ω< and the parametric homozygosity Ω to vary between 0 and 1: 

a = ;Ω. − min%Ω.(> 

b = max ;Ω. − min%Ω.(> 

Ω#E =
Ω. − a
b  

Ω# =
Ω − a
b  

( 8 ) 
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This scaling is not without drawbacks, as the variance of a Wishart distribution 

parameterized by Ω is not the same as that parameterized by Ω’. However, we feel that 

the benefits it offers outweigh the costs, particularly because, to our knowledge, there is 

no theoretically motivated “correct” variance on homozygosity. 

 

Simulations 

We evaluated model performance using individual-based forward-time simulations 

performed in SLiM v3.6 (Haller & Messer 2019). Simulated individuals were diploid (2n) 

and hermaphroditic, with haploid genomes of 100 Mb, non-overlapping generations, and 

a uniform recombination rate of 10-9 per base-pair per generation. Mate choice, spatial 

competition, and dispersal are controlled by a constant value, σ. Individuals were 

simulated on a continuous, two-dimensional 25x25 landscape with reflecting 

boundaries. Total population density was regulated by an enforced carrying-capacity, K, 

to avoid spatial clumping (Felsenstein 1975). To reduce the impact of edge effects, we 

designate this density-dependent competition using the function 

localPopulationDensity() in SLiM, which computes the total interaction strength around a 

focal individual first as 2π𝜎2, then divides this strength by the integral of the interaction 

after clipping by the bounds of the specified landscape (Haller & Messer 2022). This has 

the desired effect of rescaling competition relative to the occupiable area. Edge-effects 

reduced the census population size by ~35% relative to Kw2, where w is the width of the 

simulated landscape. The maximum distance at which individuals experience spatial 

competition was capped at 3𝜎. Similar to spatial competition, mates were chosen within 

a maximum distance of 3𝜎, with each potential mate assigned a weight drawn from a 
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Gaussian distribution with max 1 / 2π𝜎2. The number of offspring produced per mating 

event was drawn from a Poisson distribution with shape parameter 𝜆 = 2, which on 

average replaces the parents. Finally, offspring dispersal distance was drawn from a 

normal distribution with mean 0 and standard deviation 𝜎 and maximum of 3𝜎. 

 We performed simulations across a range of values of K (2, 5, 10, 25) and 𝜎 (0.5, 

0.75, 1.0, 1.25, 1.5, 2.0), which varied theoretical neighborhood size from a minimum of 

6.25 to a maximum of 861.81, and total census size from ~800–10,000. We performed 

10 replicates for each combination of parameter values, for a total of 240 simulations. 

Each simulation was run for 100,000 generations to ensure time for dispersal to shape 

patterns of genetic diversity. The output from SLiM were tree-sequences and these 

were parsed in Python using the package pyslim v.1.0.1 (Kelleher et al. 2018). For trees 

in which multiple roots existed (i.e., coalescence had not yet occurred during the SLiM 

run), we performed “recapitation,” which simulates a neutral coalescent process among 

remaining, uncoalesced lineages (Haller et al. 2018). Mutations were then simulated 

onto the tree-sequences using msprime v.1.2.0 (Kelleher et al. 2016) at a rate of 10-7 

per base-pair per generation. We then randomly sampled 100 individuals alive in the 

final generation and we calculated pairwise π between each pair of individuals using 

tskit v.0.5.3 (Kelleher et al. 2018). We output the pairwise individual π matrix and 

geographic coordinate matrix, the latter of which was converted into a distance matrix in 

R (R Core Team 2022) using the package fields (Nychka et al. 2021). These two 

matrices were then used as input to our model, which we used to infer a range of 

parameters (𝒩, πc, 𝛾, and 𝜇). Note that of these parameters, we only explicitly 

designated 𝜇; the remaining values have theoretical expectations given the parameters 
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we chose for each individual simulation but are not explicitly defined. Theoretical Ne in a 

square habitat is 

𝑁2 = 𝑁a1 +
2 log e𝑘 𝐿𝜎g

𝒩 h 

( 9 ) 

where k = 0.24 when dispersal is Gaussian, and L is the length of the major axis 

(Wilkins 2004; Barton et al. 2002; Charlesworth et al. 2003). Importantly, as the rate of 

dispersal approaches the length of the range and 𝒩 approaches the census size, Ne 

approximately equals the population census size, N. However, theoretical Ne is likely an 

overestimate of the true Ne in our simulations due to reduced population density near 

the edges as opposed to the expected homogenous distribution. Thus, we estimate the 

“true” Ne in each simulation as 𝑁2 = 𝜋3!"4)*/4𝜇, where 𝜋3!"4)* is the mean pairwise 

diversity for samples at distances greater than 20, ensuring they all occur in the 

collecting phase. For 𝒩, we do not use a similar proxy and instead rely on the 

theoretical 𝒩 given that the impacts of deviations from theory in our simulations for 

areas of relevance to 𝒩 are expected to be much smaller than for Ne.  

For each dataset, we performed four MCMC chains of 4000 steps each. We 

pruned the first 1e3 steps in each chain as burn-in and thinned the remaining steps by 

sampling every 4th iteration, for a total of 250 sampled post burn-in iterations per chain. 

Because some chains displayed poor mixing, we selected the chain with the highest 

mean posterior probability as the one from which to report results. We visually verified 

that the chains had achieved convergence by inspecting the trace plots of the posterior 

probability and parameter values of interest.  
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Simulations and model estimation were performed on the Michigan State Institute 

for Cyber-Enabled Research High Performance Computing Cluster (ICER HPCC). 

Code, including the ICER HPCC slurm workflow, SLiM recipes, and Python scripts, can 

be found at https://github.com/zachbhancock/WM_model. 

 

Empirical dataset 

We used a reduced-representation genomic dataset of Red Sea clownfish (Amphiprion 

bicinctus) from Saenz-Agudelo et al. (2015) to explore how this model performed on 

empirical data. This dataset is composed of 103 wild individuals sampled from 10 

unique locations spread across the species’ range (Red Sea). Sequence reads were 

generated using double-digest restriction-associated DNA and sequenced 1 x 101 base 

pairs. We downloaded the raw (demultiplexed) sequence reads for each of the 103 

individuals from the International Nucleotide Sequence Database Collaboration 

(BioProject PRJNA294760, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294760) 

using the fasterq-dump function in the SRA Toolkit (V2.10.7, Kodama, Shumway, & 

Leinonen 2012). We dropped reads with uncalled bases and where the mean Phred 

score was < 15 (sliding window 15% of read length; Stacks2 process_radtags module 

V2.54 – Rochette, Rivera-Colón, & Catchen 2019). We confirmed that no common 

adapter sequences were present (3’ end of reads) and that all reads were a uniform 

length (81 bp post demultiplexing and trimming by Saenz-Agudelo et al.). Next, we 

assembled these reads de novo using Stacks2 (V2.54, Rochette, Rivera-Colón, & 

Catchen 2019) and optimized assembly parameters (see Saenz-Agudelo et al. 2015). 

Post Stacks, we dropped loci that were scored in <50% of individuals. Finally, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532094doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532094
http://creativecommons.org/licenses/by-nc-nd/4.0/


calculated pairwise pi and pairwise geographic distance between each pair of 

individuals in the dataset. Geographic distance here is measured as the distance 

traveling via the sea and avoiding crossing land (marmap – Pante & Simon-Bouhet 

2013). 

 

Results 

 

Our model performed well on both the simulated and empirical datasets. In the former, 

the model converged on the theoretical expectations for both 𝒩 and Ne. Furthermore, it 

performed favorably relative to Rousset’s method, which was unbiased but had much 

higher variance than our model, especially at lower 𝒩. Finally, as applied to the 

empirical dataset, our model produced reasonable results given the known natural 

history of clownfish.  

 

Simulation results 

The individual-based simulations were performed by varying both dispersal 

distance (σ) and local carrying-capacity (K), which generated a range of 𝒩 from 6.28 to 

861.81. Given the simulated geographic range area, this range of values of 

encompasses 𝒩 extreme/strong spatial structure that is likely never well-described by 

the Kingman’s coalescent at the lower end (Wilkins 2004) and virtually panmictic 

populations at the upper end.  

 At all simulated values of σ and K, the 95% equal-tailed credible interval of 𝒩 in 

the consistently included the theoretical 𝒩; however, at larger σ and K it did so with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532094doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532094
http://creativecommons.org/licenses/by-nc-nd/4.0/


high variance, with the median falling below the theoretical value (Fig. 3a). This is likely 

due to the reliance of the model on detectible signatures of covariance between 

geography and ancestry, which decays at large 𝒩 (Fig. 2). At small dispersal distances, 

the variance in our estimates of 𝒩 was relatively low even at higher K. However, at 

larger dispersal distance the variance subsequently increased regardless of K, 

indicating that σ likely has the largest impact on model precision. Notably, our model 

estimated an 𝒩 greater than the theoretical expectation only at the lowest K and σ 

combination, which may indicate that the Wright-Malécot model is a poor approximation 

of relatedness when 𝒩 < 10 for a population of this geographic range with finite 

boundaries. Furthermore, we found that while Rousset’s method is an unbiased 

estimator, its variance becomes larger at lower K and σ pairs than our model and can 

even take on negative values (Fig. 4).  

 The model also performed well at estimating πc. As noted above, the theoretical 

Ne should scale negatively with increasing 𝒩 and Ne, but positively with global census 

size and local density (regulated by K). While our model does not estimate Ne directly, 

we estimate a proxy in πc; under neutrality, πc!"!#Ne𝜇. Rearranging, Ne = πc / 4μ, and 

we compare this value with the true Ne estimated from 𝜋3!"4)* and the theoretical Ne in 

Equation 9. When Ne is estimated from 𝜋3!"4)*, our model performs exceptionally well 

(Fig. 3B), generally falling along equality for all values of σ and K. When compared to 

the purely theoretical Ne, our model underestimates Ne, especially at higher values of 𝜎 

and K (Fig. S2). We also compared estimated πc across values of σ and K and found a 

general pattern of decreasing πc at increasing σ, irrespective of population density (Fig. 

S1). This matches our expectations, based on theory (Wilkins 2004), that the total 
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amount of genetic diversity in a finite, spatially structured population should increase 

with the degree of spatial structure, and therefore decrease with the scale of dispersal. 

 

Empirical results 

For the Red Sea clownfish (Amphiprion bicinctus) dataset, our model estimated a 

𝒩 of 52.16 (95% CI: 50.54–54.04) (Fig. 5, S2). This neighborhood size is consistent 

with a recent localized population census study in the Gulf of Eilat, which found that the 

number of clownfish in the census year 2015 within a 200 x 50 m area was 52 fish 

(Howell et al. 2016). It is important to note that we have no independent information on 

the relevant spatial scale of dispersal or mating in Red Sea clownfish, and thus the 

correspondence between our estimates and the population census survey could be 

coincidental. We estimated a πc of 0.003 and our estimated m (which is a compound 

parameter that includes long-distance dispersal and mutation) as 1.4e-9. Substituting m 

for the mutation rate, this produces an estimate of the long-term Ne for clownfish as 

535,714. It should be noted that while A. bicinctus is currently listed by the IUCN as 

“least concern” (Myers et al. 2017), several studies have suggested that clownfish are 

undergoing population declines, which could theoretically lead to a decoupling between 

𝒩 and Ne (i.e., 𝒩 may reflect recent demographic shifts that Ne has yet to be impacted 

by; Nanninga et al. 2015; Howell et al. 2016; Yosef et al. 2022).  

  

 

Discussion 
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An extensive historical literature exists on the biases that spatial structure introduces to 

commonly employed population genetic summary statistics (e.g., Bradburd & Ralph 

2019; Battey et al. 2020). However, many studies still use measures of effective 

population size (such as Watterson’s 𝜃w and 𝜋) that are naive to population structure 

(and the geographic sampling of individuals) in empirical systems that are spatially 

structured. Other attempts to develop statistical population genetic approaches that 

account for population structure by discretizing the habitat into demes that may be 

defined by sampling region or violation of Hardy-Weinberg (e.g. STRUCTURE – 

Pritchard 2000; Montana & Hoggart 2007), but in reality, many populations display a 

continuous pattern of isolation-by-distance that cannot be adequately reduced to a 

discrete stepping-stone model (Kimura & Weiss 1964). Indeed, even in a fine-scaled 

lattice population, Battey et al. (2020) showed that biases in estimates of Watterson’s θ 

and Tajima’s D emerge as the sample size per deme approaches the local effective 

size.  

To investigate populations with continuous patterns of isolation-by-distance, we 

suggest that a single summary diversity statistic often does not capture the dynamics of 

interest and is skewed by the shape of the population genetic pedigree. For example, 𝜋) 

is dragged down by rapid coalescence in the scattering-phase but inflated by the 

influence of low dispersal in the collecting phase. Hence, 𝜋) ceases to adequately reflect 

either process – it cannot tell us about local demography because it is upwardly inflated 

by deep-time coalescence, and it cannot tell us about ancient events because it is 

downwardly biased by local demography. Indeed, dispersal acts in opposing ways in 

these two phases: low dispersal causes local individuals to be more related on average 
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and increases the length of the scattering phase, but over large distances and deeper 

timescales it inflates πl (Equation 9; Wilkins 2004). Our model generates estimates of a 

diversity statistic (πc) that is insensitive to the geography of sampling, and 

simultaneously provides estimates of Wright’s neighborhood size, thereby better 

capturing the spatial dynamics of the population.  

Furthermore, our model is robust to a wide range of 𝒩, though the variance of 

our estimates of 𝒩	increases as the true 𝒩 grows large. Theory and previous 

simulation-based research predicts that populations with very large 𝒩 ($%&'&&&(!behave 

in a way that is approximately panmictic (Wright 1943)'!)*+!,-,./)01-*2!*33+!)!

4-*21+35)6/7!28)//35!𝒩!9:%&&(!0-!+1;;35!2.620)*01)//7!;5-8!5)*+-8!8)01*<!3=,340)01-*2!

9>)0037!30!)/?!@&@&(?!A-B3C35'!BD3*!2.62)8,/1*<!0D3!,-,./)01-*!5)*+-8/7!B10D!532,340!

0-!2,)43'!-.5!218./)03+!E>F!4.5C32!1*+14)03!0D)0!𝒩!)2!/-B!)2!G@&&!<3*35)03!532./02!0D)0!

2.,35;141)//7!532386/3!,)*81=1)?!HD12!;1*+1*<!12!1*!/1*3!B10D!0D3-57!;5-8!I1/J1*2!9@&&@('!

BD-!;-.*+!0D)0!8-20!-;!0D3!,-,./)01-*!<3*3014!,3+1<533!-44.52!1*!0D3!4-//3401*<!,D)23?!

K-5!E>F!0-!63!+30340)6/3!)0!𝒩!L!@&&'!5323)54D352!B-./+!*33+!0-!3=D).201C3/7!2)8,/3!

/-4)/!)53)2!0-!3*2.53!0D3!4-//3401-*!-;!5343*0!,3+1<533!53/)01C32!+.3!0-!D-B!2D)//-B!0D3!

24)00351*<!,D)23!12!53/)01C3!0-!0D3!4-//3401*<?! 
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One important caveat in interpreting the performance of our model on simulations 

is that there is not always a perfect correspondence between the quantities we are 

trying to estimate in our model (e.g.,	𝒩	or	πc) and parameter values we set in our 

simulations. For example, the Wright-Malécot IBD model assumes an infinite landscape, 

whereas our simulation model, in an effort to incorporate greater biological realism, has 

absorbing boundaries. We contend this is a more realistic depiction of species’ ranges, 

but it causes our simulation parameters to diverge from theory. Edge effects decrease 

both 𝒩 and Ne relative to theoretical expectations because they reduce population 

density along the periphery of the range. Combined with lack of gene flow from even 

farther-flung regions, this reduction in diversity leads to neighboring individuals near 

edges being more related to one another on average than those sampled from the 

range center (Wilkins 2004; Rogan et al. 2023). Therefore, our model may be capturing 

this depression of 𝒩 and Ne relative to theoretical predictions, which may be especially 

apparent at high values of K and σ.   

The other major way in which our simulation parameters diverge from their 

theoretical counterparts is in the difference between forward- and backward-time 

dynamics. The dispersal parameter we set in our SLiM simulations (𝜎) determines the 

midparent-offspring dispersal kernel in two dimensions forward-in-time, while the 

dispersal parameter in Equation 1, which affects both our estimates of 𝒩 and πc, is the 

effective dispersal rate, and describes the dispersal kernel connecting offspring to their 

parents backwards-in-time (Cayuela et al 2018). The model of spatial competition and 

density-dependence (the implications of which are discussed more below) that we 

implement in our simulations causes the forward- and backward-time dispersal 
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dynamics to differ. This discrepancy arises because, in our simulations, individuals are 

most likely to be born in regions of higher relative population density (due to the 

proximity required for parents to mate), where, if they remain, they will experience, on 

average, lower fitness. Therefore, individuals who disperse farther from their birth 

location are more likely to have higher fitness be represented in the population 

pedigree, which increases the effective dispersal rate relative to the forward-time rate 

we specify in our SLiM model. The impact of this discrepancy on the “true” value of 𝒩 

appears to be offset by the fact that effective population density is smaller than the 

value of K (for similar reasons) that we specify in our SLiM model. Nonetheless, it is 

helpful to be explicit about the differences between the meanings of the parameters we 

specify in our simulation model and that we estimate in our inference model. 

 

Model assumptions and shortcomings 

While our model performs well on simulated data and the empirical dataset presented 

here, it makes several important assumptions that may often be violated in natural 

systems. Firstly, we assume that dispersal is random (within a specified dispersal 

kernel) and non-directional; thus, our model may poorly approximate patterns of 

isolation-by-distance in organisms that have directional movement, such as some 

marine planktonic species that may be carried by ocean currents or wind-dispersed 

pollen grains. Second, our model assumes that the habitat is relatively homogenous 

such that there are no major barriers to gene flow – i.e., patterns of isolation-by-distance 

are generated solely by the traversable Euclidean distance between two individuals. 

Strong physical or environmentally mediated barriers to dispersal may affect model 
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performance (Ringbauer et al 2018, Wang & Bradburd 2014, Bradburd et al 2013). In a 

similar vein, our model ignores confounding factors such as local adaptation that may 

drive clinal patterns of relatedness (e.g., Pruisscher et al. 2018; Jofre & Rosenthal 

2021). 

 As discussed in the Methods, the Wright-Malécot model relies on assumptions 

that are mutually incompatible (independent dispersal and homogeneous population 

density). In SLiM, we modeled populations with density-dependent selection to 

overcome Felsenstein’s “pain in the torus” (Felsenstein 1975) and maintain a roughly 

homogenous distribution of individuals across space. In this way, comparing the 

theoretical expectations from Wright-Malécot with a population model in which dispersal 

and density are not strictly independent is inexact. However, despite this discrepancy 

between theory and the simulated population, our model reasonably captured 

theoretical expectations, indicating that the Wright-Malécot formulation which underpins 

our model is robust to this violation.  

 Finally, our model relies on a user-defined 𝜅, interpreted as the minimum-

distance between two individuals in which the Wright-Malécot formulation breaks down 

and relatedness converges on 1 / 2𝜌 (Barton et al. 2002; Ringbauer et al. 2018). 

Preliminary exploration of the model indicates that model performance is poor at 

arbitrarily high 𝜅, but not at low 𝜅. This is due to the fact that, at higher 𝜅, less of the 

scattering-phase is being captured by the model, leading to poor mixing. Ideally, 𝜅 

would be estimated like the other parameters of the model; however, doing so has led 

to dramatic increases in computation time, and thus for the current work we opted to set 

a constant 𝜅. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532094doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Conclusions 

For many organisms, geographical distance influences mate-choice, leading to patterns 

of continuous spatial structure. An important parameter governing the strength of 

isolation-by-distance is Wright’s neighborhood size (𝒩), a theoretical quantity that 

describes the number of potential breeding individuals within a given dispersal radius. 

Previously, empirical researchers interested in estimating 𝒩 relied upon Rousset’s 

(1997; 2000) method, but this method requires either subsetting individuals into pseudo-

populations (arbitrarily discretizing a potentially continuous reality) and calculating FST 

between them or estimating pairwise FST between individuals. The latter approach 

introduces a significant amount of noise into patterns of isolation-by-distance, and, in 

our simulation study, demonstrates poor performance due to high variance in results. 

Unlike Rousset’s estimator, our method shows good performance across values of 𝒩, 

and offers the additional benefit of generating an estimate of the long-term effective 

population size (Ne), which is linked to 𝒩 by dispersal. Here, we have presented a 

model that jointly estimates 𝒩 and long-term Ne using an individual-based approach 

(i.e., it does not require arbitrary discretization via the lumping of samples). The 

introduced model produced reasonable estimates of the theoretical expectations from 

simulated data and performed well on an empirical dataset of clownfish. Future work will 

aim to generate an R package for ease of use for researchers (though code for 

performing the presented model is available in the Github link above). In addition, the 

model could be expanded to incorporate the potential for directional migration or 

patterns of isolation-by-environment (Wang & Bradburd 2014).  
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Figures: 

Figure 1. Relationship between the separation-of-timescales of the coalescent and the 

isolation-by-distance (IBD) curve in continuous space. A) A population genetic tree 

showing the relationships between sampled individuals (colored circles) across a 

continuous landscape with dimensionality (x, y). Relative to a focal sample (dotted 

circle), the transition to the collecting phase occurs as the rate of coalescence 

converges to a neutral Kingman’s coalescent. B) An IBD plot relative to the focal 

individual. The transition to the collecting phase occurs when geographic distance is no 

longer predictive of genetic distance. The red dotted line denotes s (or 1 – πc), which is 

the estimated mean minimum relatedness between individuals in the population.  
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Figure 2. Expected relatedness decay curves of 𝛺#,& with distance given s = 0.95 for 

various values of neighborhood size (“Nbhd”). See Equation 5 in the text.  
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Figure 3. Model accuracy and precision. A) Estimated Wright’s neighborhood size 

(“Nbhd”) against the theoretical expectations along the 1:1 dashed line. B) Inferred Ne 

from πc against true Ne estimated from the simulations (see text for details). Each panel 

represents simulated values of dispersal rate (𝜎), colors are different values of 

population density (K). Each point represents the posterior density from the best MCMC 

chain across all 10 simulation replicates.   
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Figure 4. Comparison of the model presented in the text and Rousset’s method for 

estimating 𝒩. Black, open circles are the mean estimate using Rousset’s method and 

circles colored by K are the estimates under the model presented here. Vertical bars 

represent the 95% quantile, black for Rousset’s method and colored for the model in the 

text. The right panel shows the full range of Rousset’s 95% quantile for a pair of 

extreme values; the left panel is an inset capturing the narrower range of the 95% 

quantile of our estimates (colored bars within the longer black bars). The black dotted 

line represents the 1:1 relationship between the x and y.  
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Figure 5. Amphiprion bicinctus dataset. A) Model fit, dark circles are the empirical 

observations and red line is the fit; dashed red line is estimated 1 – πc. B) Posterior 

density estimate for 𝒩 (“Nbhd”), with the red dashed line representing the number of 

individuals observed in the year 2015 in the Gulf of Eilat (Howell et al. 2016). C) Sample 

locations of A. bicinctus, with numbers representing sample size and circles scaled by 

sample size relative to other locations (Saenz-Agudelo et al. 2015). 
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SUPPLEMENTARY MATERIALS 

 

Table S1. Prior distributions for the model.  

Parameter Distribution 

s normal(0, 1) 

log(𝝁) normal(–5, 1) 

𝒩 normal(100, 1000) 

log(𝛾) normal(0, 1) 

log(nugget) normal(0, 1) 

lik(pHom) Wishart(L, pHom) 
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Figure S1. Estimated diversity during the collecting-phase (πc).  

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.10.532094doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.10.532094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Estimated Ne against theoretical Ne from Eqn. 9. Unlike the results from Fig. 

3B, we see the estimated Ne is on average less than the theoretical; this is likely due to 

a mismatch between the simulated landscape that includes finite edges that varies 

population density across the range and the theoretical expectation of a homogenous 

distribution (see main text for further discussion).  
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Figure S2. Trace plots of estimated parameter values for the Amphiprion bicinctus 

dataset; m is the compound mutation and long-distance migration rate; nbhd is Wright’s 

neighborhood size; s is the minimum relatedness between samples (see main text); 

“inDeme” is the coalescent rate for individuals within 𝜅 of one another; and the nugget is 

individual-level inbreeding.   
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Figure S3. Autocorrelation plots between estimated parameter values for the 

Amphiprion bicinctus dataset; m is the compound mutation and long-distance migration 

rate; nbhd is Wright’s neighborhood size; s is the minimum relatedness between 

samples (see main text); “inDeme” is the coalescent rate for individuals within 𝜅 of one 

another; and the nugget is individual-level inbreeding.   
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