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A globally synthesised and flagged 
bee occurrence dataset and 
cleaning workflow
James B. Dorey et al.#

Species occurrence data are foundational for research, conservation, and science 
communication, but the limited availability and accessibility of reliable data represents a 
major obstacle, particularly for insects, which face mounting pressures. We present BeeBDC, 
a new R package, and a global bee occurrence dataset to address this issue. We combined 
>18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, 
USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned 
the data using the reproducible BeeBDC R-workflow. Specifically, we harmonised species 
names (following established global taxonomy), country names, and collection dates and, 
we added record-level flags for a series of potential quality issues. These data are provided 
in two formats, “cleaned” and “flagged-but-uncleaned”. The BeeBDC package with online 
documentation provides end users the ability to modify filtering parameters to address their 
research questions. By publishing reproducible R workflows and globally cleaned datasets, 
we can increase the accessibility and reliability of downstream analyses. This workflow can be 
implemented for other taxa to support research and conservation.

Background & Summary
Occurrence datasets are increasingly critical for scientific research, conservation, and communication world-
wide. From foundational systematic1,2, life-history3, and conservation studies4,5, to continental or global mac-
roecological6,7 or macroevolutionary analyses8, occurrence data are used to understand the natural world and 
form the basis of research, policy, and management. Spatiotemporal occurrence records (e.g., from specimens, 
images, or observations) are being delivered to, and produced by, community scientists in quantities that were 
unthinkable just a decade ago, with ever-increasing identification support by professional experts9. However, 
community-generated records can be biased towards larger and more charismatic taxa10. Online repositories, 
such as the Global Biodiversity Information Facility (GBIF) and Symbiota Collection of Arthropod Network 
(SCAN), are invaluable data aggregators and tools in supporting the mobilisation of arthropod occurrence data 
to help both researchers and general audiences understand biodiversity. Concurrently and complementarily, 
initiatives like iNaturalist and QuestaGame (Australia) enable community and professional scientists to generate 
occurrence data for research, science communication, and more9. Occurrence data are being generated daily, 
making new analyses possible for previously data-poor taxa. These data are key to developing National Strategic 
Biodiversity and Action plans, upon which the monitoring framework of the Post-2020 Global Biodiversity 
Framework will depend11. Therefore, developing methods to aggregate and standardise such data is essential.

Despite the great utility of occurrence data, many issues can inhibit their successful use. Firstly, whilst “open 
data” is now mandated in many journals, data standards are inconsistently implemented. This means that these 
data are increasingly fragmented and thus still inaccessible. Occurrence records can be rendered partially or 
critically incomplete at many different phases between the initial point of data collection and point of data 
publication and sharing12. For example, poor data collection practices at the point of production (in the field) 
can make downstream recovery efforts impossible. Data can often be omitted or altered during transcription, 
digitisation, or geo-referencing, making occurrences unusable or misleading. For example, only 2.7 out of 31 
million (9%) Brazilian plant occurrences were considered high-quality following data cleaning and validation by 
Ribeiro, et al.13. Misidentification can also be a major issue; for example, 58% of African gingers from 40 herbaria 
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across 21 countries bear an incorrect name14, highlighting the importance of accessible museum and herbarium 
specimens15. Secondly, data can be of excellent quality, digitised, and used in publications, but they may not be 
made available in accessible repositories. Whatever the reason, such data are effectively unavailable for — or, 
in the case of misleading data, detrimental to — further research, conservation, and management16. Funding 
institutions to curate and digitise collections might fill in some of the major data gaps revealed in recent global 
analyses of public data6.

Mobilising massive datasets with numerous potential issues represents a major roadblock for researchers and 
other users. A careful balance between discarding too much data and accepting too many problematic records 
must be maintained. Ideally, problematic records can instead be flagged (allowing users the choice of treatment) 
or fixed using a combination of automated pipelines and expert validation17. The barriers are such that the 
data cleaning process is often built from scratch or nearly so for each new project (re-inventing the wheel)6,7. 
Constantly rebuilding the data cleaning process can result in haphazard application of cleaning and data qual-
ity and is a major hurdle for many researchers and conservation practitioners that might preclude them from 
undertaking robust and reproducible analyses. This represents a major accessibility problem that stalls research, 
management, and conservation — particularly for research groups that lack sufficient support, expertise, facil-
ities, or time to develop or implement cleaning workflows — that could otherwise produce excellent research. 
This results in major knowledge gaps of species distributions and ecological niches, especially in developing 
economies and over extended timescales18. Until now, very few major efforts have been made to combine, clean/
flag, and make accessible the world’s occurrence datasets; this is particularly true for diverse and ecologically 
important arthropods7,19,20. We tackle this issue of data cleaning and reproducibility using a major group that 
is taxonomically extensive (>20,000 valid species), ecologically and economically important, and for which 
research is booming globally: bees.

Bees (Hymenoptera: Anthophila) are a keystone taxon of terrestrial ecosystems across the globe and the most 
significant group of pollinating animals in both agricultural and natural settings21,22. As such, great efforts are 
made to understand their spatial distributions6 and it is critical for research on this flagship invertebrate taxon 
to be robust and correctly analysed. Despite the urgent need for quality occurrence data, there are many barriers 
to their use, particularly accessibility and reliability. Removing these hurdles will encourage new research and 
enable best practices at greatly reduced effort and financial cost. At the time of download and to our knowledge, 
there are ~18.1 million bee occurrence records that are publicly available in major public repositories and more 
that are private or otherwise inaccessible. Here we collate and process several bee datasets for open-use by all 
interested parties. We also produce a machine-readable version of the global bee taxonomy and country-level 
checklist available on the Discover Life website23. Specifically, we curated multiple raw datasets, combined 
curated records, taxonomically harmonized species names, and annotated potentially problematic records. 
Herein, we combined public and private datasets to provide (i) a cleaned and standardized dataset (6.9 million 
occurrences), (ii) a flagged-but-uncleaned dataset (for users to filter based on our flagging columns; 18.3 million 
occurrences), (iii) all R-scripts and input files needed to produce both datasets (Fig. 1), and (iv) summary figures 
and tables highlighting the state of global bee data. All data and scripts are accessible, documented, and open 
access. Importantly, we plan to periodically update and publish new versions of the BeeBDC occurrence data 
cleaning package24 and bee data. This will leave room for improved versions and functionality, especially because 
new occurrence data are consistently being added to online databases. Despite being developed specifically for 
bee datasets, many of our functions are generic and can be applied to various taxa for which similar issues exist.

Methods
Data sources. We sourced data from publicly available online data repositories (https://doi.org/10.25451/
flinders.21709757; ExtraTables/MajorRepoAttributes_2023-09-01.xlsx)25 as well as select non-public, private, or 
otherwise publicly inaccessible sources that were willing to share their data for this study. We use the term “data 
source” in the manuscript, but recognise that these sources can be very distinct in function. For example, aggre-
gators serve data that is created and curated by multiple distinct data providers. The primary repositories that we 
sourced data from were (i) GBIF, (ii) SCAN, (iii) Integrated Digitized Biocollections (iDigBio), (iv) the United 
States Geological Survey (USGS), and (v) the Atlas of Living Australia (ALA). Additionally, we have sought out 
and incorporated smaller public or private data sources from (i) Allan Smith-Pardo (ASP), (ii) Robert Minckley 
(BMin), (iii) Elle Pollination Ecology Lab (EPEL26), (iv) Bombus Montana (Bmont; Casey Delphia27), (v) Ecdysis 
(Ecd28), (vi) Gaiarsa, et al.29 (Gai), (vii) the Connecticut Agricultural Experiment Station (CAES30,31), (viii), 
USDA ARS South-eastern USA (Parys), (ix) Eastern Colorado (Arathi Seshadri), (xi) Florida State Collection 
of Arthropods (FSCA), (xi) Armando Falcon-Brindis (Arm), and (xii) five more publicly available bee datasets 
from the literature (SMC, Bal, Lic, Dor, VicWam)3–5,32–39. These datasets were collated by directly engaging and 
collaborating with their owners, particularly where data gaps were perceived, but with a particular emphasis on 
the Americas.

Global Biodiversity Information Facility data were downloaded via the online portal on the 14th of August 
202340–46 on a per-family basis. SCAN data were downloaded between the 14th and 20th of August 202347–53 
on a per-family basis and by subsets of collections if the one million record limit was surpassed (the maxi-
mum capacity for a single download). Integrated Digitized Biocollections data were downloaded on the 1st of 
September 202354–60 by selecting all Apoidea records and filtering to the seven bee families (Andrenidae, Apidae, 
Colletidae, Halictidae, Megachilidae, Melittidae, and Stenotritidae). United States Geological Survey data were 
provided directly by Sam Droege on the 19th of November 202261. Finally, ALA data were downloaded on the 1st 
of September 202362 using a BeeBDC wrapper function, atlasDownloader, which uses their R-package, galah63.

We sourced taxonomic name and checklist data from information hosted on the Discover Life website23. Our 
bee taxonomy is current as of the 20th of August 2023 and the bee country checklist as of the 21st of August 2023.  
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Both of these datasets are maintained by Ascher and Pickering23 and are critical sources to ensure occurrence 
quality. We also added small updates to both datasets based on those published in Orr, et al.6 and to reflect 
orthographic variants that were identified during manual data and error checks. We undertook manual checks 
of over 4,500 flagged interactive bee species maps (mostly in the Americas) to highlight and correct potential 
errors in these datasets and our functions.

Data-cleaning workflow. Analyses were undertaken in R version 4.3.164 and R-Studio “Beagle Scouts” 
Release. The BeeBDC package and script relied heavily on several R-packages. Much of the workflow script used 

Fig. 1 Visual summary of our BeeBDC24 workflow for compiling, cleaning, flagging, and summarising the most 
extensive, publicly available data set of native bee occurrences. Asterisk indicates that the number of records 
flagged in (5) Space Flagging includes all steps.
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and built upon the bdc (biodiversity data cleaner) package13, tidyverse packages — particularly dplyr65, magrittr66, 
tibble67, stringr68, tidyselect69, ggplot270, tidyr71, rlang72, xml273, readr74, and lubridate75, — and CoordinateCleaner76. 
Additionally, we used R.utils77, galah63, emld78, openxlsx79, rnaturalearth80, rnaturalearthdata81, countrycode82, 
hexbin83, cowplot84, ggspatial85, renv86, chorddiag87, igraph88, sf89, and terra90. In some cases we have modified or 
rebuilt bdc functions into BeeBDC to better work with other parts of our package or to produce different results. 
Functions that relate strongly to bdc are prefixed with “jbd_” to indicate to users that an alternate function exists 
and to compare package documentation (e.g., by running “?jbd_coordinates_precision” in R) for each. Our script 
was both built and run on a 2019 MacBook Pro with a 2.4 GHz 8-core Intel i9 with 64GB 2667 MHz DDR4 RAM. 
Hence, while it can be run on personal computers — and this accessibility is intentional — we are aware that 
memory (RAM) and physical storage could inhibit some devices from processing the full dataset (i.e., 18.3 mil-
lion occurrences and ~132 columns).

The core workflow, R vignette, and functions are freely available on GitHub (https://jbdorey.github.io/
BeeBDC/index.html). The workflow is clearly numbered and labelled using the R-Studio document outline to 
allow quick navigation of the script. For clarity and continuity, we list the sections below according to our script, 
including (0.x) script preparation, (1.x) data merge, (2.x) data preparation, (3.x) initial flags, (4.x) taxonomy, 
(5.x) space, (6.x) time, (7.x) de-duplication, (8.x) data filtering, (9.x) summary figures and tables, and (10.x) 
package data. Additionally, most of our functions attempt to provide extensive and informative user-outputs for 
quality assurance. We provide a reference table of the occurrence-cleaning functions that are available between 
BeeBDC, bdc, and CoordinateCleaner (Table S1). Our script focuses on the specifics of bee data; however, it pro-
vides the templates needed to integrate the specifics of other taxon groups and input data.

Most functions in our script aim to identify and flag potentially problematic occurrence records based on 
specific tests and user-provided thresholds (flagging functions). However, several functions modify the occur-
rence records themselves when errors are identified (carpentry functions). We also provide summary and filter-
ing functions that allow users to explore data issues and export useable datasets. While most functions can be 
implemented anywhere in the workflow, a subset relies on columns produced from earlier functions and these 
are highlighted in the package documentation and website. Below, we explain the sections and functions found 
in our script and the logic behind their implementation. We do not explain the optional steps documented in the 
script as they were not implemented in our dataset, but see the BeeBDC documentation for further clarification.

Script preparation. To ensure accessibility and ease of use, we ask users to set the root file path in which the 
script should look for or create certain datasets or functions. Our dirMaker function should locate and, if miss-
ing, create the file structure sought by the rest of the script and the bdc package. Packages are then installed and 
loaded. Here the script initialises and stores the renv files. The renv package files keep information about package 
versions to encourage further reproducibility of scripts and ease of publishing for users.

Data merge. The data merge section of the script reads very large datasets from the major data repositories 
— GBIF, iDigBio, USGS, SCAN, and ALA. It then (i) unifies the data (selecting certain columns set by the 
ColTypeR function) to Darwin Core format91, (ii) merges them into a single dataset, and (iii) creates a metadata 
file that both accompanies the R-object and is saved locally (ExtraTables/MajorRepoAttributes_2023-09-01.
xlsx)25. These functions were built to accommodate the entirety of the large repositories above; however, they can 
be slow on computers with limited RAM.

Data preparation. Here, we provide users with two options to re-import the data saved during 1. Data merge. 
For general applications, the bdc package provides excellent import functionality but would require manual 
work initially (2.1a in script). For users who want to run data from the above major repositories, we provide 
seamless functionality to read those data (2.1b in script). For users aiming to update the bee datasets from online 
repositories, they may incorporate the documented manual data edits (2.2 in script) and re-incorporate several 
privately curated datasets (2.2–2.5 in script). Once a dataset is standardised to Darwin Core format and contains 
the necessary columns, users can begin flagging or cleaning each occurrence record for data integrity. Our total 
dataset comprised 18,308,383 uncleaned bee occurrence records (Fig. 1).

Initial flags. To perform initial data-quality flags and checks, we used a combination of BeeBDC and bdc func-
tions, which we will list below. These include data flagging and carpentry functions, with the latter supporting 
the former.

Scientific name flags. We used the bdc function, bdc_scientificName_empty, to flag records with no scientific 
name provided (i.e., an empty scientificName cell). This step flagged 185,343 (1%) occurrences.

Missing Coordinates. We used the bdc function, bdc_coordinates_empty, to flag records with no coordinates 
provided (empty decimalLatitude or decimalLongitude columns). This step flagged 2,968,054 (16%) occurrences.

Coordinates out of range. We used the bdc function, bdc_coordinates_outOfRange, to flag records that were 
not on the map (i.e., not between −90 and 90 for latitude or not between −180 and 180 for longitude). This step 
flagged 2,071 (<1%) occurrences.

Poor record source. We used the bdc function, bdc_basisOfRecords_notStandard, to flag occurrences that did 
not meet our criteria regarding their basis of records. Broadly, we kept all event, human observation, living spec-
imen, material/preserved specimen, occurrence, and literature data. For this step, we were relatively liberal in 
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what we allowed to remain in the dataset and only excluded fossil specimens; however, some users might prefer 
to also remove human observations. This step flagged 32,119 (<1%) occurrences.

Country name. We used our function, countryNameCleanR, to match GBIF ISO2 country codes to country 
names from a static Wikipedia ISO2 to country name table within the function. Users can also input a data 
frame of problem names and fixed names to replace them in the dataset. We then created a modified version of 
the bdc function bdc_country_from_coordinates into a chunking function, jbd_CfC_chunker (to work on smaller 
portions of the dataset at a time), where the user can specify chunk-sizes to best manage this RAM-intensive 
function. This function also can be run in parallel (multiple threads). However, for all parallel-ready functions 
users must be aware of their available RAM; ten cores seemed reasonable on a 64 GB machine (mc.cores = 10) 
for this function, but for the remaining functions we used between two and six. The jbd_CfC_chunker function 
assigns country names to those occurrences that were missing them but that have valid coordinates that corre-
spond to a country. This step assigned country names to 323,858 (2%) occurrences.

Standardise country names. We used the bdc function, bdc_country_standardized, to attempt to further stand-
ardise country names for consistency. This step standardised country names for 4,509,749 (25%) occurrences.

Transposed coordinates. We used a parallel-ready (mc.cores = 4) chunking function, jbd_Ctrans_chunker, (as 
jbd_CfC_chunker above) that wraps a custom version of the bdc function, bdc_coordinates_transposed (jbd_coor-
dinates_transposed), which flags and corrects coordinates for which the latitude and longitude are transposed. 
This step corrected transposed coordinates for 2,267 (<1%) occurrences.

Coordinates and country inconsistent. Here, we created a similar, but parallel-ready (mc.cores = 4), func-
tion to bdc’s called jbd_coordCountryInconsistent. We re-built the bdc version for memory efficiency and to 
accommodate the processing of our dataset, which is much larger than the bdc test dataset. Our function flags 
occurrences for which the coordinates and country do not match while allowing for a user input map buffer (in 
decimal degrees). This step flagged 22,477 (<1%) occurrences.

Georeference issue. We ran the bdc function, bdc_coordinates_from_locality, which highlights occurrences for 
which there is no latitude or longitude directly associated with the data, but for which sufficient locality data may 
be used to extrapolate relatively accurate geological coordinates. This step flagged 2,388,168 (13%) occurrences.

Absent records. We provide a function, flagAbsent, to flag occurrence records that are marked as “ABSENT”. 
Users may not be aware that many thousands of records are often provided as absent. These records might occur, 
for example, due to repeated sampling programmes not finding a certain species on a particular date or at a 
particular site. This step flagged 154,202 (1%) occurrences.

Restricted licenses. We provide a function, flagLicense, that aims to flag records that are not licensed for use. 
While such records should not be on public data repositories, some few are. Therefore, users should be aware not 
to use these protected data points. This step flagged 657 (<1%) occurrences.

GBIF issues. We provide a function, GBIFissues, to flag occurrences already flagged for user-specified GBIF 
issues. For example, we flagged GBIF occurrences marked as “COORDINATE_INVALID” and “ZERO_
COORDINATE”. This step flagged 14 (<1%) occurrences.

At the end of the initial flags section, we provide the flagRecorder function to save the flags for all occurrences 
as a separate file. Users may then use bdc functions to create summaries, reports, and some figures.

Taxonomic cleaning. While bdc provides great functionality for taxonomic cleaning of some groups, it does 
not provide access to the most-current bee taxonomy. Hence, we used the online global bee taxonomy available 
through Discover Life23, which lists approximately 21,000 valid names and 31,000 synonyms or orthographic 
variants. Discover Life is the most comprehensive and up-to-date source of bee names and is peer reviewed by 
global experts under the auspices of the Integrated Taxonomic Information System on an ongoing basis. We 
flagged this list for ambiguous names (homonyms) that, to varying degrees, could not be matched due to their 
complicated taxonomic histories. Records with ambiguous names were either processed differently or excluded 
from the below function and hence the final occurrence dataset. We also made some manual corrections as 
taxonomic issues (mostly orthographic variants) were identified (ExtraTables/AddedTaxonomyVariants.xlsx)25. 
The final taxonomy is available in the BeeBDC package as beesTaxonomy.

We first cleaned our species names using the bdc function bdc_clean_names, which attempts to clean names 
and unify writing-styles (e.g., capitalization and punctuation). It also removes family names, qualifiers (this is 
flagged), infraspecific terms, separates authors, dates, and annotations. This function also adds a taxonomic 
uncertainty flag, .uncer_terms, which flagged 97,231 (<1%) records. We then used our parallel-ready (mc.
cores = 4) harmoniseR function to harmonise occurrence names with our combined Discover Life taxonomy. 
This function takes steps to (i) compare occurrence names directly with valid names (genus species authority), 
(ii) combine the bdc-cleaned name and occurrence authority to match against the valid name, (iii) match species 
names with canonical flagged names (i.e., scientific names with flags from Discover Life), (iv) directly compare 
scientific names, (v) combine the occurrence scientific name and occurrence authority to match against the valid 
name, (vi) match occurrence’s scientific name with the taxonomy’s valid name with subgenus removed from 
both, and (vii) as above but using canonical names. Between each step, the function filters out already-matched 

Content courtesy of Springer Nature, terms of use apply. Rights reserved



6Scientific Data |          (2023) 10:747  | https://doi.org/10.1038/s41597-023-02626-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

names. These steps are first taken for the non-ambiguous names (according to our taxonomy) and then applied 
again for the ambiguous names but also matching the authority (“author year”, all lowercase and with no punc-
tuation). If a name cannot be unambiguously matched at any level (homonyms), then they will fail this function 
and an accepted name will not be applied. The function then moves the provided name to the verbatimSci-
entificName column and updates the scientificName, species, family, subfamily, genus, subgenus, specificEpithet, 
infraspecificEpithet, and scientificNameAuthorship columns where better matches are found. This is only done 
for occurrences with a successful match; unmatched occurrences are not altered. Occurrence records that do not 
match the taxonomies are flagged accordingly with the .invalidName column. The data produced from each step 
are merged and an updated object is output. The minimum requirement for this function is a data frame with 
a column containing species names — this is intended to allow quick checking and updating of simple species 
lists. This step matched valid names to 15,799,107 (86%) and flagged 2,509,276 (13%) occurrences, respectively.

Space flagging. We further flagged our data for spatial issues using a combination of functions from BeeBDC, 
bdc, and CoordinateCleaner. We outline these steps below.

Coordinate precision. We used our function, jbd_coordinates_precision, to flag occurrence records with lati-
tude and longitude below a threshold of two decimal places (~1.1 km at the equator). This step differs from the 
bdc function bdc_coordinates_precision by only flagging occurrences where both latitude and longitude were 
rounded. This step flagged 3,649,158 (20%) occurrences.

Common spatial issues. We then used the CoordinateCleaner function, clean_coordinates, which runs several 
tests to flag potentially erroneous data. We flagged records that were within (i) 1 km of capital cities, (ii) 500 m of 
province or country centroids, (iii) 1 km of GBIF headquarters in Copenhagen, Denmark, or (iv) 100 m of bio-
diversity institutions; or that have (v) equal latitude and longitude coordinates, or (vi) zero as latitude and lon-
gitude. For example, these issues can arise when occurrences were labelled only with the city, province, country, 
institution, or repository are georeferenced to those exact locations. The latter two could arise from copy errors 
or incomplete data. We did not flag points in the ocean as they are flagged with a small buffer by 5.5 Country 
Checklist (below). This step flagged (i) 15,653; (ii) 17,494; (iii) 11; (iv) 80,558; (v) 11,083; and (vi) 10,932 (each 
<1%) occurrences, respective to the above criteria.

Fill-down errors and gridded datasets. We provide the parallel-ready (mc.cores = 4) diagonAlley function that 
uses a sliding window to flag potential fill-down errors in the latitude and longitude columns. The function 
removes any empty values and then groups data by event date and collector. It then arranges latitude and lon-
gitude, removes identical values, and flags sequences of latitudes or longitudes where the differences between 
records are exactly equal. The user defines a minimum number of repeats required for a flag (minRepeats = 6) 
and a minimum number of decimal places required to consider an occurrence (using 5.1 jbd_coordinates_pre-
cision; ndec = 3). Secondly, we then implemented the cd_round function from CoordinateCleaner to identify 
datasets (using the datasetName column) that have their latitudes or longitudes potentially gridded, using the 
default values. This step flagged 390,747 (2%) and 113,617 (<1%) occurrences for fill-down and gridded data-
sets, respectively.

Coordinate uncertainty. We provide the coordUncerFlagR function that flags records by a user-defined thresh-
old for coordinate uncertainty — usually provided in the Darwin Core coordinateUncertaintyInMeters column. 
We used a threshold of 1 km. This step flagged 2,831,456 (15%) occurrences.

Country Checklist. We provide the parallel-ready (mc.cores = 4) countryOutlieRs function that uses the 
country-level checklist available on the Discover Life website (beesTaxonomy). While vagrants are only a 
minor issue, Discover Life excludes port vagrants and clear misidentifications; however, “natural” and estab-
lished vagrants are generally included as valid. For example, the Fiji checklist includes eight relatively recent, 
but established, introductions23,92. The function checks all of the harmonised species names against the checklist 
and the country in which the occurrence falls (using overlap with rnaturalearth). Points that don’t align with 
rnaturalearth (e.g., they are on the coast) can be buffered by a user-specified amount, in degrees, to attempt a 
match. In our case, we used 0.05 degrees (~5.6 km). It is worth noting that changing the rnaturalearth resolution 
could lead to slight variations in results and that the higher resolutions (scale = 50) might be optimal for most 
regions; especially for discontinuous island groups. The function produces three columns. The first column, 
countryMatch, summarises the occurrence-level result: where the species is not known to occur in that country 
(noMatch), it is known from a bordering country (neighbour), or it is known to occur in that country (exact). 
The second column’s output depends on user input. If the user wants to keep occurrences that are either exact 
matches or in adjacent (bordering) countries to those in the checklist (keepAdjacentCountry = TRUE) then the 
filtering column.countryOutlier will be TRUE for these cases and FALSE only for those with noMatch. A keep-
AdjacentCountry = FALSE argument will only flag exact country checklist matches as TRUE. For our dataset, 
we chose the former. The third column, .sea, flags the points which don’t align with rnaturalearth or its buffer 
— they are identified as being in the ocean. The countryOutlier column flagged 1,679,298 (9%) occurrences and 
the .sea column flagged 204,030 (1%).

Users may then produce maps, reports, and figures using the bdc package. They can also append the saved 
flag file using the flagRecorder function.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



7Scientific Data |          (2023) 10:747  | https://doi.org/10.1038/s41597-023-02626-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Time flagging. The next major sequence of functions aims to recover or filter occurrence records with 
date-related issues. We outline the steps taken below.

Recover missing event date. We provide the dateFindR function that seeks to recover occurrence records that 
would otherwise be removed due to missing event date. The function first removes unreasonable dates based on a 
user-defined year-range (we removed dates prior to 1700 and after the present year). The function then seeks to har-
monize date formats in a step-wise manner by first (i) combining dates from the year, month, and day columns into 
the eventDate column, then (ii) taking just the year column where it is provided without event date. Subsequently, 
the function looks for dates in the verbatimEventDate, fieldNotes, and locationRemarks columns by looking in 
sequence for unambiguous date strings in the following formats: (iii) year-month-day, (iv) day-month-year (where 
day is identifiable — i.e., days > 12; or months are identifiable — in written or Roman-numeral formats), (v) 
month-day-year (where days or months are identifiable as above), and (vi) month-year (where month is identifia-
ble as written or Roman-numeral formats). The function then finds ambiguous date strings in the verbatimEvent-
Date, fieldNotes, and locationRemarks columns and keeps only the year value. All date values are then returned in 
the standardised year-month-day-hours-minutes-seconds format. Users should consider this threshold critically in 
relation to their own hypotheses and potentially run dateFindR over the Flagged-but-uncleaned dataset with their 
own threshold if required. This step rescued dates for 1,333,087 (7%) occurrences.

Missing event date. We then used the bdc function, bdc_eventDate_empty, to flag records that do not have date 
in the eventDate column. This step flagged 1,455,807 (8%) occurrences.

Old records. We used the bdc function, bdc_year_outOfRange, to flag occurrence records that are likely too 
old for use in species distribution modelling. Here, we flagged occurrences from before 1950. Users may want to 
consider changing this value or disregarding this flag as it applies, or does not, to the question(s) that they want 
to ask. This step flagged 1,550,687 (8%) occurrences.

Users may then create reports and figures on the time filters using the bdc package. They can also append the 
saved flag file using the flagRecorder function.

Duplicate records. Duplicate records frequently arise between or within repositories. These records can be diffi-
cult to discern particularly where single specimens have been assigned multiple, or worse, no unique identifiers, 
or where the same locality has been georeferenced independently by multiple institutions. We provide a custom 
function called dupeSummary, that iteratively searches occurrences for duplication using multiple column-sets. 
Users can choose to identify duplicates based on identifier columns, collection information, or both. They may 
also define any number of custom column sets by which to identify duplicates.

Some identifier columns might contain codes that are too simple. The function allows users to set thresholds 
to ignore those occurrences when checking the relevant columns for duplicates. For example, the catalogNumber 
might be “145” or “174a”, which could result in over-matching of duplicates. Users may set a characterThresh-
old and numberThreshold which would ignore codes which don’t pass both. Users may also set a number-
OnlyThreshold, which will check codes above that threshold, irrespective of the characterThreshold. We use 
the defaults of two, three, and five, respectively. Hence, minimum passing codes could include “AG194” and 
“390174”. This can be entirely turned off by setting all values to zero or ignored for selected column sets using 
CustomComparisonsRAW.

The function identifies duplicates based on collection information where it iteratively compares user-defined 
sets of columns. The function first compares custom column sets and can then compare generic, but customisa-
ble, column sets. For our bee data, we used several steps to identify duplicates. Firstly, we compared (i) catalog-
Number and institutionCode using CustomComparisonsRAW. Secondly, we identified duplicates based on the 
scientificName with the (ii) catalogNumber and institutionCode, (iii) gbifID, (iv) occurrenceID, (v) recordId, and 
(vi) id columns using CustomComparisons. Finally, we identified duplicates using the generic column sets of 
decimalLatitude, decimalLongitude, scientificName, eventDate, and recordedBy columns at the same time as the 
(vii) catalogNumber and (viii) otherCatalogNumbers columns.

Using the scientificName column with the identifier columns allows different species with the same identifier 
to be maintained. This is important where an event identifier (multiple specimens from one collection event) has 
been placed in the wrong column. For the occurrences where the taxonomy did not match (e.g., because of an 
ambiguous or incomplete identification) duplicates won’t be identified; in these cases they will be flagged by har-
moniseR. At the same time, occurrences where species identifications have been updated in only some datasets will 
not be identified as duplicates. Users may choose their own input parameters while weighing the costs and benefits.

The function arranges the data by (i) a user-defined list of input sources (where the first data sources are 
preferred over later ones; i.e., GBIF > SCAN > iDigBio, etc.), then, (ii) completeness by user-defined columns, 
and (iii) by the summary column (to keep clean occurrences). For point three above, duplicate occurrences with 
more of these completeness columns will be preferred over those with fewer; i.e., the most-complete record is 
chosen. Where public and private data were duplicated, we gave preference to private data providers over the 
public data aggregators under the assumption that data providers have the most recent information. We also 
preferred manually cleaned occurrence records from Chesshire, et al.93 over those sourced directly from data 
aggregators. All pairwise duplicates were clustered where they overlapped and a single best occurrence was kept 
using the above arrangement. This step flagged 7,568,016 (41%) occurrences. Most of these duplicates arose 
between data sources; however, within-source duplicates were quite prominent in SCAN (Fig. 2).
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Final filter. We first used the function manualOutlierFindeR function to flag occurrences identified as misiden-
tifications or outliers by experts who reviewed interactive point maps (from interactiveMapR below). There were 
181 records from Chesshire, et al.93 and 2,203 records identified by expert review of interactive species maps (see 
Technical Validation). However, these were revised following the addition of new occurrence data. For each out-
lier identified, the function uses the output from dupeSummary to identify its duplicate records and flags those 
for removal. This function flagged 2,159 (<1%) records.

The “flagged-but-uncleaned” dataset was produced with the summaryFun which updated the .summary col-
umn. The .summary column is updated to include any records that are flagged in at least one flagging column, 
with user-defined exceptions. We excluded several filtering columns that we decided were not critical to data 
integrity. These were the diagonal and grid flags (.sequential, .gridSummary, .lonFlag, and .latFlag) and the tax-
onomic uncertainty flag (.uncer_terms). We also excluded high coordinate uncertainty (.uncertaintyThreshold) 
and records out of range (.year_outOfRange) because this filtering level might be too strict for general analysis 
and can remove ~1 million otherwise clean records at the 1 km level. Users may download our flagged dataset 
and begin at this step to choose the flags that are important for their hypotheses to remove or customise with 
different thresholds (OutputData/05_unCleaned_database.csv)25. For our “completely cleaned” dataset we fol-
lowed used the above parameters in summaryFun but also chose to filter to only clean records and then remove 
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Duplicated record sources

Fig. 2 A chord diagram showing duplications between major data sources. The major data repositories, the 
Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), and Symbiota 
Collections of Arthropods Network (SCAN) are indicated on the diagram’s outer ring with bee families 
indicated on the associated inner ring. Smaller collections are indicated under ‘Other’ on the outer ring and 
the associated inner ring indicates individual datasets. The ‘Other’ collections are the Atlas of Living Australia 
(ALA), Allan Smith-Pardo (ASP), Bob Minckley (BMin), Bombus Montana (BMont), The Connecticut 
Agricultural Experiment Station (CAES30,31), Ecdysis (Ecd28), Gaiarsia (Gai29), Elinor Lichtenberg (Lic37), 
Victorian and Western Australian Museum (VicWam5,39), and the United States Geological Survey (USGS) 
data. The size of each ring and inner linkage (chord) is relative to the number of occurrences. The chords link 
occurrences are that are duplicated between data sources87.
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all filtering columns (OutputData/05_cleaned_database.csv)25. This step removed 11,418,235 (62%) occurrences 
and left 6,890,148 (38%) cleaned occurrences.

Summary figures, tables, and outputs. Beyond the figures produced throughout the cleaning process by the bdc 
package, we also provide several unique custom figure functions.

Duplicate chordDiagrams. We provide a function, chordDiagramR, that wraps the circlize94, ComplexHeatmap95,96,  
and paletteer97 packages to build a chord diagram that visualises the linkages between duplicated occurrence 
data sources (Fig. 2).

Duplicate histogram. We provide a function, dupePlotR, to visualise duplicates by source, breaking them down 
into (i) discarded duplicates, (ii) kept duplicates (as chosen in 7.x Duplicate records), and (iii) unique records 
(Fig. 3). This is displayed as both a total number of records and the proportion within each data source.

Flags by source. We provide the plotFlagSummary function that produces a compound bar plot that, for each data 
source, indicates the proportion of records that pass or fail, or cannot be assessed for each flag (Fig. 4). We built 
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Fig. 3 Duplicate occurrence summary. Two bar plots showing (a) the total number of records and (b) the 
proportion of records in each dataset that were duplicates (sand), kept duplicates (light green), and unique 
(dark green). Duplicates are occurrences that were identified to have a match in another or the same dataset 
and that were thus flagged or discarded. Kept duplicates are the same as duplicates, except they are the version 
of the occurrence records that were kept. Unique occurrences are those that were not matched to any other 
occurrences and were also kept. The included datasets are the Global Biodiversity Information Facility (GBIF), 
Symbiota Collections of Arthropods Network (SCAN), Integrated Digitized Biocollections (iDigBio), the 
United States Geological Survey (USGS), the Atlas of Living Australia (ALA), Victorian and Western Australian 
Museum (VicWam5,39), Elle Pollination Ecology Lab (EPEL26), the Connecticut Agricultural Experiment Station 
(CAES30,31), Ecdysis (Ecd28), Allan Smith-Pardo (ASP), Gaiarsia (Gai29), Bombus Montana (BMont27), Ballare,  
et al.36 (Bal), Armando (Arm), Bob Minckley (BMin), Elinor Lichtenberg (Lic37), Eastern Colarado (EaCO), 
Texas literature data (SMC), and Dorey literature data (Dor3,4,38).
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additional functionality into this function that allows users to provide a species name (and the column in which 
that name is found) and (i) save the occurrence data, (ii) produce a map coloured by a filtering column of choice, 
and (iii) the compound bar plot for that specific species. This can be an excellent function to quickly examine 
potential issues. Additionally, users can choose to output the table used to make the figure using saveTable = TRUE.

Maps. We provide a function, summaryMaps, that uses the cleaned data to show the number of species and 
number of occurrences per country (Fig. 5). For the latter function, we broke up these values using classes and 
“fisher” intervals98; however, any style from the classInt99 package can be entered. Additionally, we provide a 
function, interactiveMapR, that iteratively makes and saves interactive html maps for any number of species. 
These interactive maps colour occurrences if they pass or fail any flags, if they are country outliers, or if they are 
expert outliers. Collection and flag information are provided in pop-ups for each point.

Data providers. We provide a function, dataProvTables, that produces a table of data providers with the num-
ber of cleaned occurrences and species for each. The function also attempts to identify the data provider using 
other columns when it is omitted from the institutionCode column, providing an updated institution code and 
name. This function is thus far customised to bee datasets. We provide both the top 14 rows (for datasets with 
>100,000 clean occurrences; Table 1) and the full table (OutputData/Reports/dataProviders.xlsx)25.

Flag summary. We built a function, flagSummaryTable, that will produce a summary table of the total number 
of failed occurrences per flag and per species (or any other categorical column of interest).

Taxonomic and country checklist queries. Users may be interested in querying BeeBDC for species names, 
validities, and in which countries a species can be found. Our function, BeeBDCQuery, allows users to enter one 
or more species name as a character vector and it will report on (i) the validity of the name, (ii) all synonyms, 
and (iii) the countries in which it is found. This information will be returned as a list of tables.
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Fig. 4 Flag summary. A compound bar plot showing the proportion of all occurrences within each data source 
(x-axis) that were flagged for each filtering step (y-axis). Green indicates the proportion of occurrences that 
passed a filter, red indicates the proportion that failed a filter, and grey indicates those that could not be assessed. 
Each x-axis tick indicates intervals of 25%. The summary row indicates the total proportion of passed or failed 
occurrences for each dataset based on those that were chosen to be filtered. In this instance, (i) taxonomic 
qualifier, (ii) gridded longitudes, (iii) gridded latitudes, (iv) gridded latitude and longitude, (v) coordinates fill-
down, and (vi) year out of range were not included in the summary row. The included datasets are the Global 
Biodiversity Information Facility (GBIF), Symbiota Collections of Arthropods Network (SCAN), Integrated 
Digitized Biocollections (iDigBio), the United States Geological Survey (USGS), the Atlas of Living Australia 
(ALA), Allan Smith-Pardo (ASP), the Connecticut Agricultural Experiment Station (CAES30,31), Bombus Montana 
(BMont27), Bob Minckley (BMin), Ecdysis (Ecd28), Gaiarsia (Gai29), Elle Pollination Ecology Lab (EPEL26), 
Victorian and Western Australian Museum (VicWam5,39), Armando (Arm), Ballare, et al.36 (Bal), Eastern 
Colarado (EaCO), Elinor Lichtenberg (Lic37), Texas literature data (SMC), and Dorey literature data (Dor3,4,38).
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Package data. Bee taxonomy and checklist. We provide a modified version of the global bee taxonomy and 
country-level checklist produced by John Ascher and John Pickering and hosted on Discover Life23 as part of 
BeeBDC. These datasets are downloadable directly from the figshare using the functions beesTaxonomy and 
beesChecklist, respectively.

Test datasets. We further provide three test datasets with BeeBDC. The dataset bees3sp includes 105 flagged 
points from three haphazardly chosen species; beesFlagged contains 100 randomly chosen flagged occurrence 
records; and beesRaw contains 100 randomly chosen unflagged occurrence records.

Data records
Our dataset and the data used in our analyses are available for download in our figshare repository (https://doi.
org/10.25451/flinders.21709757)25. See Data sources above for further information. Occurrence datasets are 
provided in standard DarwinCore format and saved as.csv files. The additional materials are organised into the 
following folders:

 1. Figures. Contains primary figures and additional bdc figures.
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Fig. 5 Occurrence-country summary maps created using the cleaned data indicating the (a) number of species 
per country and (b) number of occurrences per country from the filtered data. Colours indicate the number 
of (a) species or (b) occurrences where dark colours are low and yellow colours are high. Class intervals were 
defined using a “fisher” method.
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 2. OutputData. Contains the “cleaned” (05_cleaned_database.csv) and “flagged-but-uncleaned” (05_un-
Cleaned_database.csv) datasets, reports, and the R console outputs from the script (RunNotes_BeeBD-
C_1Sep23.txt).

 3. InputData. Contains the major repository downloads, additional input datasets, and custom Chesshire, et al.93 
data files.

 4. ExtraTables. Contains metadata for the major repository downloads (MajorRepoAttributes_2023-09-01.
xlsx) and the added taxonomy variants (AddedTaxonomyVariants.xlsx).

 5. The beesTaxonomy.Rda and beesChecklist.Rda datasets that are downloaded using BeeBDC (see 10. Pack-
age data above).

technical Validation
For our current data version, we outline the data quality according to our flags. We provide summaries of the 
deduplication process, including the duplication linkages within and between datasets (Fig. 2), and the number 
and proportion of duplicates, kept duplicates, and unique occurrences per dataset (Fig. 3). Importantly, we 
provide a figure summary of the proportion of records flagged for all data sources (Fig. 4). This figure indicates 
data quality across the entire dataset and where each data source might focus their cleaning efforts. We demon-
strate the country-level patterns of both species and occurrences on a global map (Fig. 5). Finally, all BeeBDC 
and bdc summary and data quality figures and maps are provided in the Additional Figures folder (https://doi.
org/10.25451/flinders.21709757).

We assessed our figures and interactive maps in a lengthy and iterative error-checking process. Throughout 
the development of the package, functions and results were scrutinised by the authors, particularly JBD, EEF, 
AN-B, RLO’R, SB, DAG, DdP, K-LJH, LMM, TG, TAZ, MCO, LMG, JSA, ACH, and NSC. Functions were tested 
throughout development and as a part of our CRAN submission process to ensure robustness and consistency 
of results with expectations. Occurrence records were examined frequently in this process and, several times, 
interactive maps of 100 randomly chosen species were produced and manually checked. In addition to this, 
interactive maps for all species with sufficient data between Colombia and Canada (4,221 spp.) were produced 
and manually checked (in some cases for multiple versions) as part of an additional effort to build species distri-
bution models of the bees in that region led by AN-B and NSC.

We found that data quality was highly variable between sources (Fig. 4). Data duplication was often the most 
prominent flag, comprising 41% of the total uncleaned dataset. There was substantial duplication between and 
even within both major and minor data repositories (Figs. 2, 3). Importantly, the assumption that all data make 
their way to GBIF is incorrect (at least at the time of downloading); we found that each repository holds unique 
data (Fig. 3). However, it is also likely that poor data quality might sometimes preclude successful duplicate 
matching. Regardless, this highlights the importance of sourcing occurrence data from a variety of reposito-
ries. In terms of actual input data quality and completeness, many occurrences (i) lacked coordinates, (ii) did 
not have a scientific name or that name did not match known taxonomy, (iii) had low-resolution coordinates, 
(iv) had high coordinate uncertainty (where this was estimated), (v) did not match the country checklist on 
the Discover Life website, (vi) lacked collection date, and/or (vii) were collected prior to 1950 (Fig. 4). These 
quality issues might preclude data use in downstream works and require further efforts to repair. In worst case 
scenarios, unfit data might pass flagging steps and cause misleading results. The presented workflow enables 
researchers to prepare data that can support robust analyses. To the best of our knowledge, this is now the most 
thoroughly curated global occurrence dataset for bees and is potentially leading for any terrestrial invertebrate 
group of this size.

The mismatch between bee species richness according to occurrence data and country checklists has already 
been highlighted by Orr, et al.6. We also highlight the geographical, taxonomic, and collection biases in the 

Institution code Institution name Occurrence count Species count

iNaturalist iNaturalist 827,600 2,952

USDA-ARS USDA Agricultural Research Service 451,180 4,272

Observation.org Observation.org 421,201 691

SLU Artdatabanken SLU Artdatabanken 355,440 291

Natuurpunt Natuurpunt 268,470 303

USGS United States Geological Survey Bee Lab 254,173 1,247

CSCF Swiss National Biodiversity Data and Information Centres 246,684 578

AMNH American Museum of Natural History 244,432 5,153

KU Kansas University Entomology collection 218,045 5,765

Biological Records Centre Biological Records Centre 191,790 258

Bumblebee Conservation Trust Bumblebee Conservation Trust 148,489 273

AMU Adam Mickiewicz University in Poznań 144,805 191

naturgucker naturgucker 139,950 411

FinBIF Finnish Biodiversity Information Facility 135,463 315

Table 1. The institution code, institution name, number of clean bee occurrences, and number of unique bee 
species for the datasets with >100,000 clean bee occurrences in our dataset.
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global bee data (Fig. 5). We show that the number of cleaned species occurrences in most of Africa and large 
parts of Asia are in the lowest class counts, where classes are defined using a Fisher-Jenks algorithm98 (Fig. 5a). 
We also show that the number of occurrences in Africa, Asia, and even South America are often in the lowest 
class counts and to a greater degree than species counts (Fig. 5b). Some countries in Africa (Equatorial Guinea, 
Djibouti, and parts of Western Sahara) do not have a single cleaned occurrence record (Fig. 5). There are also 
large mismatches between the number of species and number of occurrence records. These disparities are hugely 
concerning and highlight ongoing inequalities in taxonomic, sampling, and digitisation efforts. While we inte-
grate new datasets from Central and South America (with more expected to be released in future versions), we 
note that there are likely many more data available in grey literature for the under-sampled regions of the world 
and museum specimens that are yet to be digitised. We hope that this contribution provides a foundation for a 
more formal recognition and prioritization of important taxonomic, sampling, and digitisation efforts.

Usage Notes
All of our occurrence datasets are cleaned for (i) taxonomic information according to the Discover Life website, 
(ii) country name (country_suggested) and ISO2 code, and (iii) recoverable event dates from other columns. 
When using our data or parts of our workflow users should also cite the data sources where they are relevant. 
Our occurrence data are provided in two ways:

Cleaned. We provide a dataset that is completely cleaned of records that failed any of our filtering steps with 
the exception of: (i) .gridSummary, (ii) .lonFlag, (iii) .latFlag, (iv) .uncertaintyThreshold, (v) .sequential, and 
(vi) .year_outOfRange. All filtering columns are also removed from this dataset to reduce file size.

Flagged-but-uncleaned. We provide a dataset that includes all of the above filters as flags, in addition to the 
otherwise unfiltered flags above. This dataset is provided with a column for each of these flags where occurrences 
that failed for a filtering step are flagged as “FALSE” and those that passed as “TRUE”. This convention is used to 
maintain continuity with functions from the bdc and coordinateCleaner packages. Users are able to use our script 
to read in and filter their data or manually filter these data in a way that is appropriate for their use. Our filtering 
script should also provide users with the necessary template to reduce or modify their data into their desired size 
and structure. In particular, users may use the dontFilterThese argument in the summaryFun function to exclude 
certain filters that do not relate to their research question.

Users may incorporate our data pulls or conduct their own. However, we do note that ALA, through the 
galah package, is the only major data provider with a convenient download protocol for large datasets. Other 
Application Programming Interfaces (APIs) and even web protocols make downloading a limiting and lengthy 
process; for example, the rgbif package has a limit of 100,000 occurrences. Making similar API methods available 
for other major data repositories would greatly increase their accessibility. Usage of the BeeBDC package and 
workflow should be accessible to most users with basic R knowledge. Once the datasets and folder structure are 
determined the script should require minimal user input. We highlight again that this workflow was tested on a 
machine with 64 GB of RAM and that users with less RAM might have prolonged run times and need to reduce 
chunk sizes for some functions. In the end, this work is aimed to facilitate open source data for both scientific 
and applied usage.

Code availability
We provide a full website with vignettes (including a complete and a basic workflow) that demonstrates the 
functionality of our script with the input data (https://jbdorey.github.io/BeeBDC/index.html). Our “basic 
workflow” is for users that simply wish to download our flagged but unfiltered dataset and apply (i) manual 
filters based on our filtering columns or further filter to only include certain (ii) countries, (iii) date ranges, or 
(iv) uncertainty levels. Secondly, we provide these annotated R-scripts run from start to finish on our GitHub 
(https://github.com/jbdorey/BeeBDC/tree/main/inst). Our scripts, related files, and downloaded instructions can 
be found on our GitHub page (https://github.com/jbdorey/BeeBDC).
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