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Testing piecewise structural equations models in the presence of latent variables and 
including correlated errors
Bill Shipleya and Jacob C. Doumab

aUniversité de Sherbrooke; bWageningen University

ABSTRACT
Path models, expressed as Directed Acyclic Graphs (DAGs), and the testing of such DAGs via a d-sep test, 
have become popular because they can incorporate complicated data structures that are difficult or 
impossible to accommodate in classical structural equation modeling. However, d-sep tests cannot 
accommodate DAGs that include unmeasured (latent) variables. We describe (i) how to convert a DAG 
with latent variables into an observationally equivalent graph without latents (a Mixed Acyclic Graph, 
MAG), (ii) how this MAG identifies which latents can/cannot be ignored without changing the causal 
meaning of the original DAG, and (iii) how to perform the MAG equivalent of a d-sep test.
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Introduction

A common goal in many disciplines is to pose hypotheses 
involving a network of direct and indirect causal relationships 
between several variables and then to conduct falsifiable 
empirical tests of these hypotheses. Ideally, this is done using 
controlled manipulative experiments but such controlled 
manipulative experiments are often not possible. Structural 
equation modeling (SEM) is an alternative method, based on 
statistical rather than physical control of variables but using the 
same inferential logic. The classical version of SEM (Bollen, 
1989) involves maximizing the likelihood of a series of linear 
equations involving normally distributed random variables 
measured over mutually independent observations. Although 
there are many variants of this classical method, they are 
“simultaneous” and “global” because both parameter estima
tion and model testing are done simultaneously over the entire 
(global) set of structural equations. Although much effort has 
gone into relaxing the statistical assumptions of such global 
estimation methods, it is difficult (sometimes impossible) to 
accommodate combinations of small sample sizes, non-normal 
distributions, nesting or cross-classification, and nonlinear 
relationships between variables that are often encountered 
and this is much easier with local estimation methods 
(Shipley, 2009; Shipley & Douma, 2020).

However, an important advantage of classical SEM over the 
local method described next is that, under certain conditions, it 
is possible to include “latent” variables in the causal model; i.e. 
variables that have not been directly observed or measured. 
When facing complex hierarchical designs or other complex 
data structures, one has to choose between local estimation 
methods that can take these complex data structures into 
account but cannot include latent variables or classical SEM 
that can include latent variables but perhaps not the complex 
data structures. In some cases, we can safely ignore latents. For 
instance, since a path diagram such as X→Y→Z is implicitly 

ignoring the causes (say, L1) of X and additional intervening 
variables (say L2) between X and Y, we can further augment the 
initial DAG: L1→X→L2→Y→Z. Whenever we conduct a test 
on X→Y→Z we are implicitly assuming that any latent vari
ables that might be lurking in nature, but that are not included 
in it (here, L1, L2), will not change the independence relation
ships among the variables of interest (X, Y, Z). When is this 
assumption reasonable? When is it not reasonable? When can 
we safely ignore latents while maintaining the causal assump
tions among the observed variables and when not? If we ignore 
latents then how does this affect the relationships among the 
measured variables? We answer this question by converting 
DAGs containing latent variables into Mixed Acyclic Graphs 
that omit these latents while maintaining all of the (condi
tional) independence relationships among the observed 
variables.

Shipley (2000, 2009, 2016) developed an alternative method 
of SEM that is based on Directed Acyclic Graphs (DAGs) and 
the graph theoretic notion of “d-separation” (Pearl, 2009; Pearl 
& Mackenzie, 2018). Although this method has been applied 
mostly in the fields of ecology and evolution in situations not 
requiring latent variables, it has also been applied in medicine 
(Buffart et al., 2018; Gordon et al., 2014), psychology 
(Thoemmes et al., 2018; Van Kampen, 2014) and sociology 
(Schweiger & Cress, 2019; Warach et al., 2018) when latent 
variables were not invoked. A DAG is a graphical depiction of 
the direct cause-effect links between variables (X→Y) and 
d-separation is defined below. It is local (or “piecewise” 
(Lefcheck, 2016)) rather than global because a local Markov 
decomposition of the overall model-implied multivariate prob
ability distribution results in a series of “local” parent–child 
causal links that are estimated separately from one another. It is 
sequential rather than simultaneous because the causal hypoth
eses implied by the model (the DAG) are first tested via 
a “d-sep” test while the statistical fitting of the causal links 
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occurs after this step and only if the d-sep test does not detect 
any significant lack-of-fit. The causal hypotheses are captured by 
a “basis set” of d-separation claims, which is defined later. One 
particular basis set, the “union” basis set, has the property 
(Shipley, 2000) that the statistical tests of each of the 
k d-separation claims in the set are mutually independent, allow
ing the null probabilities of each test (p1, . . ., pk) to be combined 
into an omnibus test of the full model using Fisher’s C statistic, 
C ¼ � 2

Pk
i¼1 pi ln pi, which is distributed as a chi-squared vari

ate with 2k degrees of freedom given the null hypotheses. The 
main advantage of this method is that it can easily incorporate 
non-normally distributed variables, complex nesting and cross- 
classification, as well as nonlinear functional relationships. 
However, the d-sep test cannot be applied to DAGs involving 
latent variables. Here we first present a method of modifying 
a DAG that includes latent variables such that the modified 
graph, a Mixed Acyclic Graph (MAG), correctly captures the 
dependence and independence relationships of the observed 
variables in the original DAG, and then modify the original 
d-sep test based on such a MAG. We do not discuss parameter 
estimation, which occurs only after the causal topology of the 
observed variables in the DAG has been tested and not rejected.

DAGs and d-separation

A DAG (G) is a mathematical object consisting of vertices 
(variables) and directed edges (arrows) between pairs of ver
tices. A path between α and β in G is a sequence of vertices 
having α and β as endpoints that are connected by arrows, 
irrespective of the direction of these arrows. For instance, 
A→X←L→Y→B is a path between vertices A and B in DAG 
(I) in Figure 1. A directed path from α to β is a sequence of 
vertices, starting at α and ending at β, which allows one to 
move from α to β while respecting the direction of the arrows. 
In such a directed path, α is an ancestor of β and β is 
a descendent of α. In DAG (I) of Figure 1 there is a directed 
path from L to B (L→Y→B) in which L is an ancestor of B and 
B is a descendent of L. A DAG is “acyclic” because there can be 
no directed paths from a vertex that loops back into it (i.e. no 
cycles). A collider vertex along a path is a vertex along a path 
having arrows pointing into it from both directions; a vertex 

along a path that is not a collider is a non-collider. X is 
a collider, while L and Y are non-colliders, along the path 
A→X←L→Y→B between vertices A and B in DAG (I) of 
Figure 1. A vertex can be a collider along one path and a non- 
collider along a different path. Given a DAG G, a path 
p between two vertices (α, β) in G is d-separated (Verma & 
Pearl, 1990), or blocked, by a set of other vertices Ζ (which can 
be the empty set) if and only if:

(i) p contains a chain i→m→j or a fork i←m→j such that 
the middle vertex m is in the set Z, or

(ii) p contains a collider i→m←j such that the middle 
vertex m is not in the set Z and such that no descendent 
of m is in Z.

The two vertices (α, β) are d-separated (or blocked) by the set Ζ 
if the very path between them is d-separated.

If the vertices of a DAG represent random variables then 
the full DAG represents the topological structure of the 
process generating the multivariate probability distribution 
(or density) over these random variables. More specifically, 
the DAG expresses a multivariate causal hypothesis concern
ing this generating process in nature (Cox & Wermuth, 
1996). If two vertices (X,Y) are d-separated given a set 
Z of other vertices in a DAG then the associated random 
variables (X,Y) will be statistically independent given the set 
Z in the resulting multivariate probability distribution that is 
generated by the DAG (Pearl, 2009, theorem 1.2.5). This is 
true irrespective of the actual distributional form of the 
random variables or of the functional form (linear or non
linear) of the links representing the arrows between the 
random variables. Thus, DAGs and d-separation allow us 
to use the logic of the controlled experiment while replacing 
experimental control of variables with statistical control. One 
first expresses the multivariate causal hypothesis as a DAG. 
The operation of d-separation deduces how the pattern of 
dependence and independence between every pair of vari
ables in the causal system will change as one statistically 
(rather than physically) holds constant any combination of 
other variables. Finally, one compares the full pattern of 
observed and predicted independencies to the observational 
data using the d-sep statistical test.

I A      X        Y       B A      X        Y       B A      X        Y       B A      X        Y       B

L

II A      X        Y       B A      X        Y       B A      X        Y       B A      X        Y       B

L

III A      X        Y       B A      X        Y       B A      X        Y       B A      X        Y       B

L

Step 1: the DAG                               Step 2                             Step 3                                Step 4: the MAG

Figure 1. Three different DAGS (I, II, III) and the steps by which these DAGs are converted to a mixed acyclic graph (MAG). Observed variables are fA; X; Y; Bg 2 O and the 
latent variable is L 2 L. Sampling independently of the value of L represents marginalizing (open circle, L 2 LM) while sampling conditional on the value of L represents 
implicit conditioning (open triangle, L 2 LC).
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The d-sep test provides an empirical test of the indepen
dence relationships implied by a DAG. It does this by concen
trating on a basis set of d-separation claims of a DAG, which is 
the smallest set of d-separation claims implied by the DAG and 
from which all other d-separation claims can be deduced. Each 
d-separation claim is associated with a bivariate conditional 
probability distribution. If X is d-separated from Y conditional 
on a set Z in the DAG, then this implies that X is probabil
istically independent of Y conditional on the set Z in any data 
generated by the DAG, i.e. that the conditional bivariate dis
tribution P(X,Y|Z) generated by the DAG can be decomposed 
as PðXjZÞ � PðYjZÞ. One must calculate the null probability of 
observing such conditional independence for each d-separa
tion claim in the basis set and then combine these to produce 
the null probability of observing all of the d-separation claims 
in the DAG. An important advantage of d-sep tests over clas
sical SEM is that one can use whatever test of conditional 
independence is appropriate for the nature of the variables 
involved in each d-separation claim. However, testing this 
claim requires that we have measured each of X, Y and Z. We 
cannot do this if any of these variables are unobserved (i.e. 
latent). We must modify the d-sep test so that it tests all and 
only those independence claims of the full DAG (including 
latents) that involve the observed variables of the full DAG. 
This requires transforming the DAG into a new type of graph 
that we call a Mixed Acyclic Graph (MAG) because, as will be 
seen, this new acyclic graph contains a mixture of directed (→), 
undirected (–) and bidirected (↔) edges involving only the 
observed variables.

Transforming a DAG into a MAG

Step 1. Start with a DAG representing the hypothesized data- 
generating mechanism. Consider a DAG G containing a set 
V of vertices that can be classified into two non-overlapping 
subsets: O and L: V ¼ O [ L. The set O (“observed” variables) 
contains variables for which we have measurements. The set 
L (“latent” variables) contains variables for which we do not 
have measurements. The steps are illustrated by the three 
DAGs in Figure 1, each with vertices O = {A,X,Y,B} and 
L = {L}. The set L is further subdivided into latents that are 
to be implicitly marginalized (LM) and implicitly conditioned 
(LC) in the multivariate probability distribution or density.

Marginalizing over a variable (Z) in a multivariate prob
ability distribution P(X, Z) means summing (or integrating) 
the probabilities of X over all values of Z: PðXÞ ¼

P

i
PðX;ZiÞ. 

Imagine that you randomly sample observations but only mea
sure variable X. You do not measure variable Z and may even 
not be aware of its existence. However, you sample in such 
a way that the inclusion (or not) of an observation in the 
sample is independent of the value of Z; in other words, the 
sampling protocol is not biased with respect to Z. If so, then 
then you have implicitly marginalized over Z when obtaining 
P(X). Conditioning on a variable (Z) in a multivariate prob
ability distribution P(X, Z) means evaluating the probability of 
X after knowing the value of Z. Imagine again that you ran
domly sample observations and only measure variable X while 
ignoring Z but you sample in such a way that the inclusion (or 
not) of an observation in the sample is affected by the value of 

Z; in other words, the sampling protocol is biased with respect 
to Z. If so, then then you have implicitly conditioned over 
Z when obtaining P(X).

The following examples will make this distinction clearer 
based on a data-generating process in nature that involves two 
observed traits (X, Y) measured on a series of organisms. These 
two traits are causally independent of one another but each 
affects the status (L, i.e. dead/alive) of the adult organism so 
that the associated DAG is X→L←Y. We randomly sample 
these organisms without reference to their status (L), and the 
chance of either living or dead adults being included in our 
random sample is proportional to their occurrence in nature. 
This would represent an implicit marginalization of the joint 
probability distribution of the two observed variables (X, Y) 
over the latent variable L even though we did not actually 
record the status of our organisms. From d-separation, X and 
Y would remain independent. However, if we cannot find dead 
adult organisms (perhaps because they no longer exist) then 
our sample will only include living ones. If so then we have 
implicitly conditioned on L because, in our sample, the value of 
this latent is fixed (L = alive). This would represent a condi
tional joint probability distribution of X and Y given L. Even 
though X and Y are independent in the DAG, they would be 
dependent in this conditional distribution because condition
ing on L, which is a collider variable along the path X→L←Y, 
opens up this path. This is called “selection bias” or Berkson’s 
paradox (Berkson, 1946). This is true even if the sampling 
criterion is not exact; for instance, if our sampling design is 
only biased toward living organisms because we have more 
difficulty finding dead ones, then this still generates 
a conditional joint probability distribution of X and Y given L.

Step 2. Create a new graph G’ containing only the vertices in 
O. The new graph G’ will contain all and only the vertices O in 
G. In Figure 1 this is the set O = {A,X,Y,B}. Add arrows in the 
new graph G’ corresponding to the arrows between pairs of 
adjacent observed variables in G. “Adjacent” vertices or vari
ables are ones jointed by an arrow in G.

Step 3. If there are two vertices ðX;YÞ 2 O in G’ after step 2 
that are not adjacent in G, but that are not d-separated in 
G given every possible subset of other vertices (i.e. are d-con
nected) excluding the vertices in LM but including the vertices 
in LC, then add an undirected edge between X and Y (i.e. X – Y) 
in the new graph G’.

Consider the three DAGS in Figure 1. The two versions of 
G’ that are associated with DAGs (I) and (II) have an undir
ected edge between X and Y (X – Y) after step 3. This is because 
they will always be d-connected given every possible combina
tion of observed conditioning sets that excludes L in DAG (I) 
(marginalizing over L) and given every possible combination of 
observed conditioning sets including L in DAG (II) (implicit 
conditioning on L). The undirected edge (X – B) in G’ after step 
3 between X and B in DAG (III) arises because both share 
a common latent cause (L) that is marginalized. The undirected 
edge in G’ after step 3 between A and B (A – B) in DAG (III) is 
less obvious. This undirected edge exists because A and B will 
be d-connected through an open path given every possible 
conditioning set of other observed variables that do not include 
L: (i) A→X→Y→B and A→Y→B unconditionally, (ii) 
A→Y←X←L→B given {Y}; (iii) A→X←L→B given {X}; and 
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(iv) A→X←L→B given {X, Y}. A and B given Y are d-con
nected because Y is a child of the collider X (rule 2).

Step 4. Richardson and Spirtes (2002) define 
a transformation of an “ancestral graph” G, which includes 
DAGs (their proposition 3.4), into the graph G’ that is pro
duced at the end of step 3. Richardson and Spirtes (2002) 
further prove that undirected edges (X – Y) in G’ represent 
the result of marginalizing or conditioning on latent variables 
in the DAG. They distinguish between “ancestral” vertices and 
“anterior” vertices in ancestral graphs (including both the 
DAG G and the transformed graph G’). X is an “ancestor” of 
Y in such graphs if there is at least one directed path from X to 
Y (X ! � � � ! Y) or if X and Y are the same vertex. Note that 
this definition of an “ancestor” differs from that used by Pearl 
(2009) since, in that publication, a vertex is ancestral only with 
respect to a specific path. We will use the expressions “ancestor 
in the graph” and “ancestor along the path” to differentiate the 
two meanings of “ancestor”. X is “anterior” to Y if there is at 
least one path from X to Y in which every edge is either of type 
X – W or X→W; here, W is an observed variable along such 
a path between X and Y. In other words, there can be no edge 
X↔W or X←W along such a path. In the context of DAGs, if 
X is anterior to Y then it is also ancestral to Y, but this is not 
necessarily the case for graphs like G’. Richardson and Spirtes 
(2002, lemma 3.9) prove the following orientation rule for 
orienting an edge (X – Y) in G’ given the DAG G:

(i) orient X – Y as X→Y in G’ if X is anterior (and 
ancestral) to Y in G and Y is not anterior (nor ances
tral) to X in G.

(ii) orient X – Y as X←Y in G’ if Y is anterior (and 
ancestral) to X in G and X is not anterior (nor ances
tral) to Y in G.

(iii) orient X – Y as X↔Y in G’ if neither X nor Y are 
anterior (nor ancestral) to the other in G.

(iv) keep X – Y oriented as X – Y in G’ if neither X nor Y are 
anterior (nor ancestral) to the other in G but both 
X and Y are anterior (and ancestral) of the same latent 
causal descendent in the DAG G and some value of this 
latent variable defines a selection criterion for inclusion 
in the statistical population (i.e. conditioning or 
a common latent ancestor).

The application of these orientation rules leads to step 4 in 
constructing G’. The result is a mixed acyclic graph (MAG) 
containing any combination of the following edges (–, ←,→ or 
↔). The interpretation of the two new edges in a MAG (i.e. – 
and ↔) that do not exist in a DAG is given later.

For example, in DAG (I) of Figure 1 there is an undirected 
edge (X – Y) in the graph G’ associated with it after step 3. 
Since X is not anterior (ancestral) to Y, nor is Y anterior 
(ancestral) to X, this undirected edge is oriented as X↔Y in 
the MAG. The undirected edge (X – Y) in DAG (II) remains 
oriented as X – Y in the MAG since neither is anterior to the 
other in the DAG and the d-connection between them is 
generated by implicit conditioning on the latent variable (L) 
that is a common effect of both X and Y. The DAG (III) has two 
undirected edges in the graph G’ associated with it after step 3: 
(A – B) and (X – B). However, A is anterior (ancestral) to B in 

the DAG via two different the directed paths (A→Y→B and 
A→X→Y→B) while B is not anterior (ancestral) to A in the 
DAG by any directed path. Therefore, the undirected path (A – 
B) is oriented as A→B in the resulting MAG. Similarly, X is 
anterior (ancestral) to B in the DAG via the directed path 
X→Y→B while B is not anterior (ancestral) to X in the DAG 
by any directed path. Therefore, the undirected path (X – B) is 
oriented as X→B in the resulting MAG. The MAG.to.DAG 
function of the CauseAndCorrelation R library (https://github. 
com/BillShipley/CauseAndCorrelation) performs the transla
tion of a DAG with latents into its associated MAG.

Obtaining conditional independence claims from 
a MAG

Given a DAG involving a set V of vertices, Richardson and 
Spirtes (2002) define an “independence model” associated with 
it that consists of the full set of conditional independence 
relations implied by it. Each conditional independence relation 
is a triple, Iðα; βjθaÞ, stating that vertex α is independent of 
vertex β, conditional on a set of vertices θa; θa can be any 
subset of V (including the null subset) that does not include α 
or β. If some of the vertices in the DAG include latent vertices 
then marginalizing or implicitly conditioning over this set of 
latent vertices produces the associated MAG. The indepen
dence model of this MAG is the subset of triples of indepen
dence relations implied by the DAG after marginalizing and/or 
conditioning on latents. Each independence relation 
IðX;YjZ [ LCÞ is a triple involving two observed vertices (X, 
Y) conditional on a set of observed vertices Z (excluding X and 
Y) plus LC; both Z and LC can be empty sets. The union basis 
set of d-separation claims of a DAG that is defined in Shipley 
(2000) and used in the d-sep test of DAGs is an example of such 
an independence model. The union basis set consists of a set of 
independence relations IðX;YjZ [ LCÞ such that each indepen
dence relation involves a pair of variables (X, Y) in the MAG 
that are not adjacent (i.e. do not have an edge between them), 
conditional on the set (Z) of observed causal parents of either 
X or Y plus all latent conditioning variables (LC). An important 
result of Richardson and Spirtes (2002, theorem 4.18) is that 
the independence model corresponding to a DAG G, after 
marginalizing and/or conditioning on latents, is the indepen
dence model of the transformation of the DAG G into the 
MAG G’. In other words, we can test all of (and only) the 
independence relations involving observed variables implied by 
a DAG G that contains latent variables by obtaining the inde
pendence relations of the transformed MAG G’. Independence 
of vertices in a DAG is determined by the operation of 
d-separation. Independence of vertices in a MAG is deter
mined by an extension of the d-separation operation, called 
“m-separation” by Richardson and Spirtes (2002).

M-separation in a MAG

Let a path, pi, between any two vertices (α; β) in a MAG G’ be 
a sequence of adjacent vertices linking α and β irrespective of 
the type of edge connecting adjacent pairs. A collider vertex 
along this path is a vertex that has an arrowhead pointing into 
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it from both directions. Thus, a collider vertex along a path in 
a MAG is a vertex δ having orientations of types (i) →δ←, (ii) 
→δ↔, (iii) ↔δ← or (iv) ↔δ↔. For instance, A→X↔Y is 
a path between A and Y in the MAG of DAG (I) in Figure 1 
and X is a collider along this path. A vertex along a given path 
that is not a collider is a non-collider along this path. A path 
between two vertices α and β along path pi in a MAG is 
“m-connecting” given a set Z (possibly empty, but not includ
ing α or β), if:

(i) Every non-collider along path pi is not in Z, and
(ii) Every collider along path pi is in Z, or is anterior to 

a member of Z.

Two variables are “m-separated” in a MAG if there are 
no m-connecting paths between them. Thus, m-separation is 
simply an extension of Pearl’s d-separation operation, which is 
only defined for DAGs (i.e. without edges X – Y or X↔Y), to 
this wider class of mixed acyclic graphs. Richardson and Spirtes 
(2002, theorem 6.3) prove that, given a DAG G involving latent 
variables, observed variables X and Y are m-separated in the 
associated MAG G’ given some subset of remaining observed 
variables Z if and only if X and Y are d-separated in G given 
Z plus the subset LC of latent variables that are implicitly 
conditioned.

For example, consider the DAG (I) in Figure 1: A→X←L→ 
Y→B with L being latent. The independence model of the DAG 
(i.e. the union basis set) is given in the first column of Table 1. 
Marginalizing over L produces the associated MAG: 
A→X↔Y→B. The independence model of the MAG, based 
on m-separation claims and using the union basis set, is given 
in the second column of Table 1. Of the six independence 
claims in the basis set of the DAG, there are three indepen
dence claims, involving only the observed variables O = {A,X, 
Y,B} of the DAG, in the basis set of the MAG. If any of these 
three independence claims from the MAG are rejected by the 
empirical data then we can reject the original causal hypothesis 
represented by the DAG.

It is important to emphasize that an empirical test of 
the m-separation claims of an MAG are tests of the indepen
dence constraints on the joint probability distribution over the 
observed variables. It is possible, depending on the additional 
statistical assumptions that one is willing to make, that the 
causal structure will additionally imply non-independence 
constraints on this joint probability distribution. For instance, 
it is well-known that the classic measurement model of SEM, in 
which a latent variable is a common cause of a series of 

observed indicator variables, implies non-independence con
straints on the covariance matrix of these observed variables 
(Shipley, 2016, chapter 5). Such non-independence constraints 
are not reflected in the basis set of independence claims of the 
MAG, although they are reflected in the independence claims 
of the DAG via vanishing tetrad constraints (Spirtes et al., 1993, 
theorem 6.10). As well, an empirical test of a MAG is not 
a complete test of the independence claims in the basis set of 
the original DAG. Rather, it evaluates the empirically testable 
independence claims of the DAG involving the measured vari
ables. The basis set of an MAG will always contain fewer 
elements that does the basis set of the DAG upon which it is 
based if the DAG contains latents. It is also possible that there 
are no empirically testable independence claims of the DAG 
without invoking the latent variables. The DAG (III) in Figure 
1 is an example of this possibility since no observed variable 
is m-separated from any other observed variable in the MAG 
associated with it.

An m-sep test for DAGs involving latent variables

We can now extend the d-sep test of DAGs involving only 
observed variables to the equivalent test of DAGs involving 
latent variables. Since this involves m-separation of a MAG, 
rather than d-separation of a DAG, we call it an “m-sep” test, 
but the steps are identical to a d-sep test after replacing the 
d-separation operation by the m-separation operation. The 
steps are as follows:

(1) Express your causal hypothesis in the form of a DAG G.
(2) Identify (i) the vertices in G that are observed (O), (ii) 

the latents whose values do not implicitly affect the 
sampling of observational units and so will be margin
alized (LM), and (iii) those latents whose values do 
implicitly affect the sampling of observational units 
and so will be conditioned (LC).

(3) Convert your DAG into a MAG by marginalizing and/ 
or conditioning on the appropriate latents.

(4) Determine the m-separation claims of the MAG that 
define the union basis set; i.e. the independence model.

(5) Convert each of the m-separation claims in the basis set 
into claims of conditional independence in the empiri
cal data.

(6) Calculate the null probability, pi, associated with each of 
these claims of conditional independence.

(7) Combine these null probabilities via Fisher’s C-statistic: 
C ¼ � 2

Pk
i¼1 pi ln pið Þ

(8) Compare the resulting C-statistic to a chi-squared dis
tribution with degrees of freedom equal to 2k, where 
k is the number of m-separation claims in the basis set 
of G’.

An R function to perform steps 1–4 (basiSet.mag) is avail
able in the CauseAndCorrelation R library (https://github. 
com/BillShipley/CauseAndCorrelation). If the null probability 
of the C-statistic is below your significance level, reject your 
causal hypothesis; if not, then provisionally accept the causal 
hypothesis and proceed to the estimation of parameters in each 

Table 1. A comparison of the d-separation claims of the original DAG 
(A→X←L→Y→B) and the m-separation claims of the resulting MAG 
(A→X↔Y→B). I(α,β,Ζ) means “vertex α is independent of vertex β, conditional 
on the set Ζ of vertices”.

d-separation claims of the DAG: m-separation claims of the transformed MAG:

I(A,L|null)
I(A,Y|L) I(A,Y|null)
I(A,B|Y) I(A,B|Y)
I(X,Y|A,L)
I(X,B|A,Y,L) I(X,B|A,Y)
I(L,B|Y)
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of the local relationships, defined by each endogenous variable 
and those other variables to which it is connected via an edge. 
The method of parameter estimation can differ for different 
local relationships depending on the nature of the variables 
involved and on the type of edges linking them.

Discussion

In this paper, we have outlined a method for empirically testing 
multivariate causal hypotheses (DAGs) involving variables that 
are not observed. Two questions are pertinent. First, when can 
we ignore latent variables in our causal hypothesis? Second, 
when should we prefer this method to classical SEM?

A directed edge (X→Y) in a DAG, when expressed as a causal 
hypothesis, is simply a claim that a change in the value of X will 
provoke a change in the value of Y even when every combination 
of other variables in the DAG, including the null or empty 
combination, are held constant (either physically or statistically). 
It is never a claim that X will provoke a change in the value of 
Y even when every possible combination of other variables that 
might exist in nature are held constant since the number of such 
possible variables is uncountably large. Every mechanistic 
description of a natural process can be rendered more complex 
and so researchers must choose those variables to include in 
their causal hypothesis that are relevant to the level of complexity 
at which they are working. Stated equivalently, researchers 
always ignore latent variables when proposing DAGs as causal 
hypotheses. Imagine that a researcher proposes the following 
DAG as a description of a causal hypothesis involving three 
variables (X, Y, Z): G1:X→Y→Z. This causal description ignores, 
amongst others, the latent causes of X (L1), intervening latent 
variables between X and Y (L2) and the latent effects of Z (L3) in 
the more complete DAG G2:L1→X→L2→Y→Z→L3. We intui
tively understand that ignoring these three latent variables does 
not change the causal hypothesis of interest involving X, Y and 
Z. Is this intuition correct? If our sampling protocol is not biased 
with respect to these latents then the MAG that results from 
marginalizing over them is X→Y→Z; the MAG of G2 equals the 

DAG G1. This confirms our intuition that ignoring these latents 
(i.e. marginalizing over them) does not change the conditional 
independence relationships involving the variables (X, Y, Z) of 
interest and encoded in the MAG of G2. However, it is clear that 
in other situations the result of ignoring latents in a more com
plete DAG will change the (conditional) independence relation
ships involving the observed variables of interest.

Consider now a more complicated example from the ecolo
gical literature which is slightly modified from Juhasz et al. 
(2020, online supporting information). That paper proposed 
the following causal hypothesis (Figure 2a) linking annual 
climate variation in the Canadian Arctic (winter, spring and 
summer annual Arctic climate oscillation plus summer mean 
temperature and precipitation each year for 21 years) with the 
abundance of lemmings and the reproductive success of arctic 
foxes and snow geese. Since lemmings are the preferred prey of 
foxes then, when lemming abundance is high, the foxes will 
preferentially eat lemmings rather than goose eggs. If so, then 
the consumption rate of lemmings by foxes increases with 
increasing lemming abundance. By increasing their consump
tion of lemmings, this would reduce the consumption rate of 
goose eggs by foxes, which would improve the nesting success 
of geese. At the same time, a summer that is warmer and has 
more precipitation should increase plant production, which 
would improve food availability for geese and hence their 
incubation attentiveness, which would decrease both fox pre
dation opportunity and success (i.e., consumption rate of goose 
eggs). A decrease in the rate of goose egg consumption would 
improve the nesting success of the geese. Finally, the annual 
arctic oscillation (AO), by influencing several interrelated cli
matic factors, could affect lemming reproduction and survival 
during the winter, which drives lemming abundance during 
the following summer. The spring AO could influence the 
nesting success of the geese by modifying the environment of 
goose breeders (food accessibility, space for nest).

It is clearly impossible to conduct a controlled manipulative 
experiment to test this hypothesis over the scale of the 
Canadian Arctic. Furthermore, four of the variables (circled) 
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Figure 2. The full causal hypothesis of Juhasz et al. (2020, online supporting information), expressed as a DAG is show in panel (a). This causal hypothesis involves four 
latent (unobserved) variables enclosed in open circles: Annual AO, Plant growth, Lemming consumption rate and Egg consumption rate. All remaining variables are 
observed and measured. The result of marginalizing over the latent variables results in the MAG shown in panel (b).
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in the hypothesized causal explanation were latent in that 
study. The nature of the data (repeated measurements over 
21 years and non-normally distributed variables) and the fact 
that the latent variables did not have observed indicator vari
ables make it impossible to test this hypothesis via classical 
SEM. The associated MAG of this DAG (Figure 2b) that results 
from marginalizing over the four latents is empirically testable 
with 16 m-separation claims in the union basis set. 
Furthermore, this MAG shows which latent variables can be 
safely ignored with respect to the causal hypothesis and which 
cannot. Removing Annual AO and Plant growth did not change 
the relationships between any of the other observed variables. 
If the interest is primarily in the animals, then these two latents 
could be safely ignored without affecting the hypothesized 
causal tests involving the variables of principal interest. 
Removing Lemming consumption rate and Egg consumption 
rate would not change the causal hypotheses linking 
Lemming abundance and either Fox breeding proportion or 
Goose nesting success but it would change the causal hypotheses 
linking these last two variables. This is because there are no 
directed paths from one of these variables to the other; rather, 
their statistical association is due to two common latent causes.

When substituting a MAG for the original DAG, the causal 
interpretation of the MAG must be based on the original DAG. 
An undirected edge in a MAG (X – Y) does not mean an 
unresolved causal relationship. Rather, it means that there is 
a spurious association between X and Y due to implicit condi
tioning from biased sampling on a common causal latent effect 
of both. The double-headed arrow in Figure 2b (Fox breeding 
proportion↔Goose nesting success) does not mean a feedback 
relationship between these two variables. Rather, it means that 
neither is a cause of the other but both variables share common 
latent causes (lemming and egg consumption rates) whose 
values have been implicitly marginalized. DAG (III) of Figure 1 
provides an even more counter-intuitive example. There is 
a directed arrow (A→B) but A is not a direct cause of B in the 
associated DAG even with respect to the other observed vari
ables. Here, A→B in the MAG simply means that A is a causal 
ancestor of B and that the statistical association between A and 
B cannot be removed by statistically conditioning on any com
bination of other variables in the MAG. Referring to the DAG 
from which it is derived, we see that while A is indeed a cause of 
B, it is not a direct cause, yet this causal effect cannot be blocked 
by conditioning any combination of other observed variables. 
This is called an “inducing path” by Spirtes et al. (1993) and is 
a good example of why the distinction between a “direct” and an 
“indirect” cause is always conditional on the other variables 
included in any causal explanation (Shipley, 2016, pp. 21–22). 
The same explanation holds for the orientation of the undirected 
path (X – B) at step 3 in the same MAG: X is a cause (an 
ancestor) of B and this causal effect cannot be blocked by con
ditioning any combination of other observed variables. Thus, in 
a MAG a directed arrow can represent both a direct cause, as well 
as a causal effect that cannot be blocked by conditioning on any 
combination of observed variables.

Many researchers, when testing path models using classical 
SEM without explicit latent variables, sometimes add “free covar
iances” between variables. In fact, SEM programs like MPLUS or 
lavaan add these free covariances by default between each pair of 

exogenous variables although other programs, like EQS, do not. 
However, a free covariance between two variables is equivalent to 
adding a common latent cause between them (Pearl, 2009, theo
rem 5.2.3). In other words, a path model with correlated errors 
between two observed variables (X, Y) is a MAG, obtained after 
marginalizing over a latent L in the associated DAG containing the 
edges (X←L→Y). The union basis set of such an MAG is simply 
the union basis set of the full DAG after removing the indepen
dence relation I(X,Y|L). In fact, the piecewiseSEM package in 
R (Lefcheck, 2016) performs the d-sep test while allowing the 
user to incorporate correlated errors by doing this even though 
no theoretical justification for this was provided. This paper pro
vides this justification for this d-sep test implementation in the 
piecewiseSEM package. However, since classical SEM simulta
neously estimates the path coefficients and the correlated errors, 
while the current implementation of piecewiseSEM does this 
separately, the latter approach to estimating path coefficients 
may produce different parameter estimates.

There are many cases in which classical SEM with latent 
variables provides a more complete test of the underlying 
causal hypothesis provided that the additional statistical 
assumptions are reasonable. Latent variable modeling in clas
sical SEM requires that the system of structural equations be 
identified. The most common way of insuring identification of 
a latent is via a “measurement model” in which the latent is 
a common cause of a minimal number of observed indicator 
variables; the minimal number depends on several other prop
erties of the system of structural equations (Bollen, 1989; 
Grace, 2006; Shipley, 2016). When these conditions are met, 
then the presence of latents implies constraints on the covar
iance matrix of the observed variables that do not involve 
conditional independence relations between them. Given iden
tification, as well as the other statistical assumptions of classical 
SEM mentioned above, then the chi-squared test of classical 
SEM is a more complete test of the full causal hypothesis 
because it includes any non-independence constraints that 
are imposed by the latent variables. An m-sep test would not 
include such non-independence constraints. In fact, the DAG 
of a measurement model having a single latent cause of a series 
of observed indicator variables would result in a MAG, upon 
marginalizing over the latent, in which each pair of indicator 
variables is joined by a double-headed arrow (←→) and with 
no conditional independence relationships between any of 
them. Classical SEM is preferable to m-sep tests when a DAG 
involves latent variables that are properly identified by 
observed indicator variables, and when the other substantive 
statistical assumptions of classical SEM are reasonable.
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