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Agoal ofmany researchprogrammes inbiology is to extractmeaningful insights
from large, complex datasets. Researchers in ecology, evolution and behavior
(EEB) oftengrapplewith long-term,observationaldatasets fromwhich they con-
struct models to test causal hypotheses about biological processes. Similarly,
epidemiologists analyse large, complex observational datasets to understand
the distribution and determinants of human health. A key difference in the
analytical workflows for these two distinct areas of biology is the delineation
of data analysis tasks and explicit use of causal directed acyclic graphs
(DAGs), widely adopted by epidemiologists. Here, we review the most recent
causal inference literature and describe an analytical workflow that has direct
applications for EEB.We start this commentary bydefining four distinct analyti-
cal tasks (description,prediction,association, causal inference). The remainderof
the text is dedicated to causal inference, specifically focusing on the use ofDAGs
to informthemodelling strategy.Given the increasing interest incausal inference
and misperceptions regarding this task, we seek to facilitate an exchange of
ideas between disciplinary silos and provide an analytical framework that is
particularly relevant for making causal inference from observational data.
1. Introduction
In 1976, George Box noted, ‘All models are wrong’ [1]. Yet, studies of cells to
society require models to summarize data and draw inference, leaving research-
ers between the Scylla of imperfect models and the Charybdis that is the
foundational role of models to evidence-based science.

In this commentary, we describe a methodical approach to model selection,
data analysis and results interpretation that entails clear delineation of data
science tasks in order to identify the appropriate analytical strategy, and
emphasize the importance of prior knowledge to inform model selection
when the goal of analysis is to make causal inference. While all scientific
fields may benefit from a thoughtful and systematic analytical approach, the
target audience is scientists in the ecology, evolution and behavior (EEB)
discipline—a field that draws causal conclusions, often from observational
data, in pursuit of proximate and ultimate explanations [2]. Nota bene, EEB
scientists have extensive quantitative training, so giving a tutorial on specific
statistical techniques is not our goal. Rather, we integrate and expand upon
analytical paradigms used in epidemiology—another quantitative field that
grapples with complex observational datasets—so that even when a model is
not 100% correct, it improves scientific knowledge.

We start by describing four distinct data analysis tasks: description, predic-
tion, association and causal inference. Then, we delve further into causal
inference, a concept that is not new in EEB [3,4], but has experienced a recent
resurgence of interest and is highly relevant to the types of data collected
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and analysed in this field [5–8]. Beyond providing guidelines
for an analytical framework, a broader theme of this interdis-
ciplinary piece is to harness synergy between two historically
distinct disciplines—EEB and epidemiology—in order to
promote multidisciplinary team science.
publishing.org/journal/rspb
Proc.R.Soc.B

288:20202815
2. Data analysis tasks
Identifying the appropriate analytical task for a research
question is the critical first step. Table 1 summarizes four dis-
tinct analytical tasks that may be used together or as stand-
alone analyses: description, prediction, association and
causal inference [9,10]. A distinguishing characteristic
among the analytical tasks is the need for causal knowledge
when formulating the modelling approach. Description and
prediction do not necessarily require investigators to know
the causal or temporal relationships beforehand, but prior
causal knowledge is relevant to associational analyses and
foundational to causal inference. We provide details on
description, prediction and association in the electronic sup-
plementary material (see electronic supplementary material,
§1). In the main text, we focus on causal inference in the con-
text of observational studies.
3. Causal inference
The goal of causal inference is to quantify the effect of X on
Y. The gold standard for this task is a randomized experiment
or trial in which the process of randomization ensures equal
distribution of underlying characteristics within the popu-
lation such that the only difference between the treatment
and control groups is the intervention. Accordingly, any differ-
ence in the outcome may be attributed to an effect of the
intervention. However, experimentation is often not finan-
cially or ethically possible, and scientists remain interested in
testing hypotheses and inferring causation from observational
data. Counter to popular belief that specific techniques must
be used to conduct causal inference analysis on observational
data, the foundation of this task lies in an a priori focus on the
specific relationship between X and Y, and consideration of
additional third variables that can introduce bias. Techniques
that are often associated with causal inference (e.g. structural
equations modelling and/or path analysis [11], inverse prob-
ability weighting [12], G-methods [13]) relax assumptions of
parametric regression models in order to reduce biases that
transpire from statistical adjustment in regression models.

The concept of causal inference is not new in EEB, but the
use of causal diagrams to inform model selection is a valu-
able epidemiological tool that has not penetrated EEB, with
a few exceptions [6,7]. Here, we provide guidelines for
making causal inference using directed acyclic graphs
(DAGs). Figure 1 shows an analytical roadmap to making
causal inference, as well as the other three tasks.

(a) Step 1: formulate the research question
Causal inference begins with a precise and specific research
question which should reflect a testable hypothesis. A clear
hypothesis for causal inference should be translatable into a
contrast of counterfactual outcomes—i.e. what Y would be
had X been different in a population. This requires identifi-
cation of X and Y, specification of how each variable will be
parameterized (i.e. discrete versus continuous) [14] and
identification of the study population from which data are
available for X and Y, as well as other variables that warrant
consideration in the analysis, including confounders,
precision covariates, mediators and effect modifiers.

(b) Step 2: draw the directed acyclic graph
A causal directed acyclic graph (DAG) is a flowchart that
maps out the causal and temporal relationship between X
and Y, along with additional variables that may affect the
X→Y association. As such, a DAG is also a graphical rep-
resentation of the hypothesis and a summary of the
modelling approach [15,16].

The first step to drawing a DAG is to identify the X
(cause) and Y (outcome) of interest. If our hypothesis is that
social connectedness (number of affiliative interactions an
individual has within their social network) affects immune
function (T-cell count), then the corresponding DAG should
show an arrow emerging from social connectedness pointing
toward immune function (figure 2). This DAG translates into
an unadjusted statistical model in which social connectedness
is the explanatory variable and immune function is the
dependent variable.

While such a DAG and corresponding statistical model
are straightforward, estimating the causal effect of X on Y
often involves consideration of other variables that can
introduce bias or modify the relationship of interest.

(i) Confounder
After defining the relationship of interest, the next step is to
pinpoint sources of bias. One source of bias is confounders,
or shared common causes of X and Y, denoted in a DAG as
C with two arrows pointing at X and Y (figure 3). Confoun-
ders are identified via prior knowledge in conjunction with
evidence of a statistical association of C with X and Y in
the study sample, and should typically be accounted for in
order to obtain an unbiased causal effect of X on Y.

When a confounder is present, there are two paths
through which the effect of X may flow to Y: (i) from X
directly towards Y; and (ii) through a ‘backdoor path’ that
represents non-causal variation in the relationship between
X and Y transpiring from a shared common cause, C. If the
investigator is interested in the effect represented by the
first arrow, then the backdoor path leads to confounding
and should be ‘blocked’ in order to obtain a causal estimate
of X. Neglecting to do so may lead to biased estimates or
worse, spurious associations [17]. The most common
approach to control for confounding is to include the variable
as a covariate in a regression model (statistical adjustment).

In our running example, social rank could be a confoun-
der because it affects both social connectedness (higher
ranking individuals have more social connections) and
immune function (higher ranking individuals have healthier
immune function owing to greater access to resources).

It is worth noting that for any given X→Y relationship,
there are likely multiple confounders (figure 4). Adjusting
for all of them may not be required. The analytic plan
should be constructed so that all confounding (backdoor)
paths are blocked. To do this, the investigator should map
out the causal and temporal relationships among the con-
founders (tools like daggity can help; see http://www.
dagitty.net) to identify the most parsimonious set of variables

http://www.dagitty.net/
http://www.dagitty.net/
http://www.dagitty.net/


Table 1. Data analysis tasks.

task

key characteristics and

concepts

example analytical tools/

methods

causal

knowledge

needed? example question example verbiage & interpretation

description A quantitative overview of

the data. The metrics of

interest may range from

simple descriptive

statistics to complex

visualization techniques.

mean ± s.d., box plots,

proportions, unsupervised

cluster analyses, time

trends, generalized

regressiona

no What is the central tendency

and spread of T-cell

count, a marker of

immune function, in

wild spotted hyenas in

Kenya?

Summarize a feature based on the metric of interest. This

includes but is not limited to: prevalence of a

phenomenon (%, proportions), central tendency and

dispersion (mean ± s.d., median, minimum,

maximum), natural correlations among groups of

variables (clusters or latent constructs), and/or trends

in a variable over time (e.g. average rate of increase

per year).

Ex: In wild spotted hyenas, the median (range) T-cell

count is 850 cells/mm2 (range: 500 to 1,200 cells/

mm2).

prediction Identification of a set of

explanatory variables that

optimize variation

explained in a dependent

variable, with no focus

on the causal or

temporal structure among

the explanatory variables

of interest. This task

often involves use of

automated procedures to

maximize model fit and

leverages the joint

distribution of multiple

variables.

tree-based techniques,

recurrent neural

networks, unsupervised

machine learning

algorithms, generalized

regressiona

some What set of social and

ecological factors explain

maximum variation in

T-cell count in wild

spotted hyenas in

Kenya?

This task focuses on how well a set of X-variables

(predictors) maximize variance in (predict)

Y. Interpretation for individual X-variables focuses on

assessments of model fit (e.g. AIC/BIC or adjusted R2),

or predictive capacity (e.g. area under the receiver

operating characteristic curve [AUC]) rather than a causal

effect.).

Ex: In wild spotted hyenas, a model that includes prey

density, average yearly rainfall, and social rank as

predictors of T-cell count yields the best model fit

(lowest AIC and BIC, and/or highest adjusted R2) in

comparison to other combinations of predictors derived

from available data.

association Assessment of the unadjusted

relationship between two

variables of interest. This

relationship may be

explored within strata of

a few key other variables

that may influence the

association of interest

and can inform future

causal inference studies.

Pearson or Spearman

correlation coefficients,

estimates from

unadjusted generalized

regressiona

some How does social

connectedness correlate

with T-cell count in wild

spotted hyenas in

Kenya?

Use non-causal language to describe the crude

relationship between X and Y. The estimate for X can

be interpreted as an association or relation or

correlation, but not a causal effect.).

Ex: Higher social connectedness is associated with

higher T-cell count in wild spotted hyenas.

causal

inference

Obtain a causal (i.e.

unbiased) effect of X on

Y. This type of analysis

requires knowledge on

the causal and temporal

relationship between X

and Y, as well as third

variables (confounders,

mediators, effect

modifiers, colliders) that

may influence this

relationship in order to

control bias.

use of directed acyclic graphs

to reflect the research

question, followed by an

appropriate analytical

strategy which can

involve but are not

limited to generalized

regressiona, inverse

probability weighting,

structural equation

modelling, path analysis,

Rubin causal inference,

and G-methods.

yes Does social connectedness

affect T-cell count in

wild spotted hyenas in

Kenya?

Causal interpretation of the relationship between X and Y

via use of words such as ‘effect’ to describe the

relationship between X and Y, or ‘affect’ or ‘cause’ to

indicate whether and how X influences Y.

Ex: There is a direct positive effect of social

connectedness on T-cell count in wild spotted

hyenas.

aIncludes generalized regression models (e.g. linear, Poisson, negative binomial, logistic) and generalized mixed models (e.g. linear mixed models, segmented mixed models, mixed models with splines).
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what is the research question? step 1

step 2

step 3

step 4

yesnonono

causal interpretation?

identify appropriate analysis task

description prediction

identify relevant
predictors for Y

1. identifiy X and Y along with other key variables
2. formulate hypotheses

discovery: automated
algorithm to identify
predictors to optimize
model fit in sample A

validation: assess
model fit in sample B

assess X → Y within strata
of a few key variables

identified a priori

multivariable analysis

1. account for confounders
2. may test for an
    interaction and 
    stratify/calculate joint
    effects; or assess direct
    or indirect effects
3. sensitivity analysis

draw DAG draw DAG

unadjusted analysis
of X with Y

bivariate analysis to
identify confounders

association causal inference

prior
knowledge

generate
quantitative

summary of date
(X or Y) via
appropriate
technique

prior
knowledge

refine DAG

identify set of C to
block backdoor paths

prior
knowledge

knowledge of causal
relations among variables

Figure 1. Data analysis tasks and modelling approaches.

social
connectedness

immune
function

Figure 2. DAG showing the causal relationship between X and Y.

social
connectedness

social rank

immune
function

Figure 3. DAG showing the relationship between X and Y, with confounder C.
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to account for in order to block backdoor paths. When mul-
tiple confounders lie on a shared backdoor path, there are
decision-making points to progress through before arriving
at the final model. In figure 4, there are four paths from X
to Y: the direct X→Y path, backdoor path #1 X→C1→
C2→Y, backdoor path #2 X→C1→Y, and backdoor path #3
X→C3→Y. Assuming that this DAG represents the true
underlying relationships among all variables, only C1 and
C3 need to be accounted for to block the backdoor paths.
The choice of blocking the path through C3 is simple as it
lies on a single backdoor path with no alternate routes. The
choice between C1 versus C2 is more complicated; one
should adjust for C1 for two reasons. First, blocking C2 is
insufficient because it leaves the X→C1→Y path open,
allowing for a non-causal effect to flow from X to
Y. Second, specific to this example, social rank is based on
inherited matrilineal rank in wild spotted hyenas and is an
objective metric that can be measured with minimal error.
Thus, adjusting for C1 (social rank) is preferable to diet,
since absolute food intake is challenging to assess in
free-living animals.

While statistical adjustment is the most common
approach to control for confounding, it can introduce bias
in some instances due to use of an incorrect mathematical
form of the covariate (e.g. entering a covariate as a continu-
ous variable when it is not linearly associated with the
outcome), heterogeneity of effects of X on Y across levels of
the covariate (i.e. the existence of statistical interactions) and
collinearity with other covariates. Thus, another option is
inverse probability weighting (i.e. up-weighting or down-
weighting the effect of a confounder based on its distribution
in the study sample) to circumvent these issues [18–20].
Finally, there are other methods beyond the scope of this
paper, such as use of instrumental variables (i.e. a proxy for
X—often a gene or cluster of genes—that is strongly associ-
ated with X, affects Y through X only, and has no shared
common causes with Y)—either alone or embedded in
Rubin causal models [21]—that can capture an unbiased
causal effect of X on Y.
(ii) Precision covariate
Precision covariates are associated with X only or Y only,
denoted as B pointing towards X or Y (figure 5). Unlike con-
founders, there are no backdoor paths linking X to Y through
B. Such variables account for technical variability and con-
trolling for them in an analysis can improve model
efficiency [22]. For instance, many analytes degrade over



social
connectedness

geographical
region

social rank

diet

immune
function

Figure 4. DAG showing the relationship between X and Y, and multiple
confounders, C1, C2 and C3.

social
connectedness

sample storage
time

immune
function

Figure 5. DAG showing the relationship between X and Y and precision
covariate B.

social
connectedness

cortisol immune
function

direct effect

indirect effect

total effect of X on Y = direct + indirect effect

Figure 6. DAG showing the relationship between X and Y, and mediator M.

sex

social
connectedness

immune
function

Figure 7. DAG showing the relationship between X and Y and effect modifier Q.
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time, so biospecimen storage time is often included as a
precision covariate in biomarker analyses.
(iii) Mediator
A researcher may be interested in the extent to which X
affects Y after controlling for a variable M on the causal path-
way between X and Y. As shown in figure 6, M is a
consequence of X and a determinant of Y.

Analyses that involve mediators are useful to assess
mechanistic pathways linking X to Y. Say we suspect that
chronic activation of hypothalamic–pituitary–adrenal (HPA)
axis is a potential mechanism linking social connectedness
to immune function [23]. This hypothesis may be tested
using a regression-based approach after evaluating some
assumptions: (i) the relationship between X and Y exists, (ii)
M is associated with both X and Y, (iii) there is no interaction
between X and M [24] and (iv) there are no common causes of
M and Y other than X [25]. If the testable assumptions (i and
ii above) are met, the analysis involves comparing the esti-
mate for X before (total effect) versus after (direct effect)
including M as a covariate in the model. If the estimate for
X becomes attenuated after adjusting for M, then M might
represent a mediating pathway.

This approach is widely used but limited in utility since
violation of testable and non-testable assumptions can intro-
duce major bias into the estimate of interest. The first
assumption is that there should be no interaction between
X and M. Empirically, this may be tested via a test for statisti-
cal interaction, but the determination of heterogeneity of
effects still relies on arbitrary p-value thresholds for the
X*M term. The second assumption is that there are no unmea-
sured confounders to M and Y, which cannot be tested
empirically. In some instances, violation of this assumption
can flip the direction of the estimate for X after conditioning
on M. This is a form of collider bias [26], discussed later. The
third assumption is that the variable M is a perfect proxy for
the true mediator, which is rarely the case. In our example,
cortisol is just one marker of HPA function that certainly
does not capture the entire HPA cascade. Imperfect proxies
for M lead to an underestimation of the mediating pathway
(indirect effect) and an overestimation of the direct effect of
X [22]. There are now a number of non-parametric methods
that relax or circumvent some of these assumptions discussed
elsewhere [5,27].
(iv) Effect modification
If we believe that the relationship between social connected-
ness and immune function differs with respect to an
independent cause of Y, then our hypothesis involves effect
modification. In our example, the same degree of social con-
nectedness for males versus females may elicit differential
effects on immune function [28,29]. An effect modifier (Q)
changes the nature of the relationship between X and Y, or,
in other words, introduces heterogeneity in the effect of X
on Y across levels of Q [30] (figure 7).

Effect modification may be assessed empirically via an
interaction term between X and Q. If the p-value for the inter-
action term is significant, then effect modification is present.
A parsimonious approach is to stratify the analyses by levels
of Q if effect modification is suspected. While one may



social
connectedness

immune
function

resproductive
state

affiliative
preference

Figure 8. DAG showing the relationship between X and Y, collider S, and a
consequence of the collider T.
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certainly interpret the estimate for the interaction term, this
value only provides information on the difference in magni-
tude of the X→Y relationship for one level of Q relative to
another. However, it does not tell you whether the direction
of association differs for one level of Q versus another (e.g.
males versus females in our example; see [31] for an in-
depth discussion of qualitative versus quantitative inter-
action), which is biologically relevant. Importantly, keep in
mind that unlike confounding, effect modification is an
intrinsic phenomenon—a form of biological truth—that
should be observed rather than ‘adjusted away’. The elec-
tronic supplementary material, §3 includes additional
considerations for effect modification in the context of
mediation analysis, along with a brief discussion on effect
modification versus biological interaction.

(v) Collider
A collider (S) is a shared consequence of X and Y, depicted by
arrows emerging from X and Y toward S. One should never
condition on a collider, as this will induce a spurious associ-
ation between X and Y.

If, as in figure 8, there is no association between X and Y,
then conditioning on S (the collider) or T (consequence of the
collider) will induce an association that does not exist. If an
association does exist, conditioning on S can even flip the esti-
mate for X in the opposite direction. In our example,
reproductive state may be a collider since social connectedness
can influence reproductive state (higher social connectedness is
related to a greater likelihood of being pregnant) and immune
function may also affect reproductive state (dysregulated
immune function is associated failed pregnancy). In this scen-
ario, conditioning on a reproductive state or affiliative
preference forces us to consider associations between social
connectedness and immune function only among those who
are pregnant, and only among those who are not pregnant. If
we adjust for the reproductive state in a regression model,
the estimate for X is the average across the two levels of repro-
ductive state (pregnant and non-pregnant). The strong positive
association between social connectedness and immune func-
tion would skew the null association among those who are
not pregnant to an overall positive association. This phenom-
enon is troubling and has puzzled perinatal epidemiologists
who erroneously conditioned on the timing of parturition as
a confounder when it was actually a collider [26].

Having encountered both confounders and colliders, we
emphasize the utility of causal knowledge and DAGs to con-
ceptualize both measured and unmeasured variables that
may affect the relationship of interest, as opposed to relying
solely on statistical associations [32,33].

(c) Step 3: implement the analysis
Prior to conducting the causal analysis that is reflected in the
DAG(s), researchers should familiarize themselves with the
data by assessing univariate and bivariate statistics (see elec-
tronic supplementary material, §2). There are typically two
broad endpoints in a causal analysis: quantifying the total
effect of X on Y and quantifying direct versus indirect effects
(mediation) of X on Y.

(i) Total effects
If interested in the total effect of X on Y, the investigator should
not adjust for mediators; doing so will yield null-biased
estimates [22]. This does not imply that the investigator
should avoid adjusting for confounders. As a shared
common cause of X and Y, accounting for a confounder does
not block any of the total effect of X but rather, controls for
extraneous variability in the relationship between X and
Y. Precision covariates should also be considered at this
point in time.

After identifying confounders via a DAG and bivariate
analysis, the next step is to home in on confounders to block
all backdoor paths from X to Y. When the need to adjust for
a variable is in question, we suggest examining the X→Y
association with versus without adjustment for a variable. If
including it does not appreciably change the results, then it
is preferable to proceed without adjustment [22].

(ii) Direct and indirect effects
If a research question involves assessing a biological mechan-
ism or pathway, then the analysis involves the estimation of
direct and indirect effects. Barron and Kenny’s method [24]
is a common approach; however, as discussed earlier, there
are limitations to this approach, and caution should be taken
when interpreting results given the assumptions required
and the fact that the variables for which we have data are
likely upstream or downstream proxies of the true mediator
or possibly markers of a parallel physiological pathway. Inves-
tigators should be particularly careful when testing mediators
that cannot be directly manipulated, as these variables are par-
ticularly unlikely to meet the required assumptions [34]. In
such scenarios, there are analytical techniques appropriate
for mediation analysis, such as structural equations models
and path analyses [35], which relax assumptions of general-
ized regression. Regardless, an investigator should not claim
that the mechanism of interest is solely responsible for the
effect of X on Y and acknowledge evidence from in vivo
or in vitro studies and/or the need to interrogate specific
mechanisms in controlled experimental settings.

(d) Step 4: interpret results
When interpreting the results, it is important to focus on the
specific relationship between X and Y rather than for other
covariates in the model. Moreover, the direction, magnitude
and precision of the estimate across sensitivity analyses are
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important to assess since a robust association is likely to per-
sist. Keep in mind that for any given hypothesis, there are
alternate hypotheses and thus, alternate explanations for
findings. Acknowledge and search for these possibilities,
whether they transpire from complementary biological
phenomena, unmeasured confounders or inappropriate stat-
istical adjustment (e.g. adjusting baseline values of a
variable when the outcome is changed in that variable
[36,37], adjusting for a collider [38] or adjusting for a
mediator that has a shared common cause with the outcome
[26,39]). At this point in time, investigators may find it help-
ful to revisit the DAG after the analysis to sketch out
unmeasured variables that may be responsible for surprising
findings. Presenting the DAG and justifying the choice of
variables and arrows therein is a valuable way of conveying
the necessary assumptions that must hold for the results to
be interpreted causally [40].

Finally, although there is stigma for using causal language
to describe results from observational data, we and others [41]
argue that use of causal language is appropriate when research
tests a causal hypothesis and given appropriate consideration
of alternative hypotheses and discussion biases.
5

4. Conclusion
Three years after pointing out the flaws of models, Box
updated his outlook stating, ‘All models are wrong, but some
are useful’ [42]. In espousing Box’s 1979 view, we hope that
this commentary aids in developing useful models to answer
impactful scientific questions, particularly when making a
causal inference is the goal. For the interested reader who
seeks to learn more about causal inference, we recommend
starting with a layman’s overview of causal inference in The
Book of Why [41] and the freely available but somewhat more
technical book, Causal Inference: What If [43].

Modern causal inference transpires from the work of torch-
bearers cited herein. Though many named epidemiologists
may be unfamiliar to EEB scientists, Sewall Green Wright
(1889–1988), an American evolutionary biologist known for
his work involving path analysis, is a household name and a
direct ancestor to modern causal inference [4,44]. Thus, while
causal inference went out of fashion for much of the twentieth
century among EEB researchers, it is rooted to luminaries in
the field from the early to mid-nineteenth century. In recent
years, a number of EEB scientists have developed an interest
in causal inference and formed collaborations with epidemiol-
ogists and/or biostatisticians—a rich collaboration in which
we hope to participate and promote.
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