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What Darwin could not see: island formation and historical sea
levels shape genetic divergence and island biogeography in a
coastal marine species
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Oceanic islands play a central role in the study of evolution and island biogeography. The Galapagos Islands are one of the most
studied oceanic archipelagos but research has almost exclusively focused on terrestrial organisms compared to marine species.
Here we used the Galapagos bullhead shark (Heterodontus quoyi) and single nucleotide polymorphisms (SNPs) to examine
evolutionary processes and their consequences for genetic divergence and island biogeography in a shallow-water marine species
without larval dispersal. The sequential separation of individual islands from a central island cluster gradually established different
ocean depths between islands that pose barriers to dispersal in H. quoyi. Isolation by resistance analysis suggested that ocean
bathymetry and historical sea level fluctuations modified genetic connectivity. These processes resulted in at least three genetic
clusters that exhibit low genetic diversity and effective population sizes that scale with island size and the level of geographic
isolation. Our results exemplify that island formation and climatic cycles shape genetic divergence and biogeography of coastal
marine organisms with limited dispersal comparable to terrestrial taxa. Because similar scenarios exist in oceanic islands around the
globe our research provides a new perspective on marine evolution and biogeography with implications for the conservation of
island biodiversity.

Heredity (2023) 131:189–200; https://doi.org/10.1038/s41437-023-00635-4

INTRODUCTION
Oceanic archipelagos are ideal model systems to study evolu-
tionary processes and their consequences on genetic variation in
the light of island formation (Emerson 2002; Parent et al. 2008;
Warren et al. 2015). Individual islands of archipelagos constitute
independent experimental units to examine how barriers to
dispersal arrange the spatial genetic variation in natural popula-
tions (Emerson 2002; Parent et al. 2008). Two principal evolu-
tionary mechanisms can be observed in oceanic archipelagos. The
first is rapid adaptation, which leads to genetic differentiation
through selection and the exploitation of diverse ecological niches
after colonization of new island environments, often in the
absence of obvious physical barriers (Schluter and Conte 2009;
Langerhans and Riesch 2013). In the second instance, divergence
is generated through genetic drift among populations that are
separated by physical barriers to dispersal (Avise 2000). Barriers
can be established through vicariance events dividing previously
connected populations or founder populations separate through
the colonization of new habitat by dispersing across existing
barriers (Sanmartín 2003; Cowie and Holland 2006). The geo-
graphic isolation through barriers results in distinct genetic
signatures that are exacerbated in island populations (Frankham
1998). The low standing genetic variation of few founding
individuals and limited dispersal between small fragmented

patches of habitat that provide limited resources result in low
genetic diversity and small population sizes (Frankham
1996, 1997; Brüniche-Olsen et al. 2019).
In volcanic archipelagos individual islands are formed sequen-

tially through recurring volcanic activity as tectonic plates move
across hotspots. The progression rule describes the sequential
colonization and subsequent genetic divergence from older
towards younger volcanic islands in terrestrial organisms
(Fleischer et al. 1998; Shaw and Gillespie 2016). However, a
progressive divergence may be absent in island species that have
high levels of inter-island dispersal, arrived recently or through
multiple colonization events, or underwent strong divergent
selection (Juan et al. 2000; Parent et al. 2008; Shaw and Gillespie
2016). Strong sea level fluctuations of the late Quaternary period
altered island configuration at faster rates and shorter geological
time scales than plate movement, but the impact of this process
on divergence and island biogeography remains largely unclear
(Fernández-Palacios et al. 2016; Weigelt et al. 2016). Island
biogeography of marine organisms differs from their terrestrial
counterparts because higher dispersal in the marine environment
increases inter-island connectivity and rates of immigration to
oceanic archipelagos (Pinheiro et al. 2017). This can result in faster
occupation of ecological niches, leaving fewer opportunities for
adaptive radiation and in-situ divergence (Pinheiro et al. 2017).

Received: 28 August 2022 Revised: 12 June 2023 Accepted: 13 June 2023
Published online: 3 July 2023

1College of Science and Engineering, James Cook University, Townsville, Queensland, Australia. 2Galaṕagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal,
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In the ocean, just as on land, dispersal regulates population
connectivity and is therefore a fundamental driver of biogeo-
graphic and genetic patterns in oceanic islands (Cowie and
Holland 2006). But what constitutes a physical barrier to dispersal
in the ocean is largely dependent on the mode of dispersal
(Hachich et al. 2015; Hirschfeld et al. 2021). A diverse array of
marine barriers, including mid ocean barriers, current fronts, and
strong salinity or temperature gradients, have been shown to
restrict gene flow in marine organisms with planktonic larvae
(Rocha et al. 2007). In contrast, marine taxa that lack planktonic
larvae, including mammals, reptiles and elasmobranchs (sharks,
skates and rays), depend on active migration of individuals to
maintain genetic connectivity (Dudgeon et al. 2012; Hirschfeld
et al. 2021). Many pelagic sharks undertake large-scale transo-
ceanic and inter-oceanic migrations (Block et al. 2011) and oceanic
and deep sea species can maintain genetic connectivity between
continental coasts and oceanic islands (Gubili et al. 2016;
Domingues et al. 2018), and across major ocean basins (Catarino
et al. 2015; Veríssimo et al. 2017). Ocean depth between shallow
coastal habitat, however, is a strong barrier to dispersal in some
shallow-water benthic sharks and rays, generating genetic
differences between individual islands at extremely small spatial
scales (Gaida 1997; Plank et al. 2010). Shallow-water marine
organisms that lack dispersive larvae are therefore likely to
produce unique genetic and biogeographic patterns in oceanic
archipelagoes compared to terrestrial organisms and marine
species with planktonic dispersal, but have rarely been studied
(Cowie and Holland 2006).
The Galapagos archipelago and the Galapagos bullhead shark

(Heterodontus quoyi) provide a unique model system for the study
of evolutionary processes in oceanic islands. The volcanic islands
are separated from the South American coast by approximately
1000 km of up to 2000 m deep ocean (Fig. 1a). The eastward
movement of the Nasca plate across the Galapagos hotspot
resulted in the sequential formation of volcanic islands and the
complex bathymetry of the Galapagos plateau (Snell et al. 1996;
Brewington et al. 2014). The convergence of three major ocean
currents creates contrasting oceanographic conditions and diverse

marine biogeography on a small spatial scale (Edgar et al. 2004). In
the Galapagos, terrestrial organisms with limited inter-island
dispersal generally follow a progressive genetic divergence that
reflects the sequential formation of clusters of islands with similar
age (Parent et al. 2008). Recent paleogeographic reconstructions
of the Galapagos account for the periodical fusion and fission of
landmasses through historical sea-level fluctuations, which has left
its footprint on the biogeography of terrestrial organisms (Ali and
Aitchison 2014; Karnauskas et al. 2017). Here we use a shallow-
water benthic shark to test if paleogeographic dynamics also
influence genetic divergence in coastal marine organisms with
limited dispersal. The Galapagos bullhead shark (Fig. 1b) has a
small geographic range comprising the central-southeastern and
western Galapagos archipelago and the continental shelf of
northern Perú and possibly southern Ecuador (Bearez 1996;
Acuña-Marrero et al. 2018). The species is thought to be absent
from the northern and far-northern bioregions that are separated
from the main Galapagos platform by water over 1000m deep
and are characterized by warmer water of the Panama Current
(Edgar et al. 2004; Acuña-Marrero et al. 2018). Currently, no
primary scientific literature exists on the biology and ecology of H.
quoyi. All species in the genus Heterodontus are oviparous and the
Galapagos bullhead shark likely has a long generation time, slow
growth rates and late age at maturity similar to other Heterodont
sharks (Powter and Gladstone 2008). For example, Port Jackson
sharks (Heterodontus portusjacksoni) have a generation time of
22.5 years, slow adult growth rates (31.4– 32.7 mm year−1) and
females mature between 8 and 10 and males between 11 and 14
years (McLaughlin and O’Gower 1971; Powter and Gladstone
2008). The small-bodied shark (<100 cm) has a strictly benthic
lifestyle, spending the majority of time on or close to the ocean
floor often hiding in caves and crevices, particularly juveniles, and
inhabiting rocky reefs in proximity to cold-water upwelling areas
at less than 40m depth (Weigmann 2016; Acuña-Marrero et al.
2018). Here we test the hypothesis that ocean depth is a barrier to
dispersal and gene flow in Galapagos bullhead sharks and assess
the role of island formation and historical sea level changes in
shaping genomic signatures of geographic isolation.

Fig. 1 Overview of the study system. a Location of the Galapagos Islands in the Eastern Tropical Pacific in relation to ocean bathymetry, the
Panama, Humboldt, and Cromwell Currents; b Adult male Galapagos bullhead shark (Heterodontus quoyi); c Sampling design: Sampling
locations (green circles) with number of samples in brackets. Sequential island emergence is given in bold roman letters next to island names.
Dashed lines and gray letters indicate the separation between the Western, Central-Southeastern and northern bioregions. PVR Punta Vicente
Roca, PNG Parque Nacional Galapagos, PE Punta Espinoza, PM Punta Mangle, CD Cabo Douglas.
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MATERIALS AND METHODS
Study area and sampling design
To examine the role of ocean bathymetry, island formation and historical
sea level fluctuations on spatial genetic structure, Galapagos bullhead
sharks were sampled from six islands in the Galapagos archipelago (Fig. 1)
that are separated by varying levels of depth and emerged at different
geological times, in an approximate East to West sequence (Geist et al.
2014; Karnauskas et al. 2017). We also sampled multiple locations on the
same island (Fernandina and Isabela) that are connected by continuous
shallow-water habitat to evaluate potential genetic isolation by distance
(IBD) due to limited dispersal capacity in absence of depth barriers.
Sampling locations located within 5 km of each other, were combined.
Sharks were captured and released by hand during SCUBA to collect tissue
samples from fin clips. Underwater sampling was designed to minimize
handling time and stress responses in the sharks (see Ethics Statement). A
total of 33 locations on seven islands were visited between 2015 and 2018
(Supplementary Information Fig. S1) to search for H. quoyi. Locations that
revealed higher abundances of sharks were visited repeatedly to increase
the number of samples per location and achieve a balanced sampling
design.

SNP genotyping and quality control (see Supplementary
Information)
DNA extraction, sequencing and SNP genotyping was conducted by
Diversity Array Technologies (DArT, Canberra, Australia). Samples were
processed using the proprietary DArT Pty Ltd analytical pipeline, which
includes technical replicates from a subset of samples to assess
genotyping reproducibility (Georges et al. 2018). The following quality
control steps were applied in addition to the DArT pipeline to avert
potential downstream effects of SNP selection on the inference of
population structure in non-model organisms (O’Leary et al. 2018). We
randomized tissue samples from all sampling locations across sequencing
plates and replicated samples from two individuals within and across
plates to independently assure genotyping consistency and generate
baseline values to quickly assess relatedness and potential sample
contamination during data filtering (Meirmans 2015; O’Leary et al. 2018).
To assure high quality of our SNP data set for reliably and adequately
assessing population structure in relation to our hypotheses we filtered the
raw data set using the R package radiator (Gosselin 2019). Markers that are
putatively under selection (outlier SNPs) were identified using two
approaches suited for spatially structured populations, PCadapt (Luu
et al. 2017) and OutFLANK (Whitlock and Lotterhos 2015). Loci identified as
putative outliers with both methods were then removed to create a neutral
SNP data set to assess genetic patterns generated through neutral
processes.

Population structure
Population structure was assessed using Bayesian clustering and pairwise
fixation and differentiation indices. First, neutral SNPs were analyzed to
infer proportions of genetic admixture for all individuals from K
hypothetical ancestral populations using the R package tess3r (Caye
et al. 2016). This method uses spatially explicit Bayesian models and is free
from assumptions about minor allele frequency, Hardy–Weinberg equili-
brium and linkage disequilibrium. Individual admixture proportions were
estimated for K ancestral populations between one and eight, with ten
replicate runs for each value of K, 10,000 iterations, a tolerance value of
10−6 and a spatial parameter, alpha, equals 0.01. As alpha approximates
zero the algorithm produces results approximating those of the program
STRUCTURE (Caye et al. 2016). The most likely number for K ancestral
populations was estimated based on the lowest value of the cross-entropy
criterion (Frichot et al. 2014), generated using the cross-validation method
and masking 10% of the data in training data sets (Caye et al. 2016).
Because unequal sample sizes in our data set may bias admixture results
we repeated the analysis, with the same parameters, on a subsample of 56
individuals. For locations with more than eight samples a subset of
individuals were randomly chosen and all samples were kept for all
locations with less than eight samples. The data set contained ten
individuals from Española, Floreana, and Punta Vicente Roca (Isabela
Island), five from Punta Espinoza (Fernandina Island), Punta Mangle
(Fernandina Island) and Parque Nacional Galapagos (Isabela Island), eight
from San Cristóbal, two from Cabo Douglas (Fernandina Island) and one
from Santiago Island. We calculated pairwise fixation, FST (Weir and
Cockerham 1984), and differentiation, DST (Jost 2008), indices between all
locations with at least eight samples for neutral SNPs using the R package

strataG (Archer et al. 2017). Significance of pairwise comparisons and
corresponding p-values were calculated based on 1000 bootstraps and
corrected for false positives using the FDR correction (Benjamini and
Hochberg 1995) implemented in the p.adjust R base function (R Core Team
2019). We tested for directional gene flow among sampling locations with
at least eight samples using relative migration rates (based on Nei’s GST and
1000 bootstraps) calculated for neutral SNPs with the divMigrate function
of the diveRsity R package (Keenan et al. 2013; Sundqvist et al. 2016).
Finally, we examined the relationship between spatial genetic patterns and
progressive island formation using the most recent information on
approximate age of emergence (Geist et al. 2014) and paleogeographic
reconstructions of the Galapagos (Ali and Aitchison 2014; Karnauskas et al.
2017).

Isolation by depth
To test for the effect of contemporary bathymetry and historical sea level
fluctuations on genetic connectivity we adapted isolation by resistance
(IBR) analysis (McRae 2006) using depth profiles of the Galapagos to
represent landscape resistance to animal dispersal (see Supplementary
Information). Briefly, two IBR models were built using single surface
optimization in the ResistanceGA R package, one based on contemporary
bathymetry and another based on paleogeographic bathymetry that
accounts for historical sea level fluctuations (Peterman 2018). We
compared the resistance models to a null model based on isolation by
distance analyses that only uses geographic distance and does not account
for potential depth barriers (Slatkin 1993; Guillot et al. 2009). Paleogeo-
graphic models of the Galapagos archipelago spanning the last 700,000
years show that sea levels were repeatedly between 145 and 210m deeper
during glacial maxima (Ali and Aitchison 2014). To test if low sea levels
during glacial periods may have facilitated historical dispersal, the
paleogeographic IBR model was built by optimizing a bathymetry layer
where all areas between 0 and −210m, corresponding to areas with
shallow water depth at least one time during the last 700,000 years, were
assigned a shallow water depth of 1 m. Resistance distances (Shah and
McRae 2008) were calculated for optimized contemporary and paleogeo-
graphic resistance surfaces with the ResistanceGA package (Peterman
2018). ResistanceGA uses a genetic algorithm to optimize resistance
surfaces based on pairwise genetic data and resistance distances
generated through Circuitscape software (Peterman 2018; Anantharaman
et al. 2019). The linear relationship between linearized genetic distances
(FST/(1−FST) and straightest over-water distances and between linearized
genetic distances and contemporary and paleogeographic resistance
distances was plotted and quantified using Pearson’s correlation
coefficient (r2) and Mantel tests with 1000 permutations with the R
package DartR (Gruber and Georges 2019). The performance of each
model was compared using a causal modeling approach (McRae and Beier
2007).

Signatures of isolation
To assess signatures of isolation we calculated several genetic diversity
indices for sampling locations with at least eight samples using the neutral
SNP data set and the diveRsity R package (Keenan et al. 2013). Indices
included allelic richness (AR), observed heterozygosity (HO), expected
heterozygosity (HE), and inbreeding coefficients (FIS). We estimated local
contemporary genetic effective population size (Ne) for each genetically
distinct unit with more than eight individuals identified by clustering
analyses using the bias-corrected linkage disequilibrium (LD) method
implemented in NeEstimator v.2.01 (Waples and Do 2008; Do et al. 2014).
The method assumes closed populations, no mutation or selection and can
provide robust estimates of local Ne if migration rates between demes are
low (Waples and Do 2008, 2010). The likelihood that SNP loci are physically
linked, potentially biasing Ne estimates based on LD, is low in our data set
because we only kept one SNP locus per sequence and because of the
large genome size in heterodont sharks (Akey et al. 2001; Waples 2006;
Waples et al. 2016). Sharks in each cluster also covered a large range of size
classes, spanning several generations, which reduces downward bias in
single sample Ne estimates based on LD in organisms with overlapping
generations (Waples et al. 2014). We determined the best minor allele
frequency threshold (Pcrit) for each individual genetic cluster using the
formula 1/(2S) < Pcrit <= 1/S (S=number of samples) as suggested by
(Waples and Do 2010). Because no life history parameters are known for H.
quoyi no correction based on life span and maturity were be applied.
Finally, we corrected Ne estimates for the number of haploid chromosomes
found in the congeneric H. japonicus and H. francisci (n= 51) using the
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formula Necor= Ne/(0.098+ 0.219 × lnChr), where Chr is the number of
chromosomes (Stingo and Rocco 2001; Waples et al. 2016).

RESULTS
Sampling and genotyping
A total of 182 sharks were sampled from nine locations on six
islands. Between 24 and 30 individuals were collected at each of
four locations in the western bioregion (Fernandina and Isabela
Islands) and on each of two islands in the central-southeastern
bioregion (Española and Floreana Islands). Despite exploring
eight locations on 20 dives between 2015 and 2018 only eight
individuals were sampled on San Cristóbal Island. Only a single
individual was captured after diving at six locations around
Santiago Island, which was not revisited after. The DArT pipeline
generated 33606 SNPs and after quality filtering we retained a
total of 9223 neutral SNPs and 180 individuals (Supplementary
Information Table S1). Briefly, none of the samples had large
amounts of missing data and none showed signs of cross
contamination or sample degradation based on excessively low
or high heterozygosity. Two sharks, one on Fernandina and
another on Isabela Island, were recaptured at the same location
after a period of approximately one year. The individuals were
identified as duplicate samples during the filtering process. For
each pair of resampled sharks we kept the sample with less
missing data (higher call rate). We removed five putatively
female-linked SNPs that had higher heterozygosity in females.
These SNPs were present in around 50% of males compared to
females indicating male heterogamety in Galapagos Bullhead
sharks. Eleven loci putatively under selection were recovered by
both outlier methods (75 SNPs in PCadapt, 14 SNPs in
OutFLANK).

Population structure
Pairwise comparisons using neutral SNPs showed increasing
genetic differentiation with greater depth among sampling
locations and older island emergence time (Fig. 2; Supplementary
Information Table S4). Española Island, the oldest and most
isolated island, consistently exhibited the highest genetic
differentiation from all other locations. San Cristóbal and Floreana
Islands showed the second highest differentiation. San Cristóbal

Island revealed similar levels of differentiation (FST: 0.0133–0.0169)
with the western locations compared to Floreana Island (FST:
0.0139–0.0161) based on FST values, but higher differentiation
using DST (0.00038–0.00047 vs. 0.0003–0.00034). All pairwise
comparisons within the western region were low for FST
(0.0003–0.0028) and DST (0.000094–0.00014). With the exception
of Punta Vicente Roca, the northernmost location on Isabela
Island, all pairwise comparisons in the western region were not
significant before and after false discovery rate (FDR) correction.
We found no significant directional gene flow among any pair of
sampling locations based on relative migration rates of the
divMigrate method.
Admixture analyses of 9223 neutral SNPs for all 180 sharks

identified the most likely number of ancestral populations (K) as
three (Fig. 3a and Supplementary Information Fig. S4). Sharks
from Española and Floreana Islands formed two distinct ancestral
populations, and individuals from all locations in the western
archipelago (Isabela and Fernandina Islands) together with
Santiago Island formed a third ancestral population. Individuals
from San Cristóbal showed approximately one third genetic
admixture from each of the three ancestral populations. Using
the more balanced subset of 56 sharks, the admixture analyses
showed that sharks sampled from Española, San Cristobal,
Floreana Islands, and the western archipelago with Santiago
Island had similar admixture proportions corresponding to four
distinct ancestral populations (Fig. 3b; Supplementary Informa-
tion Fig. S5), although the cross-entropy criterion did not identify
any number of ancestral populations to be more likely than
K= 1. Examination of admixture results in the light of paleogeo-
graphic reconstructions displayed that ancestral populations
correspond to individual islands that sequentially separated from
a central island cluster over the last two million years (Fig. 3c, d).
Española Island was differentiated first, at K= 2 ancestral
populations. Although Floreana Island is differentiated next, at
K= 3, San Cristóbal Island carries larger amount of admixture
from the most ancestral population, Española. Individuals from
San Cristóbal Island had similar levels of admixture from Floreana
Island, the western archipelago and Española Island at K= 3,
using the full and balanced data sets, and were assigned a
distinct ancestral population at K= 4 using the more balanced
data set (Fig. 3b).

PMPE PNG PVR FL SCY

PM

PNG
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Fig. 2 Pairwise comparisons (FST) between sampling locations based on 9223 neutral SNPs. a Visualization of the level of genetic
differentiation between locations. Comparisons between the western locations and other islands and inter-island comparisons are indicated
by blue lines with color intensity increasing with FST values. Low levels of genetic differentiation among the western locations are indicated by
a light blue circle. b Minimum ocean depth (vertical bar) and levels of FST between locations (ES Española, SCY San Cristóbal, FL Floreana, PVR
Punta Vicente Roca, PNG Parque National Galapagos, PM Punta Mangle, PE Punta Espinoza).
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Isolation by depth
Model comparison showed that although all three models
presented a significant relationship with genetic distance, the
model fit improved when considering contemporary bathymetry,
and accounting for historical sea level fluctuations provided the
best model fit (Fig. 4, Supplementary Information Table S2 and 3).
IBD based on shortest over-water distances between sampling
locations resulted in significant correlation with genetic distance
(mantel rest: r2= 0.56, p < 0.01). However, the scatter plot revealed
a large gap between western and southeastern locations,
indicating the presence of barriers between those locations and
pairwise genetic distances among southeastern locations were
high despite their geographical proximity. Single surface optimi-
zation using ResistanceGA selected and applied reverse mono-
molecular transformation to the contemporary and
paleogeographic bathymetry surfaces (Fig. 4c, e) and generated
pairwise resistance distances based on the optimized resistance
surfaces (Supplementary Information Figs. S2 and S3). Contem-
porary IBR, which accounted for ocean depth between sampling
locations, resulted in a higher correlation with genetic distance
(Mantel test: r2: 0.72, p < 0.001), compared to the IBD model. The
scatter plot displays that the model partially accounts for depth
barriers, providing a better fit for the data. Finally, the paleogeo-
graphic IBR model revealed the strongest correlation with genetic
distances (Mantel test: r2: 0.94, p < 0.001) by taking into account
ocean depth and historical sea level oscillations (Fig. 4e, f).

Genomic signatures of isolation
Genomic diversity was similarly low for all sampling locations. Allelic
richness (AR) ranged from 1.31 to 1.39 and observed heterozygosity
(HO) from 0.091 to 0.098 (Table 1). Similar levels of expected and
observed heterozygosity and inbreeding coefficients (FIS) close to
zero indicate the absence of recent bottlenecks.

Genetic effective population size (Ne) was corrected for a 4%
downward bias (Necor= Ne/0.959) to account for the number of
chromosomes based on the congeneric H. japonicus and H.
francisci. This resulted in the lowest Necor for Española, the most
isolated and smallest island, followed by Floreana islands, which is
geographically less isolated and about three times the size
(Table 2). The largest effective population size was estimated for
combined locations on Isabela and Fernandina islands (West) that
formed a single population based on clustering analyses.

DISCUSSION
The Galapagos archipelago and the Galapagos bullhead shark
were used as a model system to provide novel insight into the
evolutionary processes that shape genetic structure and biogeo-
graphic patterns of shallow-water marine organisms in oceanic
islands. Sequential island formation gradually established con-
temporary depth barriers between islands that varied in strength
due to historical sea level fluctuations. This resulted in at least
three distinct genetic clusters that exhibit low genetic diversity
and effective population sizes that decrease from larger to smaller
islands and with stronger isolation through historical and
contemporary seascape configuration.

Isolation by depth
The application of IBR analysis to a marine model system
showcases the impact of contemporary and historical ocean
bathymetry on genetic connectivity in coastal marine species with
limited dispersal. Galapagos bullhead sharks showed contempor-
ary genetic connectivity along short distances (20 km) of
continuous coastlines and across less than 10 km of 100m deep
water, between Isabela and Fernandina Islands, but larger ocean
depths between islands pose effective barriers at distances of only

Fig. 3 Population structure and island formation. a Individual admixture proportions for 180 individuals, 9223 neutral SNPs and K= 3
ancestral populations and b individual admixture proportions for 56 individuals, 9223 neutral SNPs and K= 4 ancestral populations, ordered
from left to right following sequential island separation. c Hypothetical paleogeographic formation of the Galapagos archipelago with
sequential separation of Española Island (purple) at 2–1.5 million years ago (Mya), San Cristóbal Island (green) at 1.5–1Mya, and Floreana
Island (yellow) at 1–0.5 Mya, and the emergence of individual islands that formed Isabela and Fernandina Islands since 0.5 Mya, adapted from
(Karnauskas et al. 2017). d Present day Galapagos with 210m isobath indicating the land area that was exposed at the lowest sea level during
the last 700,000 years.
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50 km. Recently, IBR analyses were applied to identify ocean depth
as barrier to gene flow at hundreds of kilometers in a reef-
associated pelagic shark (Carcharhinus amblyrhynchos) while
suitable shallow-water habitats acted as connectivity corridors
(Boussarie et al. 2022). Similar to our study species, other benthic
sharks (Squatina californica) and rays (Utobatis halleri) with low

dispersal capacity and shallow depth distributions can maintain
connectivity along continuous coastlines but show genetic
differences across deep water between islands and islands and
continental coasts at less than 50 km distance (Gaida 1997; Plank
et al. 2010). Deeper water separating individual islands at a
distances between 30 and 80 km and a minimum depth of 500m,

Fig. 4 Comparison between IBD (isolation by distance), contemporary IBR (isolation by resistance), and paleogeographic IBR (isolation
by resistance) models. a Least-cost paths for shortest over-water distance between pairs of locations. b Scatter plot with heatmap
visualization of the correlation between geographic distance and genetic distance. c Optimized resistance surface based on contemporary
bathymetry of the Galapagos archipelago. d Correlation between contemporary resistance distance and genetic distance. e Optimized
resistance surface based on paleogeographic bathymetry of the Galapagos archipelago. f correlation between paleogeographic resistance
distance and genetic distance. Darker colors in resistance surfaces represent higher resistance for the hypothetical movement of sharks
among locations and bright yellow shading lower resistance, corresponding to coastal areas that were exposed or had a shallow water depth
during glacial maxima.
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and islands from mainland locations at a distance of less than
20 km and a maximum depth of 200m has also been found to
generate genetic structure in a shallow-water bony fish without
planktonic larval stage (Bernardi 2000). Further, genetic differ-
ences between individual islands of archipelagos has been
reported at less than 100 km in marine invertebrates (Macarone-
sian archipelagos in the North Atlantic) and endemic intertidal
bony fish (Galápagos) with limited dispersal (Bernardi et al. 2014;
Vieira et al. 2019). However, no genetic structure was found
between California horn sharks (Heterodontus francisci) sampled
from different islands within the Channel Island archipelago
separated by up to 100 km and 800m deep water, despite
showing strong genetic differences between the coast of
California and the archipelago across 200m deep water and at a
distance of less than 20 km, unprecedented for any elasmobranch
species (Canfield et al. 2022). Benthic Port Jackson sharks
(Heterodontus portusjacksoni) migrate up to 1000 km along the
Australian coast and manage to cross the Bass Strait to Tasmania,
likely because the strait is relatively shallow (on average 60m) and
has several islands that can be used as stepping stones (Bass et al.
2016). Our study supports previous findings that ocean depth may
limit dispersal in shallow-water elasmobranchs at short geo-
graphic distances, while oceanic and deep sea species have been
found to maintain connectivity across depth barriers (Gubili et al.
2016; Domingues et al. 2018; Hirschfeld et al. 2021). Ocean depth
plays a minor role in shaping connectivity of shallow-water marine
organisms with juvenile larvae that use ocean currents to sustain
dispersal between shallow-water habitat across various levels of
bathymetry (Galarza et al. 2009). In contrast, for species that lack
juvenile larvae, such as coastal sharks and rays, bathymetry can
play a similar role in marine connectivity as topography does in
some terrestrial systems. For instance, terrestrial sky islands are
high altitude habitats that are separated by lower elevation.
Genetic isolation among sky islands is common in a range of taxa,
including insects (Smith and Farrell 2005) reptiles (Holycross and

Douglas 2007) and amphibians (Osborne et al. 2019) and can be
attributed to low dispersal capacity and a limited tolerance to
environmental conditions in lower elevations (Polato et al. 2018).
In sky islands, climatic fluctuations have altered connectivity
through elevational shifts in environmental conditions, similar to
the effect of sea level oscillations in oceanic islands (Rijsdijk et al.
2014; Mastretta-Yanes et al. 2015). In oceanic islands, shallow-
water marine species with limited dispersal are likely to produce
genetic patterns that are more similar to some terrestrial
organisms compared to marine organisms with larvae that
disperse with ocean currents.

Flickering connectivity in oceanic archipelagos
The periodical fusion and fission of landmasses through historical
sea-level fluctuations may have played a major role in shaping
coastal marine populations in oceanic islands. In the Galapagos,
low sea levels during the Pleistocene (2,588,000 to 11,700 years
ago) repeatedly connected landmasses of the central and western
archipelago and exposed seamounts between the central and
southeastern islands (Parent et al. 2008; Geist et al. 2014). The
paleogeographic IBR analysis showed that historical sea level
fluctuations likely created dispersal corridors between the western
and central islands and sea mounts provided stepping stones for
the dispersal of Galapagos bullhead sharks between the central
and southeastern islands. Similar admixture proportions among
individual sharks within each genetic cluster imply that dispersal
occurred before the establishment of a currently impermeable
barrier and sufficient time has passed to homogenize genetic
material received from other regions. In comparison, recent
dispersal would result in distinctive admixture patterns. For
example, recent dispersal events between islands resulted in
two genetic clusters on the same island in Galapagos giant
tortoises and marine iguanas, and hybridization among subspe-
cies in the latter (Steinfartz et al. 2009; Poulakakis et al. 2012;
Macleod et al. 2015). Dispersal and connectivity are subject to
climatic variations in both marine and terrestrial systems. In
terrestrial systems, climatic fluctuations caused the repeated
fusion and fission of high altitude environments that shift to
lower elevations during glacial cycles (Hazzi et al. 2018). This
mechanism generated recurring population connectivity in
mountain salamanders in the sky islands of New Mexico (Osborne
et al. 2019) and rodents in East African mountain ranges (Bryja
et al. 2014). It also created the flickering connectivity system of the
Andean alpine biome called Páramo and is largely responsible for
its extraordinary diversity (Flantua et al. 2019). Historical fluctua-
tions in global climate also altered island configuration with the
rise and fall of sea levels and left its imprint on genetic divergence
and biogeography of Galapagos’ terrestrial fauna (Ali and
Aitchison 2014). This process may also drive patterns in marine
organisms that inhabit oceanic islands around the globe, but there
was no clear empirical evidence prior to this study (Weigelt et al.
2016; Vieira et al. 2019). The case of Galapagos bullhead sharks
exemplifies that flickering connectivity systems of oceanic
archipelagoes not only shape the evolution of terrestrial species
but also coastal marine organisms with limited dispersal.

Island formation and genetic drift
Genetic population structure in Galapagos bullhead sharks likely
reflects the gradual separation of individual islands and sequential
vicariance events rather than progressive dispersal and coloniza-
tion of newly formed islands. Paleogeographic reconstructions of
the Galapagos archipelago that account for historical climate,
noting the uncertainty of the models due to the lack of geologic
data available, suggest a sequential separation of individual
islands from a central island cluster (Karnauskas et al. 2017).
Galapagos bullhead sharks may have colonized the central island
cluster prior to the separation of the oldest island, Española,
between 2 and 1.5 million years ago. Subsequently, individual

Table 2. Genetic effective population sizes (Ne) with confidence
intervals (CI) and corrected effective population sizes (Necor) for the
three main genetic clusters.

Location (sample size) Ne (CI) Necor
Española (30) Pcrit= 0.03 342.9 (334.4–351.9) 358

Floreana (30) Pcrit= 0.03 1641 (1464.1–1866.2) 1711

West (107) Pcrit= 0.005 7415.3 (6853.5–8077.1) 7732

Pcrit indicates the optimal minor allele frequency threshold based on
sample size used to estimate Ne.

Table 1. Genetic diversity of Galapagos bullhead sharks (Heterodontus
quoyi) based on 9223 neutral SNPs.

Location n AR HO HE FIS
Española (ES) 30 1.37 0.098 0.098 0.004

San Cristobal (SCY) 8 1.31 0.089 0.089 −0.007

Floreana (FL) 29 1.36 0.091 0.093 0.013

Punta Espinoza (PE) 25 1.39 0.097 0.097 0

Punta Mangle (PM) 24 1.38 0.096 0.095 −0.002

Parque Nacional
Galapagos (PNG)

30 1.39 0.096 0.096 0

Punta Vicente Roca
(PVR)

26 1.39 0.098 0.098 0.003

n sample size, AR allelic richness, HO observed heterozygosity, HE expected
heterozygosity, FIS inbreeding coefficient.
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islands separated sequentially, gradually forming bathymetric
barriers that slowly reduced migration rates and increased genetic
drift, resulting in four distinct genetic clusters. Historical reconnec-
tions during lower sea levels, and potentially the lower sample size
for San Cristóbal Island, marginally altered the general pattern.
Bayesian admixture analyses first differentiated Española, then
Floreana, and then San Cristóbal Island from the western
archipelago (Fig. 3 and Supplementary Information Figs. S4 and
S5). However, in contrast to Floreana Island and the western
archipelago, San Cristobal Island consistently showed greater
admixture with the oldest Island, Española. But it also showed
genetic admixture with Floreana Island and the western
archipelago. Admixture results and a stronger differentiation
based on genetic differentiation index (DST) between San
Cristóbal, compared to Floreana Island, and the western archipe-
lago, indicate that San Cristóbal Island may have separated second
in sequence but partially reconnected to Floreana and the western
archipelago during lower sea levels. To reinforce the sequential
vicariance viewpoint we consider four alternative scenarios that
have shaped genetic patterns in Galapagos fauna: (1) High levels
of inter-island dispersal, (2) recent arrival, (3) multiple colonization
events, and (4) strong divergent selection (Juan et al. 2000; Parent
et al. 2008).
In the first scenario, high dispersal rates found in mobile marine

species, for example Galapagos Penguins (Akst et al. 2002) and
Galapagos sea lions (Wolf et al. 2008), lead to high genetic
connectivity between islands that are separated by deep ocean. In
contrast, species with limited capacity to swim over open ocean,
may show a sequential divergence from older to younger islands
(Parent et al. 2008; Poulakakis et al. 2020). This general pattern can
be interrupted by occasional inter-island migrations, which was
apparent in Galapagos marine iguanas but not Galapagos
bullhead sharks (Steinfartz et al. 2009; Macleod et al. 2015).
Recent colonization and subsequent expansion throughout the

archipelago, the second alternative, resulted in inter-island
differentiation over the last 125,000 years in Galapagos hawks, a
bird with limited over-water dispersal (Bollmer et al. 2005).
Although, this scenario could generate the isolation by depth
pattern in Galapagos bullhead sharks, it would also result in
population bottlenecks and directional gene flow towards islands
that are colonized after the arrival of a small founder population,
which was not apparent in this study (Clegg et al. 2002; Chaves
et al. 2012). However, detecting recent or mild bottlenecks is
challenging in populations with recent range expansion in non-
model organisms with structured metapopulations and estimating
directional gene flow in non-equilibrium populations is limited
using the divMigrate approach (Sundqvist et al. 2016; Maisano
Delser et al. 2019; Lesturgie et al. 2023). Future application of
demographic history modeling may be useful to further examine
this scenario for Galapagos bullhead sharks.
The third alternative is the occurrence of multiple colonization

events from continental ranges to oceanic islands, which
commonly result in the genetic divergence among paraphyletic
groups that reflect a sequential island formation pattern (Emerson
2002; Schluter 2009; Schluter and Conte 2009). Paraphyletic
groups have been found in Galapagos lava lizards and leaf-toed
geckos (Benavides et al. 2009; Torres-Carvajal et al. 2014).
However, samples from the continental coast of South America
will be required to rule out multiple colonization events in
Galapagos bullhead sharks in the future (Emerson 2002).
Genetic diversification through natural selection and adaptation

to the environment, the fourth alternative, is common in
terrestrial, but less common in marine organisms that colonize
oceanic archipelagos (Pinheiro et al. 2017; Hedrick 2019). Outlier
SNPs may represent genetic variants that are putatively selected
for by the environment (Nielsen et al. 2009; Allendorf et al. 2010)
and showed stronger spatial genetic structure compared to
neutral SNPs at the scale of ocean basins in pelagic teleosts and

sharks (Pazmiño et al. 2018; Pecoraro et al. 2018). Within the
Galapagos archipelago, stronger genetic structure was discovered
using outlier compared to neutral loci in an endemic shallow-
water bony fish, suggesting adaptation to local environments of
individual islands (Bernardi 2022). The discovery of genomic
regions putatively under selection in non-model organisms was
limited by the sampling, sequencing and statistical methods
applied here (Tiffin and Ross-Ibarra 2014; Lowry et al. 2017; Ahrens
et al. 2018). But the diverse oceanographic conditions of the
Galapagos’ bioregions (see Fig. 1) may provide a suitable scenario
for future research to examine adaptive genetic variation in
elasmobranchs with low to intermediate dispersal ability and
inter-island connectivity, and low rates of immigration to the
oceanic archipelago (Edgar et al. 2004; Pinheiro et al. 2017).
In conclusion, the possible lack of recent bottlenecks and

directional gene flow, and the absence of paraphyletic groups
underpin that single colonization of a central island cluster and
gradual genetic drift among sequentially separating islands,
influenced by historical sea level changes, is the most likely
scenario for genetic divergence in Galapagos bullhead sharks. As
more precise paleogeographic models become available demo-
graphic history and coalescent analyses could be applied to
examine the sequence and timing of divergence in Galapagos
bullhead sharks and validate the patterns presented here.

Genomic signatures of isolation
Genomic signatures of isolation in Galapagos bullhead sharks are
consistent with the gradual formation of barriers to dispersal and
resemble those typical of terrestrial island biogeography. In
oceanic islands, species with low dispersal commonly have lower
genetic diversity and smaller population sizes compared to
mainland populations owing to the reduced genetic variation of
few founding individuals and because limited resources in small
and fragmented habitats sustain smaller populations (Frankham
1996, 1997). Galapagos bullhead sharks show lower diversity,
based on similar sequencing techniques and numbers of markers,
compared to shark species with higher dispersal or that were
sampled along continental ranges (Supplementary Information
Table S5). However, comparing levels of genomic diversity, based
on SNP markers, among studies remains a challenge (Cariou et al.
2016; Schmidt et al. 2021). Estimating genome-wide heterozyg-
osity (Schmidt et al. 2021) in elasmobranchs from publicly
available data sets and future island-mainland comparisons in
our study species may confirm lower genomic diversity in marine
island populations. In some cases relatively high genetic diversity
in island populations is also possible. For example, large numbers
of founding individuals in island-colonizing song birds, or high
dispersal rates and a large population size that offset the founder
effect in Christmas Island red crabs (Gecarcoidea natalis), led to
relatively high genetic diversity (Aleixandre et al. 2013; Weeks
et al. 2014). Galapagos bullhead sharks have low dispersal capacity
and smaller populations sizes, in comparison. Therefore, low
genomic diversity may be traced back to a founder effect caused
by few colonizing individuals, a common feature in terrestrial
island populations (Frankham 1997). Considering its poor dispersal
ability, Galapagos bullhead sharks or their egg cases attached to
debris could have been transported from the South American
coast to the Galapagos on rafts drifting with the Humboldt
Current, similar to the mechanism proposed for many native
terrestrial vertebrates (Ali and Fritz 2021). Another parallel
between Galapagos bullhead sharks and terrestrial species are
effective populations sizes (Ne) that scale with habitat availability
in oceanic archipelagos (Frankham 1997; Brüniche-Olsen et al.
2019). In some sharks, Ne approximates the census size (Nc)
because of their low fecundity, consistent reproductive success,
long life spans and late age at maturity (Portnoy et al. 2009;
Waples et al. 2013; Dudgeon and Ovenden 2015), a life history also
characteristic of Heterodont sharks (McLaughlin and O’Gower
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1971; Powter and Gladstone 2008). This contrasts with many
marine species because they have high dispersal rates, large-scale
genetic connectivity, high fecundity, and large population sizes
(Palumbi 1994). Large populations of marine species have genetic
effective population sizes (Ne) that are orders of magnitude
smaller than the true number of adults in the population (Nc)
owing to the high fecundity and variability in reproductive success
(Palstra and Ruzzante 2008; Waples et al. 2016). Comparing Ne

estimates among elasmobranch species is challenging due to the
effect of different life histories, migration rates, sampling design,
and sequencing techniques on estimates (Waples et al. 2013;
Dudgeon and Ovenden 2015; Marandel et al. 2019). For example,
pelagic blue sharks in the Atlantic have a high Nc but showed Ne

estimates around 5000, lower than our estimates for the western
archipelago (King et al. 2015; Veríssimo et al. 2017). Genetic
effective population size estimates for Sandbar sharks were only
slightly lower, between 1500 and 4900 and similar to Nc (Portnoy
et al. 2009). This may be explained by higher migration rates, large
litter size, earlier age at maturity, and longer adult life spans that
result in a lower Ne/Nc ratio in blue compared to sandbar sharks
(Portnoy et al. 2009, 2010; Taguchi et al. 2015). When compared to
another benthic elasmobranch, Galapagos bullhead sharks had
smaller Ne estimates than blue skates sampled at inshore locations
(21,000), but similar estimates (3500) than populations at some
isolated offshore locations (Delaval et al. 2022). While our results
suggest that Galápagos bullhead sharks may lack adaptive
potential at the most isolated locations, future comparisons of
Ne between the Galapagos and the continental coast and between
Ne and Nc are needed to corroborate these results (Ryman et al.
2019). The life history of Galapagos bullhead sharks, and lack of
dispersal and genetic connectivity therefore suggest that Ne

estimates for individual islands approximate census sizes. Low
genetic diversity and population sizes that scale to the amount of
available resources are common in terrestrial island biogeography
but, to our knowledge, unprecedented in marine organisms
(Dawson 2016).

CONCLUSION
This study shows that Galapagos bullhead sharks produce genetic
and biogeographic signatures comparable to many terrestrial
organisms in oceanic archipelagos and contrasting those com-
monly found in pelagic elasmobranchs and marine taxa with larval
dispersal. Isolated marine populations with small effective
population sizes and low genetic diversity are at high risk of
extinction because they have reduced adaptive potential and lack
replenishment from adjacent locations (Frankham et al. 2014;
Ryman et al. 2019). This highlights the importance of preserving
shallow marine habitat to protect marine island populations
(Vieira et al. 2019). Future research on marine species with similar
characteristics to our study species may broaden our under-
standing of island evolution and biogeography in the marine
realm and enhance efforts to preserve the biodiversity of oceanic
archipelagos.

Data archiving
The data used in this study, including genotyped and filtered SNP
data, and details of data analyses are openly available through the
Supplementary Information and datadryad.org https://doi.org/
10.5061/dryad.dv41ns241.
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