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1  | INTRODUC TION

1.1 | Inferring complex causal networks from data

Ecologists commonly explore relationships within and between vari-
ables featuring complex, imperfectly known interactions. Structural 
equation modelling (SEM) offers an ideal approach for this task 
(Box 1), as it aims at creating a single causal network encoding the 
interactions of multiple variables (Kline,  2016; Shipley,  2016). The 
SEM family (see Glossary) includes many distinct approaches, differ-
ing in their relative focus on observed and unobserved variables, fit-
ting approach, and abilities to deal with longitudinal and hierarchical 
data. Of all the family members, path analysis constitutes the most 
popular and accessible technique used by ecologists (e.g. Figure 1).

There are two properties that distinguish SEM from traditional 
univariate generalized linear model (GLM) analyses and alternative 
multivariate techniques. First, SEM can be used to test hypotheses 
about network structure, decomposing total effects into direct and 
indirect and dealing with reciprocal effects, multiple observable 
and unobservable variables (see Glossary), multiple outcomes, and 
the relationships within and between them (Barringer et al., 2013; 
Hoyle,  2012). Such networks are useful in quantifying cascading 
effects and in exploring potential inter-dependency within and be-
tween intrinsic and extrinsic factors (e.g. Chen et al., 2013; Duffy 
et  al.,  2015). Second, in SEM, relationships between variables are 
interpreted as causative rather than associative (Box 1). In addition, 
SEM techniques can handle a wide range of conditions—data with 
missing cells, a diverse array of residual distributions and different 
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MSA-SEM should be applied.

K E Y W O R D S

causal analyses, information criteria, model selection, multimodal inference, network 
structure, path analysis, review, structural equation modelling

https://orcid.org/0000-0001-7899-8913
https://orcid.org/0000-0001-8022-0123
https://orcid.org/0000-0002-8808-8937
mailto:﻿
https://orcid.org/0000-0002-0634-2920
mailto:hadashaw@bgu.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13742&domain=pdf&date_stamp=2021-11-06


     |  43Methods in Ecology and Evolu
onGARRIDO et al.

GLOSSARY

Akaike information criterion index (AIC)
The most common information theory index used for model selection procedures. It estimates the relative amount of information lost 
by a given model based on the likelihood function (L) and the number of estimated parameters (k). The formula is AIC = 2k − 2ln(L). 
The lower this value, the higher the quality of the model.
Akaike information criterion index corrected for the sample size (AICc)
AIC corrected for small sample sizes (n). The formula is AICc = AIC +

2k2 + 2k

n− k − 1
.

Bayesian information criterion index (BIC)
An information theory index that is similar to AIC but uses another penalty for the number of estimated parameters. The formula is 
BIC = ln(n)k − 2ln(L).
Sample-size-adjusted Bayesian information criterion index (aBIC)
BIC index with a modified (smoother) penalty function for sample size effect. The formula is aBIC = ln(

n+ 2

24
)k − 2ln(L).

Composite variables
A type of unobservable variables, which are made up of the total combined influence of indicator variables based on given weights. 
In a SEM diagram, these variables are denoted by a hexagon, and the arrows from the indicator variables lead into them. For exam-
ple, in Eldridge et al. (2017), grazing was depicted as a composite variable composed of the combined effects of current and historic 
livestock grazing, together with those of other herbivores. Note that in the case of composite variables, the indicators (e.g. relative 
nutrient concentration) do not necessarily share a common cause.
Latent variables (hidden variables, hypothetical variables or hypothetical constructs)
A type of unobservable variables, which are not directly observed but are inferred from the indicator variables. In a SEM diagram, 
these variables are denoted by an oval, and the path arrows lead from them to the indicator variables. For example, Liu et al. (2016) 
used the functional traits of trees as a latent variable inferred from four indicator variables (wood and crown diameter, height and 
hydraulic conductivity). They tested the hypothesis that basic differences between functional traits are the common cause for the 
differences in the measured traits. The error associated with the indicator variables implies that they constitute an imperfect ap-
proximation of the latent variable, and presumably, other factors are manifested in the latent variable (e.g. root complexity).
Model relative weight (wi; Akaike weights)
The difference in the information theory index scores between each model and the best model (i.e. the model with the lowest 
information theory index score), normalized across the set of candidate models to sum to one (or 100%) and thus interpreted as a 
probability.
Multicollinearity
The inclusion of highly correlated independent variables in regression-type models. Our rule of thumb in the case study was that 
correlation coefficients (|r|) that are equal to or greater than 0.6 denote multicollinearity.
Multivariate normality
A requirement for using the maximum likelihood (ML) or general least-squares (GLS) calibration approaches (Box 1), according to 
which the observed variables should be jointly multi-Gaussian. This condition occurs when all independent sources of randomness 
are themselves normally distributed.
Nested models
A collection of models is nested if for each pair of models in the collection, one's free parameter set is a proper subset of the other's.
Observed variables
Variables, also termed measured variables or indicators, have a measured quantity that was estimated during data collection. In a 
SEM diagram, these variables are denoted by rectangles.
Path
A direct relationship between two variables in SEM. The strength of the relationship is defined by the path coefficient.
Saturated SEM model
A model, also termed a meta-model or SEMM, that includes the maximum number of paths tested in a given set of competing models. 
This model should reflect the study design and attributes of the system studied.
SEM family
The SEM family includes a diverse array of approaches, differing in their relative focus on observed and unobserved variables, the 
fitting approaches, and their abilities to deal with longitudinal and hierarchical data. Confirmatory and exploratory factor analyses 
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data designs (e.g. hierarchical models and repeated measure design; 
Newsom, 2015; Shipley, 2016; Vinzi et al., 2010). These properties 
make it a useful framework for ecologists (Fan et al., 2016).

Once SEM has been chosen, two challenges are the selection of 
an optimally complex, data-supported model and the quantification of 
its uncertainty. Often there are multiple plausible models, each repre-
senting a hypothesis or a set of hypotheses, and one wishes to select 
the model that best accounts for the observed data. Traditionally in 
SEM, selection of the best model depends on the concept of dichot-
omous hypothesis testing. In the basic strictly confirmatory approach 
(SCA), the saturated SEM model (see Glossary) is tested, and only the 
paths (see Glossary) with significant coefficients are considered. The 
backward elimination approach to SEM broadens the parameter space 
dimension, by competing between nested models (see Glossary), in a 
process analogous to backward elimination in univariate models (BEA, 
also termed stepwise SEM; e.g. Bentler & Bonett, 1980; Tarka, 2018).

However, while these traditional approaches are straightforward, 
they often suffer from the dependence of the results' interpretations 
on an artificial probability threshold (usually p < 0.05), and they are ex-
pected to depend on the level of model complexity (i.e. the number of 
parameters and the number and complexity of interactions) and on the 
sample size (Amrhein et al., 2019). Adding parameters to the SEM model 
cannot weaken, and will generally improve, the model fit. However, the 
more degrees of freedom in the model, the less it is constrained by a 
given dataset, and the less reliable the predictions made from it (i.e. the 
problem of overfitting). Furthermore, the outcome of both approaches 
is a single model that depends on the sequence of parameter or path 
deletions (Bentler & Bonett, 1980; Tarka, 2018) and ignores model un-
certainty (Mundry & Nunn, 2009; Whittingham et al., 2006).

1.2 | Using information criteria to choose between 
alternative SEM models

Using a formal model selection approach or MSA (i.e. informa-
tion theoretical approach to model selection and multimodel 

interference) can resolve many of these calibration difficulties, pro-
viding an unbiased model inference, independent of test power and 
parameter space dimension, as well as uncertainty quantification 
(Burnham & Anderson, 2002; Wu et al., 2020). The information cri-
teria are designed to address this matter of optimal model selection.

In this approach, the researcher develops an a priori set of hypoth-
eses (represented as alternative models) and quantifies the databased 
evidence for ranking each hypothesis. The models that minimize the 
loss of information about the full reality, as reflected in a lower Akaike 
information criterion (AIC; see Glossary) index or any other informa-
tion theory index, receive the highest ranks. The information theory 
indices rank the models by balancing between fit and precision, con-
sidering model complexity and avoiding the use of artificial thresh-
olds. In some cases, the data are best explained by a single model, 
and results can be inferred solely from it. In other cases, information 
should be inferred from the set of models that best fit the data, and 
the results are interpreted considering the relative likelihood of each 
model, given the data and the set of models (e.g. Messika et al., 2017). 
These advantages suggest that a combined MSA-SEM approach can 
be a powerful tool to evaluate multiple causal hypotheses regarding 
complex interactions between variables.

Model selection approach allows the comparison of non-
nested models and can compare models that do not have any 
particular structural relationship to one another (Burnham & 
Anderson, 2002). Furthermore, MSA does not require any of the 
models compared to be the ‘true’ SEM model (Lin et al., 2017). It is 
possible to compare SEM models with different structures, so long 
as each of them is calibrated against the same empirical covariance 
matrices representing the relationships between variables (see ‘an 
MSA-SEM road map’).

1.3 | Goals for this work

The formal MSA has become a popular paradigm in ecology, but the 
use of MSA with SEM is comparatively rare. In addition, the current 

(CFA and EFA; Kline, 2016), latent variable SEM (Loehlin & Beaujean, 2016) and confirmatory composite analysis (CCA; Schuberth 
et al., 2018) focus on, or at least include links between observable and unobservable variables, whereas path analysis include solely 
observable variables. Longitudinal SEM (Duncan et al., 2013; Newsom, 2015) models are used for exploring longitudinal data, and 
hierarchical Bayesian SEM models are used for exploring data that include variables at both the individual and the group levels, with 
both within- and between-group variation and covariation (Hox et al., 2017). Most SEM models are calibrated based on the covari-
ance matrix (Box 1), but partial least squares path modelling (PLS; Dijkstra & Henseler, 2015) and piecewise SEM (Lefcheck, 2016) are 
variance-based, which make them more resistant to violation of the parametric tests.
Unobservable variables
Abstract variables that are part of the theory but not in the dataset, and thus are only inferred from the observed variables. They 
include latent and composite variables.
Variance–covariance matrix
A matrix with the different variables simultaneously appearing both vertically and horizontally, where the diagonals are the variances 
of each variable and the off-diagonals are the covariances between each pair.
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lack of consistency in MSA-SEM use increases the likelihood of 
encountering pitfalls, restricts comparability between studies and 
makes the conclusions and interpretations of each study more sub-
jective. Here, we present a critical evaluation of MSA-SEM, which 
both presents new simulation results and introduces the subject at 
a level accessible to ecologists. The work's two major contributions 
are the following:

1.	 A large-scale simulation study, which demonstrates that the 
performance of MSA-SEM under realistic conditions is superior 
to those of the two traditional approaches to SEM selection, 
highlighting its importance for ecologists.

2.	 A road map for the use of MSA-SEM by ecologists, which 
emphasizes both the strengths and the limitations of the ap-
proach, outlining best practices and presenting a detailed 
case study.

2  | MODEL SELEC TION VERSUS LEGACY 
ALTERNATIVES:  A SIMUL ATION STUDY

2.1 | Study outline

We conducted a simulation study to compare the performances 
of MSA-SEM, SCA-SEM and BEA-SEM under different scenarios. 
We analysed the data that were generated based on a known SEM 
model (designated as a true SEM model; see Section 2.2.1 and 
Figure S4A,B) and determined the final SEM model selected by each 
of the three approaches (see the Section 2.2.3). The approaches' 
explanatory and predictability properties were then assessed 
through comparisons between each selected SEM model and the 
true SEM model (see the Section 2.2.4). The scenarios simulated a 
gradient that ranged from ideal to realistic scenarios by manipulat-
ing the structure of the true or saturated SEM models, the dataset 

BOX 1 SEM overview

SEM basics. The major goal of ecologists describing a system with SEM is to uncover key relationships and mechanisms explaining 
the behaviour of natural systems. Each SEM model is represented by matrix equations, which can be pictured as a directed graph 
consisting of variables that may depend on one another, constructed without loops (i.e. it is impossible to start from and end with the 
same variable; Figure 1). When the causal analysis step is correctly conducted (Figure 2), the arrows of the graph represent causality. 
Some variables are independent (only pointed towards other variables), others are dependent (only pointed at by other variables), and 
the rest are mediators (both pointed to and pointed at by other variables). The independent variables may be correlated (indicated 
by bidirectional curved arrows), but the causal nature of this correlation is considered as external to the SEM and is not explained 
by the graph.
*SEM operation. Once the SEM equations and diagram are ready, one should determine the numerical quantities defining the model, 
namely the path coefficients and the covariance structure of the independent variables. The goal of this procedure is to choose � (the 
vector containing all the parameters that define the SEM model), which would minimize the distance between S (the empirical covari-
ance matrices representing the relationships between variables) and 

∑

(�) (the estimated variance–covariance matrix [see Glossary] 
of all random variables in a given SEM model). Consequently, for each SEM model, the calibration is global, and equations are solved 
simultaneously, yielding path coefficients that best correspond to the matrix S. There are multiple calibration approaches, most be-
longing to the maximum likelihood (ML) and the least squares (LS) families. Traditionally, the commons are ML and GLS (general least-
squares), which relies on multivariate normality (see Glossary; Hoyle, 2012; Kline, 2016). Today, different versions that do not embed 
this assumption prevail (Lee, 2007; Olsson et al., 2000; Sarstedt et al., 2017). Different SEM formulations include different sources 
of uncertainty. The Bentler–Weeks and LISREL formulations assume that all independent, mediator and dependent variables partici-
pate in 

∑

(�) (Lee, 2007), whereas in Asparouhov and Muthén (2009) formulation, the independent variables are not included there.
SEM boundaries. SEM calibration is possible only if 

∑

(�) and S are defined in terms of the same variables. A common misperception 
about SEM is that it can defer to the data and will automatically choose the best data-supported model. Bollen (1989) demonstrated 
that this is wrong by presenting 10 SEM models with different independent variables and causal structures, all supported by the 
same S matrix. Considering that correlations between independent variables are permitted, it is reasonable that a degenerate SEM 
model, with all variables treated as independent and mutually correlated, can be made to fit any number of variables. Accordingly, 
given a plausible set of candidate SEM models, MSA can help us select the most data-supported models, but it cannot detect the 
optimal model ex nihilo. Furthermore, since the calibration relies solely on covariance data, it is not possible to infer the direction of 
causation; one can only specify it. Taken together, the causal modelling and model selection processes are essential for the correct 
use of SEM (Figure 2).
*There are multiple alternative model fitting approaches, and MSA-SEM can work with any metric of model fit, but here for simplicity, 
we focus on the most widely implemented one in SEM software.

 2041210x, 2022, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13742 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



46  |    Methods in Ecology and Evolu
on GARRIDO et al.

size or the variance value of the dependent variable (see the Section 
2.2.2). We then ran sensitivity analyses to quantify the depend-
ence of the simulation results on (a) the true SEM model's structure 
and parameter values and (b) the criteria used in the MSA-SEM to 
specify the ‘best’ SEM model set (see Section 2.3). Considering the 
mentioned advantages of MSA-SEM, we hypothesized that it would 
best handle the limited information, as well as the high variability 
and complexity of ecological systems, and thus predicted that its 

performance would outweigh those of the others when the sample 
size is small, and the variability in the dependent variable, the net-
work complexity and the parameter uncertainty are high.

The same simulation's rationale was used to compare the per-
formances of the MSA-SEM approaches based on different infor-
mation criteria, and to compare those differing in the criterion used 
for specifying the ‘best’ SEM model set under suboptimal conditions 
(see the Section 2.2.2).

F I G U R E  1   SEM* diagrams in the case 
study. The diagrams represent the true 
SEM model that was used to generate the 
data (a), the saturated SEM model (b) that 
was used in the SEM specification process 
(Figure 2) and was one of the competing 
models in the set (model 18 in Table S2), 
and the two ‘best’ SEM models (model 17 
in C and model 13 in D; Table S2) selected 
during the model selection process 
(Figure 2). (e)–(f) are the same as (c)–(d) 
but instead of the coefficient values, the 
routes for possible cascading effects are 
highlighted. The dependent variable is the 
probability of any host to be infected with 
pathogen A, the independent variable is 
the level of sand stabilization (yellow), 
and the others are host-related (grey) 
and vector-related (orange) mediators, as 
well as the host probability to be infected 
with pathogen B (blue). Numbers are path 
coefficients (β) and β/SE in parentheses, 
and arrows indicate hypothesized 
causality, where broader arrows represent 
stronger effects. The grey, orange and 
mixed (grey and orange) colours of the 
possible routes highlight potential host-, 
vector- and host–vector cascading effects, 
respectively. *Note that these are all path 
analysis models, but for generality, we 
term them SEM models
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2.2 | Methods

The R code used for the simulations can be found in https://doi.
org/10.6084/m9.figsh​are.14627289.

2.2.1 | Generating the data

A random 10,000 row dataset was generated per simulation run, 
based on a true SEM model (Figure S4A,B, for the scenarios of full 
knowledge and uncertainty, respectively). Since the MSA-SEM ap-
proach relies on the development of well-thought-out a priori ex-
planatory hypotheses, the structures of the true SEM models were 
inspired by the model system of the rodent communities in the 
northwestern Negev Desert's sands in Israel. In particular, the six 
independent and mediator variables represented the environment-
related, host-related, vector-related and pathogen-related factors 
(marked in yellow, grey, orange and blue, respectively) that are ex-
pected to affect the probability of any host to be infected with patho-
gen A (dependent variable, marked in blue, hereafter, host probability 
to be infected with pathogen A; Figure S4A,B). In addition, the paths 
(i.e. links between variables irrespective of their signs) conformed to 
the theoretical foundation of a host–vector–pathogen model system 
(Table S1) and reflected the host–vector hypothesis (e.g. the effect of 
sand stabilization on the host probability to be infected with patho-
gen A is mediated by both host and vector mediators). However, for 
simplicity, we initially assumed that all paths are positive, all param-
eter estimates' means are zero and all variances are one.

2.2.2 | Simulating 16 scenarios

We evaluated the relative capabilities of the three approaches 
under scenarios representing common constraints in ecological 
research. Specifically, four factors—each with two levels—were 
manipulated in all possible combinations (24 unique scenarios). To 
simulate a researcher constraint in population sampling, we ma-
nipulated the sample size by analysing either the full generated 
dataset or a random subset of 100 rows in each replicate run. To 
simulate the high variability in the dependent variable that char-
acterizes data collected in nature, we generated the data by using 
either low or high variance values (one or five units, respectively). 
To simulate the scenario of high network complexity that also 
characterizes natural environments, we manipulated the presence 
of extra paths in the saturated SEM model (paths k and n − r that 
are present in Figure S4D but not in Figure S4C). Finally, to simu-
late a common scenario in which a researcher is not aware of all 
the important parameters that underlie the observed pattern, we 
manipulated the presence of extra mediator variables in the true 
SEM model that were not used during the data analysis stage (pa-
rameter uncertainty; Figure S4B).

In the MSA-SEM refinement analyses, we compared the SEM 
models (a) selected as ‘best’ through either AIC, AICc, BIC or aBIC 

ranking (see Glossary), and (b) those specified as belonging to the 
‘best’ SEM model set, based on either a summation of model weights 
(
∑

wi  ≥  55% or 
∑

wi  ≥  90%; see definition for wi in the Glossary), 
ΔAICc ≤ 2 between each SEM model and the best SEM model (i.e. 
the one with the lowest information criterion values), or based on the 
inclusion of all SEM models with wi ≥ 10%. These simulations were 
all done under suboptimal conditions (a small sample size and high 
variability in the dependent variable, complexity and uncertainty). 
Moreover, the comparison between the four information criterion 
indices was made under the 

∑

wi ≥ 55% criterion.

2.2.3 | Determining the final SEM model selected by 
each approach

In each replication, the first stage was common to all approaches and 
included the definition of the saturated SEM model (Figure S4C,D, 
for the low and high network complexity scenarios, respectively). 
The saturated SEM model was used as a starting point for the SCA 
and BEA approaches and represented one of the competing models 
in the 20-model set of the MSA. In the second stage, we determined 
the final selected SEM model, using each approach. In the SCA ap-
proach, we achieved this goal by creating a SEM model that included 
all the significant (p < 0.05) paths of the saturated SEM model. In the 
BEA approach, we ran a stepwise elimination procedure in which, at 
each step, the path with the highest associated p-value was dropped. 
Then, both nested models (with and without this specific path) were 
compared, and the one with the lower AICc was kept for the next 
elimination step. Through all elimination steps, we maintained the 
structure of the mediators and dependent variables necessary for 
model selection comparison. To define the final SEM model selected 
by the MSA, we followed the MSA-SEM analysis process (Figure 2 
and case study). In addition to the saturated and true SEM models, 
the competing model set included 18 models. These were logical 
varieties of models nested in the saturated SEM model and repre-
senting either the host-mediated, vector-mediated or host–vector 
hypotheses, postulating that the effect of sand stabilization on the 
host probability to be infected with pathogen A is either mediated 
by host-related, vector-related or both types of factors, respectively. 
During the model selection process, we then ranked the 20 models 
using AICc and specified the best models based on the 

∑

wi ≥ 55% 
criterion (see Figure S5 as a proof of concept). The final model was 
created using a weighted average of parameter estimates over the 
‘best’ SEM model set.

2.2.4 | Comparing the approaches' performances

The approaches' performances were assessed based on a compari-
son between each selected final SEM model and the true SEM model 
(Figure S4A) and was quantified by three indices. The first two indi-
ces assessed the explanatory properties of the selected SEM mod-
els, without considering their path coefficient values. Specifically, 
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the ‘true model’ index quantified the probability of each approach 
to select a model with an identical structure to that of the true SEM 
model over the 500 replications per scenario, receiving, in each run, 
the value one when successful and zero when not. The ‘true paths’ 
index quantified the probability of each approach to include any and 
only true paths and was calculated as one minus the summation of 
the false-positive and the false-negative rates. The false-positive rate 
was computed as the ratio between the number of paths included in 
the selected SEM model and not in the true SEM model and the total 
extra (false) paths in the saturated SEM model. The false-negative rate 
was computed as one minus the ratio between the number of shared 
paths between the selected SEM model and the true SEM model and 
all paths in the true SEM model. The third index, entitled the ‘predict-
ability’ index, assessed the predictability of the selected SEM model 
by calculating the similarity between the path coefficient values of 
the selected SEM model and the true SEM model. It was computed as 
one minus the sum of the absolute differences between the values of 
each path in the selected SEM model and the corresponding path in 
the true SEM model, divided by the number of paths in the saturated 
model. The coefficients of paths that were not included in the models 
of interest were assumed to be zero.

Preliminary analyses suggest that the performances of the final 
SEM models selected by BEA are never superior to the other two 
approaches; these latter two reverse their priority in response to 
the simulated scenarios (Figure S6), and thus to simplify the inter-
pretation, we adjusted the indices to test the relative advantage of 
MSA over the SCA. Accordingly, the ‘true model’ index received the 
value one when only the MSA selected the true SEM model and zero 

for all other outcomes. The modified ‘true paths’ index summed the 
differences between the false-positive rates and the false-negative 
rates of two approaches. The modified version of the ‘predictability’ 
index calculated first the deviations of the path coefficients in the 
selected models compared to those of the true SEM model, accord-
ing to each approach, and then calculated the differences between 
the MSA and the SCA deviations. In all cases, higher values indicated 
an MSA advantage.

When the MSA showed an advantage over SCA, further analyses 
were conducted to confirm that the MSA advantage was the result of 
the special MSA properties rather than just a product of the greater 
number of paths included by the multimodal selection procedure. 
Accordingly, the performance of the MSA approach was also com-
pared to two null versions of MSA, using the above three indices. 
The first null version was used to test the importance of the SEM 
specification process (Figure 2) and included, in each run, a random 
selection of 20 competing SEM models (MSA0a). The second null 
version was used to test the importance of the model selection step 
(Figure 2) and included, in each run, a random selection of the ‘best’ 
SEM models from the competing model set (MSA0b). The number of 
SEM models allowed to be selected in this version was equal to the 
number of SEM models selected by the MSA-SEM of each run.

2.2.5 | Statistical analysis

For each scenario, we ran 500 replications, and in each replication, 
the data were independently generated based on the true SEM 
models (Figure S4A,B). The saturated SEM model for each run was 
then fitted to the generated data by the maximum likelihood (ML) 
method. When the model did not converge to a dataset or the satu-
rated SEM model significantly deviated from the data, its dataset 
was ignored and replaced with additionally generated data until 500 
datasets yielded proper solutions.

Then, we used GLMs to test the effect of the four factors, namely, 
the sample size, variability in the dependent variable, network com-
plexity, and parameter uncertainty and their two-way interactions 
(independent variable) on the performance difference between the 
MSA-SEM and the SCA-SEM (each of the three performance indi-
ces, dependent variables), indicating the MSA-SEM advantage by 
positive values. The ‘best’ models explaining the approaches' per-
formances were selected based on the relative weights of the AICc 
values (wi). When an MSA-SEM advantage was revealed, we used the 
same approach to compare its performance with those of the two 
null MSA versions.

2.3 | Results

All final SEM models selected either by the three SEM approaches or 
by the MSA0a approach fitted the data well (the comparative fit index; 
CFI > 0.90), while almost half of the SEM models selected through the 
null version of the model selection process (MSA0b) did not.

F I G U R E  2   A road map for an MSA-SEM analysis process. Steps 
highlighted in green are those in which the candidate models are 
confronted with specific data
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Our analyses suggest that the relative advantage of MSA-SEM over 
the SCA-SEM depends on the performance index, the tested factors 
and the interaction between them (Table S3). The interaction between 
the sample size and the network complexity was the best predictor of 
the variability in the relative advantage of MSA-SEM considering the 
‘true model’ index (Table S3). This is because under low network com-
plexity, the MSA-SEM had a greater advantage at small sample sizes 
than at large samples sizes, whereas under high network complexity, 
its advantage was consistent at both sample sizes (Figure  3a). The 
interaction between the sample size and the parameter uncertainty 
was the best predictor of the variability in the relative advantage of 
MSA-SEM considering both the ‘true paths’ and the ‘predictability’ in-
dices (Table S3). This is because when the sample sizes were large, the 
SCA-SEM had a greater advantage under high than under low param-
eter uncertainty, whereas at small sample sizes, the MSA-SEM had a 
consistent advantage, independent of the parameter uncertainty level 
(Figure 3b,c). In all cases of MSA-SEM superiority, it was also superior 
to both null MSA versions (Figure S7). Neither the level of variability in 
the dependent variable nor its interaction with any of the other three 
factors had an important effect on the comparison between the MSA-
SEM and SCA-SEM performances (Table S3; Figure S6).

The inclusion of negative path coefficients in the true SEM mod-
els or the replacement of their zero parameter estimate means with 
the actual values observed in the field did not affect the results pre-
sented in Table S3 and Figure 3. This consistency, along with anal-
yses showing that the variance of the dependent variable is not an 
important predictor of the variability in the relative advantage of 
MSA-SEM (Figure S6), suggests that our simulation results are not 
affected by the properties of the true SEM model.

We found that under suboptimal conditions, the AICc and BIC 
outperformed all other explored information criteria, in terms of 
both explanatory and predictability properties (Figure  S5A,C,E). 
This AICc and BIC superiority was consistent under the various 
‘best’ SEM selection criteria (data not shown). Among the criteria 
specifying the ‘best’ SEM set, we found that while the 

∑

wi ≥ 55% 
and the ΔAICc ≤ 2 criteria showed similar performances to the oth-
ers in terms of model predictability (Figure S5F), they outperformed 
them in terms of the model's explanatory properties (Figure S5B,D). 
Consistent with these results, our second sensitivity analysis 
showed that using either one of these two superior criteria in the 
MSA-SEM increased the overall advantage of this approach over 
the SCA-SEM and the BEA-SEM approaches (Figure S8). However, 
the performances of the final SEM models selected by BEA were 
still never superior to the other two approaches (due to the high 
similarity to Figure S6, the results are not shown), and the effects of 
the four factors and their interactions on the relative advantage of 
the MSA over the SCA remained robust (Figure S8).

2.4 | Conclusions

The simulation results suggest that SCA-SEM is preferable under the 
ideal conditions of extremely large sample sizes (~10,000), especially 

when there is uncertainty regarding the relevant variables, probably 
owing to its lower tendency to produce false-positive errors (i.e. in-
cluding an unimportant path in the final SEM model; Figure S6E–H). In 
contrast, MSA-SEM is seen as a superior approach when addressing 

F I G U R E  3   Relative advantages of the model selection approach 
(MSA) over the strictly confirmatory approach (SCA) to SEM. Heat 
maps of the probability that only MSA will select the true SEM model 
(Figure S4A) (‘true model’ index; a), and of the differences between 
MSA and SCA in the probability to include any and only true paths 
(‘true paths’ index; b) and in the predictability of the path coefficients 
(‘predictability’ index; c) as a function of the sample size (N = 100 
or 10,000), network complexity (12 or 18 paths in the saturated 
SEM model; Figure S4C,D) and parameter uncertainty (zero or four 
extra mediators used to generate the data but left unspecified in the 
analyses; Figure S4A,B). The green hues become darker with increasing 
MSA-SEM advantage, and the red hues become darker with increasing 
SCA-SEM advantage. The heat maps focus on the most important 
predictors determined by the model selection analysis (Table S3)

 2041210x, 2022, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13742 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



50  |    Methods in Ecology and Evolu
on GARRIDO et al.

the study constraints faced by ecologists: limited sample population 
(~100 subjects), complex networks (~18 paths in the saturated SEM 
model) or both. Its superiority over the two null MSA versions fur-
ther suggests that this advantage can be attributed to the MSA-SEM 
analysis processes (Figure  2), which may decrease the likelihood of 
incurring false-negative errors (i.e. omitting an important path from 
the selected SEM model; Figure S6I–L). Under these suboptimal sce-
narios, the use of AICc or BIC information criteria and the specifica-
tion of the ‘best’ SEM set, based on the 

∑

wi  ≥ 55% or ΔAICc ≤ 2 
criteria, achieved the best performance, probably since they select 
fewer models, lowering the tendency to produce false-positive errors.

3  | AN MSA-SEM ROAD MAP

To encourage consistent and correct use of MSA-SEM, we propose a 
five-step road map (Figure 2). The road map highlights unique MSA-
SEM considerations that will be important to most analyses. Informed 
by Grace and Irvine (2020), it begins with a causal analysis, which leads 
to the development of hypothetical explanatory models for evalua-
tion. Considering data availability and refined by statistical validation, 
a set of competing models encoding the background knowledge are 
then specified, through the process of SEM specification. The third 
process of statistical validation sets the conditions for the model 
selection process by determining the SEM models' relative fit to the 
data, the estimation method and the information criterion. During the 
fourth process of model selection, the likelihood of all SEM models is 
quantified, and the ‘best’ SEM models are specified and characterized. 
Based on this information, during the process of inference, ecologists 
interpret their findings, considering the study hypotheses, and refine 
their conceptual view to simulate further studies. Note that only the 
third and fourth processes involve confronting the SEM models with 
the data. Below, we discuss each process in turn, and in the Supporting 
Information, we demonstrate them via a case study, supported by a 
tutorial R code (https://doi.org/10.6084/m9.figsh​are.14627343).

3.1 | Causal analysis

SEM requires prior knowledge of plausible causal pathways; there is 
not enough information in the correlations of field observations, ab-
sent a priori hypotheses, to infer the correct causal pathways (there 
are too many possible bivariate associations). Prior explanatory hy-
potheses are required for SEM to be valid for causal inference (Box 1 
and Grace & Irvine, 2020). The assembly of prior knowledge includes 
compiling a list of biological assumptions and predictions relevant to 
all possible relationships between the measured variables (Table S1).

3.2 | SEM specification

Based on the study questions and the data's nature and avail-
ability, the general structure of candidate SEM models should be 

determined. Today, it is possible to integrate into SEM unordinary 
data types, representing basic ecosystem processes and dynam-
ics, including hierarchical linear modelling, time series, repeated 
measure analyses and feedback loops (Bentler & Bonett,  1980; 
Newsom,  2015). In addition, meta-parameter partitioning is now 
made possible through multigroup methods (e.g. Flatau et al., 2018).

The simplification of all candidate SEM models is required to set 
the space of possible hypotheses, avoiding overfitting and spurious 
findings due to unnecessary complexity (Box 1). Limiting the number 
of parameters is recommended, allowing at least five observations 
per free parameter (Bentler & Chou, 1987; Kline, 2016). Some paths 
may be removed due to violations of conditional independence 
(Kline, 2016; Shipley, 2016). To reduce the parameter count, one may 
remove those that produce multicollinearity (see Glossary), formu-
late an equation that incorporates multiple dependent variables (e.g. 
the integrated index of female flea reproductive success in the case 
study) or posit unobservable variables.

Candidate SEM models can be generated via a combination of 
knowledge of overall network structure, as employed by Mitchell 
(1992), Cayenne-Engel and Irwin (2003), Cardon et  al.  (2011), 
Lootvoet et  al.  (2013), and von Hardenberg and Gonzalez-Voyer 
(2013), and/or inclusion and exclusion of individual hypothesized re-
lationships (e.g. Johnson, 2002; Palomares et al., 1998).

Regardless of how candidates are generated, understanding 
whether models are comparable, which relies on their being defined 
over shared random variables, is crucial; confusion about this matter 
is a common pitfall leading to incorrect interpretations among MSA-
SEM users. SEM software programs use various calibration formu-
lations that may affect which models are comparable (Lee,  2007; 
Narayanan, 2012). For example, in some formulations, the ensem-
bles of independent, mediator and dependent variables are shared 
between all candidates, but the assignment of variables to each type 
may vary between candidates. In other cases, only the mediator and 
dependent variables are required to be shared between candidates, 
whereas the independent variables may be unshared. Thus, based 
on one's SEM calibration software, it is important to determine in 
advance which models are comparable.

It is not possible to recommend a ‘correct’ number of candidate 
models independent of a specific ecological problem. However, it is 
generally recommended that their number should be small, relative 
to the size of the dataset, since an excessive number of models in the 
competing set is expected to increase the risk of including spurious 
relationships and to reduce the ability to distinguish one or a few 
‘best’ models (Burnham & Anderson, 2002).

3.3 | Statistical validation

The candidate SEM models are selected by confronting them with 
data, which necessitates (a) a test of model fit to the data and (b) 
the selection of an estimation method and the (c) information crite-
rion. In most GLM analyses, it is recommended to take into consid-
eration various statistical constraints, such as missing data, outliers, 
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multicollinearity, non-normal distribution (or in the case of SEM, 
no multivariate normality) and restricted sample size. These con-
straints are more common in SEM due to its multidimensional na-
ture (e.g. violations of multicollinearity are more common in these 
models since they include both independent and mediator variables 
that can potentially correlate) and are crucial to consider in the 
MSA-SEM approach since these statistical properties determine 
the methods used for the above three tasks (Fan et al., 2016; Hu & 
Bentler, 1999). In many cases, fitting the SEM models to non-normal 
residual distributions or choosing a proper estimator would resolve 
these constraints (Hoyle,  2012; Kline,  2016). Alternative solutions 
are addressed in previous SEM reviews (Fan et  al.,  2016; Farrell 
et al., 2007; Hoyle, 2012; Kline, 2016). In cases of high overdisper-
sion, the inference can be improved by applying Quasi-AIC as the 
information theory index (Johnson & Omland, 2004).

3.4 | Model selection

The information criterion is used to rank the competing models and to 
weigh the relative support for each one (Johnson & Omland, 2004). 
The two main information criteria classes are those based on AIC 
and BIC information criteria. Despite major theoretical differences, 
both apply to models that are represented by multivariate probabil-
ity distributions and aim to minimize the distance between the un-
known true likelihood function of the data and the fitted likelihood 
function of the model. Their main difference is that the BIC penalizes 
model complexity to a greater extent (Altman & Bland, 1994; Dziak 
et al., 2020). In our simulation study, which featured a suboptimal 
scenario, we found that the models ranked based on AICc and BIC 
showed the best performance in terms of both explanatory and pre-
dictability properties (Figure S5). Accordingly, we recommend using 
them under similar conditions.

The likelihood of each model is quantified by its relative weight 
wi. Often there is no single model overwhelmingly supported by the 
data (wi < 90%), and thus, the inference is based on a group of the 
‘best’ models. Various rules of thumb were offered to specify the set 
of the ‘best’ SEM models, considering wi (models with wi ≥ 10% are 
regarded as ‘best’; Cohen et al., 2015; Messika et al., 2017), 

∑

wi (e.g. 
∑

wi ≥ 90%; Kedem et al., 2014) or ΔAIC between each of the SEM 
models and the best SEM model (e.g. models with ΔAIC ≤ 2 are re-
garded as best; Johnson, 2002). Based on our computational explo-
ration, we recommend adopting the 

∑

wi ≥ 55% criterion to specify 
the ‘best’ SEM model set under suboptimal conditions (Figure S5).

3.5 | Inference

Once the ‘best’ models emerge from the previous process, an infer-
ence about the study predictions and hypotheses can take place, con-
sidering the model structure and absence/presence of specific paths. 
It may be quantitatively valuable to compare the likelihood of each by 
means of wi, the evidence ratio (i.e. the ratio of model weights, ER), or 

ML values (Burnham et al., 2011). To assess the strength and impor-
tance of specific paths of interest, researchers often examine whether 
their coefficients are significantly different from zero. However, since 
it is recommended not to mix dichotomous hypothesis testing with 
MSA (Burnham et al., 2011), we propose to use here any MSA as well 
(e.g. comparison of models including or excluding a given path or calcu-
lation of the relative importance of specific paths by model averaging).

In parallel and regardless of the method of quantifying the path 
importance, we recommend reporting standardized or unstan-
dardized path coefficients, respectively, depending on whether 
one is evaluating paths or predicting relationships (Kline,  2016; 
Shipley, 2016). These could be separately done for each ‘best’ SEM 
model or for a weighted average SEM model of the ‘best’ models 
(Johnson & Omland, 2004; Palomares et al., 1998).

Finally, the influence of one variable on another can be decom-
posed into direct, indirect (calculated as the product of the effect of 
the independent variable on the mediator(s) and of the mediator(s) on 
the dependent variable), and total (the sum of the direct and indirect 
effects) effects (Hoyle,  2012; Kline,  2016). The decomposition into 
direct and indirect effects may be especially important in quantifying 
cascading effects (Byrnes et al., 2011). Altogether, this information on 
the models' likelihood and the relative importance of specific direct 
and indirect effects should then be used for hypothesis validation.

This approach can be embedded in a broader weight-of-evidence 
framework, in which other types of evidence, such as modification 
indices, residual relationships and d-separation tests, can be re-
ported (Grace, 2020). Regardless, the results should be interpreted 
with caution, depending on the researcher's confidence that the 
paths indeed represent directional cause–effect relationships, and 
that parameter estimates provide satisfying approximations of true 
values and represent causal effects (see case study).

Finally, and most importantly, we recommend exploiting the 
best SEM models for feeding back into the causal analysis of new 
research avenues. Here it is possible to use the exploratory mode of 
SEM to generate new hypotheses that can be further tested through 
experimentation or against new data. This could be done by compar-
ing models in the absence or presence of specific paths of interest 
and by comparing alternative indirect effects. Provided that we con-
strain the use of this process for raising new questions and ideas, 
these post-hoc ‘games’ can be done even with no solid background 
or theoretical foundations.

4  | SUMMARY AND CONCLUSION

This paper encompasses the pros and cons of MSA-SEM relative to 
other SEM approaches, highlights its relevance to the study of com-
plex communities and provides a unified road map for its proper uses 
and boundaries. It emphasizes the important consideration of both 
practical and philosophical principles to realize the unique features 
of this combined approach. We predict that our unified approach, 
made accessible to ecologists, will guide the investigation of ques-
tions that were not previously tractable in this field.
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