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1  |  INTRODUC TION

Effective population size (Ne) is central to evolutionary biology, but 
collecting the demographic data required to calculate Ne directly can 
be logistically challenging. As a consequence, considerable interest 
has focussed on genetic methods to estimate Ne indirectly. As re-
ported by Palstra and Ruzzante (2008), from the 1970s through the 
mid-2000s most genetic estimates of Ne used the temporal method 
(Krimbas & Tsakas, 1971; Nei & Tajima, 1981; Waples, 1989), which 
requires at least two samples separated in time. This changed in the 
late 2000s when focus shifted to methods that require only a single 
sample, and within a few years single-sample methods had over-
taken the temporal method in popularity (Palstra & Fraser, 2012).

Of the single-sample methods, the most widely used are a bi-
as-adjusted version of Hill's (1981) method based on linkage disequi-
librium, LD (Waples,  2006a; Waples & Do,  2008), and the sibship 
method of Wang (2009). Like all models, these single-sample estima-
tors make numerous simplifying assumptions, sensitivities to which 
have been evaluated in many cases. However, for the LD method in 
particular, performance evaluations have been conducted in a wide 
range of papers published in different journals over ~15 years, mak-
ing it difficult for practitioners to keep track of all developments. 
The goal of this review is to summarize the various performance 
evaluations of the LD method, with focus on information that fa-
cilitates practical applications for real populations in nature. Some 
topics that merit future research are mentioned at the end.
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Abstract
The method to estimate contemporary effective population size (Ne) based on pat-
terns of linkage disequilibrium (LD) at unlinked loci has been widely applied to natural 
and managed populations. The underlying model makes many simplifying assump-
tions, most of which have been evaluated in numerous studies published over the last 
two decades. Here, these performance evaluations are reviewed and summarized, 
with a focus on information that facilitates practical application to real populations in 
nature. Potential sources of bias that are discussed include calculation of r2 (a meas-
ure of LD), adjustments for sampling error, physical linkage, age structure, migration 
and spatial structure, mutation and selection, mating systems, changes in abundance, 
rare alleles, missing data, genotyping errors, data filtering choices and methods for 
combining multiple Ne estimates. Factors that affect precision are reviewed, including 
pseudoreplication that limits the information gained from large genomics datasets, 
constraints imposed by small samples of individuals, and the challenges in obtain-
ing robust estimates for large populations. Topics that merit further research include 
the potential to weight r2 values by allele frequency, lump samples of individuals, use 
genotypic likelihoods rather than called genotypes, prune large LD values and apply 
the method to species practising partial monogamy.
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2  |  HISTORIC AL DE VELOPMENT

2.1  |  Definition of linkage disequilibrium

Linkage disequilibrium is a measure of agreement between observed 
and expected frequencies of gametes that include alleles from more 
than one gene locus. Let PA be the frequency of allele A at locus 1 
and PB be the frequency of allele B at locus 2. If these alleles assort 
randomly, the expected frequency of the gamete that includes both 
A and B is E(PA,B) = PAPB. A common measure of linkage disequilibrium 
is then DA,B = PA,B − PAPB (Lewontin & Kojima, 1960). A more proper 
name for DA,B is ‘gametic disequilibrium’, because physical linkage 
(occurrence on the same chromosome) is not required for the re-
sult that PA,B ≠ PAPB; however, the term ‘linkage disequilibrium’ and 
its abbreviation ‘LD’ are firmly entrenched in the population genetic 
literature, so they are used here. The brief summary below only 
highlights some aspects of LD that are most relevant to the goals of 
this paper. For more comprehensive treatments, see Weir (1979) and 
Sved and Hill (2018).

A complication for calculation of D is that for most species (and 
virtually all nonmodel species) what are routinely available are not 
gametic frequencies but genotypic frequencies. If one assumes 
random mating, a maximum-likelihood method (Hill,  1974) can 
be used to estimate gametic frequencies and hence D as above. 
A simpler approach that does not require the random-mating as-
sumption is the Burrows method, which calculates the composite 
disequilibrium statistic, Δ (see Weir, 1979, Weir, 1996 for details). 
Weir (1979) concluded that for genotypic data, Δ generally is pref-
erable to the ML method, even when random mating is a plausible 
assumption.

D can be positive or negative and is very sensitive to allele fre-
quency (Hedrick,  1987; Lewontin,  1964). Many researchers have 
found it convenient to work with the square of a standardized 
version (r2) that (1) removes most of the dependence on allele fre-
quency, and (2) is always non-negative, with the result that r2 falls in 
the range [0,1]. The composite disequilibrium statistic can be stan-
dardized to adjust for allele frequency (Weir, 1979, 1996):

where h1 − P2
A
 and h2 − P2

B
 are adjustments for Hardy–Weinberg geno-

typic proportions.
An attractive feature of r2 or r2

Δ
 is that its expectation can be 

expressed as a function of two key evolutionary parameters: Ne 
and recombination fraction (c = probability that two alleles will be 
shuffled during meiosis). Because r is a ratio, however, an exact ex-
pectation has proved elusive, despite many efforts over the years 
(including Golding,  1984; Hudson,  1985; Ohta & Kimura,  1969; 
Sved & Feldman, 1973; and Weir & Hill, 1980). For Ne estimation, the 
most relevant formulation is by Weir and Hill (1980):

where

Equation 2 assumes a single, isolated, randomly mating popu-
lation with discrete generations, within which an equilibrium has 
been established between generation of LD by random genetic 
drift and breakdown of existing LD by recombination. Effects of 
these two processes are captured by the terms for Ne and c, re-
spectively. Equation 2 does not account for sampling and concep-
tually applies to LD measured in an infinite number of progeny 
produced by the parents in one generation (Weir & Hill,  1980). 
When c is very small, Equation 3 can give impossible results [E(r2) 
> 1; Hill, 1981, Sved et al., 2013], but it is generally robust for most 
practical applications.

2.1.1  |  Calculation of r2

Weir  (1979, 1996) showed how to calculate the Burrows Δ from 
the joint distribution of genotypes at two loci, and the result can 
then be used to calculate rΔ using Equation 1. A simpler and ex-
actly equivalent approach is to code genotypes using the 0/1/2 
format (Table 1); then, the Pearson product–moment correlation 
of the genotypic vectors for two loci is identical to Burrows' rΔ 
(Gao et al., 2008).

2.2  |  Estimation of Ne

2.2.1  |  General

Weir and Hill (1980) showed that Equation 2 applies both to monoe-
cious species and dioecious species without permanent pair bonds. 
They also showed that sampling a finite number (n) of offspring adds 
approximately 1/n to the empirical r2 value. Subtracting the ex-
pected contribution from sampling error and rearranging Equation 2 
produces an estimator of effective size as a function of the empirical 
r2 and the recombination fraction:

The parameter γ is inversely related to c (Table 2), and as c ➔ 0, 
γ ➔ 1/(4c). The coefficient of variation (CV) of N̂e is a function of γ, the 
ratio of effective size to sample size (Ne/n), and the number of locus 
pairs (k) used to compute mean r2 (Hill, 1981; see Table 2):

Some complications associated with implementing Equation  4 
are:

•	 It requires an estimate of the recombination fraction, c.

(1)rΔ =
Δ

[

PA
(

1 − PA
)

+
(

h1 − P2
A

)][

PB
(

1 − PB
)

+
(

h2 − P2
B

)]

(2)E
(

r2
)

=
c2 + (1−c)2

2Nec(2 − c)
=

�

Ne

,

(3)� =
c2 + (1−c)2

2c(2 − c)
.

(4)N̂e =
�

r2 − 1∕n

(5)CV
�

N̂e

�

≈

�

1 +
1

�

Ne

n

�

√

2∕k

 17550998, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13879 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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•	 Because c can vary from ~0 to 0.5 depending on which loci are 
being compared, separate estimates of effective size are associ-
ated with each value of c.

Most researchers who have used the LD method to estimate ef-
fective population size have adopted one of two strategies.

The first strategy is inspired by the old adage that where there is 
danger, opportunity also exists. Although the factors above compli-
cate practical application of Equation 4, especially for large genom-
ics datasets, they also provide an opportunity to detect signatures 
of past evolutionary events, whose effects are ‘frozen’ into parts of 
the genome that rarely experience recombination. Researchers can 
sort r2 values for pairs of loci into bins based on their recombina-
tion fraction, with each bin representing a relatively small range of c 

values. With adequately detailed information about genome struc-
ture, this approach can lead to a temporal vector of effective size 
estimates, with N̂e for pairs of loci with high recombination frequen-
cies applying to more recent time periods and N̂e for pairs with low c 
applying to farther in the past. (e.g. Corbin et al., 2012; Hollenbeck 
et  al.,  2016; Tenesa et  al.,  2007). Santiago et  al.  (2020) described 
a variation of this approach that uses a different index of LD and, 
rather than binning, considers the full spectrum of LD present in a 
dataset. Simulations conducted by Santiago et al. document impres-
sive performance of their software (GONE) to estimate historical Ne 
within the last ~100 generations.

The second strategy relies on the fact that in general most 
pairs of loci will be unlinked (c = 0.5), a result that follows directly 
from genome structure and Mendel's Second Law of Independent 
Assortment. If there are C chromosomes of equal size, the prob-
ability that a random pair of loci are on different chromosomes 
(and hence assort independently, with c = 0.5) is 1–1/C, which (for 
example) is 0.95 for C = 20. Unequal chromosome length can be 
accounted for by defining an effective number of chromosomes, 
analogous to the effective number of alleles at a polymorphic gene 
locus. Given that average chromosome numbers for vertebrates, in-
vertebrates, vascular plants and unicellular eukaryotes are 25, 11, 13 
and 17, respectively (data from Li et al., 2011 summarized by Waples 
et al., 2022), it is easy to see that in most species the preponderance 
of locus pairs will assort independently. Loci with c = 0.5 provide in-
formation about contemporary Ne (generally speaking, effective size 
for the time frame encompassed by sampling), and that is of primary 
interest to applied conservation and management.

The remainder of this paper reviews performance of the LD 
method to estimate contemporary Ne using unlinked pairs of 
markers.

2.2.2  |  Unlinked loci

With c = 0.5, � = 1∕3 (Table 2), and (after accounting for sampling 
error) Equations 2 and 4 simplify to

(6a)E
(

r2
)

≈
1

3Ne

+
1

n
,

TA B L E  1 Hypothetical genotypic matrix for 10 individuals 
scored at 8 loci using the 0/1/2 scoring convention, with the 
genotypes representing the number of copies of the focal allele 
each individual carries (‘1’ = heterozygote; ‘0’ and ‘2’ = alternate 
homozygotes).

Individual

Locus

1 2 3 4 5 6 7 8

1 1 1 0 1 1 1 1 1

2 2 0 0 0 2 1 2 2

3 2 1 1 1 1 2 1 1

4 1 2 1 1 1 1 0 2

5 1 0 0 0 0 1 1 2

6 2 2 1 1 1 2 0 1

7 2 1 0 0 0 2 0 0

8 0 1 1 0 0 1 1 2

9 1 2 2 0 2 1 1 2

10 2 1 0 0 0 2 0 1

Note: For diallelic (SNP) loci, this represents complete information, as 
data for the other allele are obtained by subtraction. For multiallelic 
loci, separate columns can be used for each allele. When genotypes are 
scored this way, the Pearson product–moment correlation of the values 
in two columns is identical to the Burrows rΔ calculated in Equation 1, 
provided that the n/(n−1) adjustment suggested by Weir (1979) is not 
used in calculating Burrows Δ.

TA B L E  2 Theoretical expectation of the coefficient of variation (CV) of N̂e for different combinations of recombination fraction (c), γ (from 
Equation 3) and the ratio of Ne to number of sampled offspring (n).

c γ

CV (N̂e)

k = 10 k = 10,000

Ne/n = 10 Ne/n = 5 Ne/n = 1 Ne/n = 10 Ne/n = 5 Ne/n = 1

0.001 249.6 0.47 0.46 0.45 0.015 0.014 0.014

0.01 24.6 0.65 0.54 0.47 0.020 0.017 0.015

0.1 2.16 2.52 1.48 0.65 0.080 0.047 0.021

0.3 0.57 8.31 4.38 1.23 0.263 0.138 0.039

0.5 0.33 13.86 7.16 1.79 0.438 0.226 0.057

Note: Results are from Equation 5 assuming r2 is averaged across k = 10 or k = 10,000 independent pairs of loci.
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where r2′ is r2 from Equation 2 adjusted for finite sampling of off-
spring. The estimate of effective size from the LD method applies 
primarily to the parental generation of the individuals sampled 
and hence estimates inbreeding Ne (Laurie-Ahlberg & Weir,  1979; 
Waples, 2005).

Because precision of N̂e is an inverse function of recombination 
fraction and is relatively low for c = 0.5 (Table 2), Hill (1981) con-
cluded that unlinked loci have little practical value for estimating 
effective size. Perhaps largely as a consequence, Hill's method saw 
few applications for the next quarter century (Bartley et al., 1992 
being a notable exception). Two factors eventually caused this to 
change. First, early developers of genetic methods to estimate 
Ne generally focussed on potentially very large populations such 
as Drosophila spp. Indeed, Pollak (1983, p. 544) stated that ‘there 
would be no need to estimate [Ne] indirectly by any of the meth-
ods discussed in this paper unless it is quite large’. However, for 
given sample sizes of loci and individuals, precision is higher when 
Ne is small and the drift signal is stronger (Waples, 1989), and this 
applies to all genetic methods for estimating contemporary ef-
fective size. Beginning in the 1980s, interest rapidly increased in 
practical application of evolutionary principles to conservation 
and management of natural populations, including evaluations of 
how effective sizes measured up to rules of thumb for minimal 
values consistent with short-term and long-term viability. The sec-
ond factor is that laboratory techniques eventually advanced to 
the point where moderately large numbers of alleles were avail-
able for analysis, which meant that the number of pairwise com-
parisons for computing mean r2 (k in Equation 5) might be large 
enough to offset at least some of the limitations regarding preci-
sion (as indicated on the right side of Table 2).

At this point, a potential problem with the LD method was 
identified (England et  al.,  2006): using unlinked loci, N̂e from 
Equation  6a was robust only when sample size was comparable 
to effective size; N̂e was downwardly biased when n < Ne and dra-
matically so for n < < Ne, leading to the result that N̂e reflected the 
sample size more than the effective size. Further investigation 
(Waples,  2006a) showed that the main source of bias was that 
the 1/n term proposed by Weir and Hill (1980) and Hill (1981) was 
insufficient to account for random contributions to r2 from sam-
pling offspring. The 1/n term was an approximation obtained under 
the assumption that terms in 1/n2 and 1/(nNe) were small enough 
to ignore (Weir & Hill,  1980). Based on extensive simulations of 
unlinked loci, Waples (2006a) developed an empirical adjustment 
to E

(

r2
)

 that added terms for 1/n2 and 1/N2
e
. These adjustments 

were incorporated into the software LDNe (Waples & Do, 2008) 
and subsequently into NeEstimator (Do et al., 2014). The material 
below summarizes performance of the version of the LD method 
that is implemented in LDNe and NeEstimator.

3  |  PERFORMANCE OF THE LD METHOD 
FOR ESTIMATING CONTEMPOR ARY Ne

Many papers have compared results of the LD method with other 
Ne estimators for empirical datasets, but these are difficult to evalu-
ate because true Ne is generally not known. Material below is drawn 
from published studies using computer simulations with known 
parameter values. Evaluations that include comparisons of LDNe 
with other methods include Waples and Do  (2010), Gilbert and 
Whitlock (2015), and Wang (2016, 2023). What follows here is a de-
tailed review of factors that can bias LD estimates of effective size, 
followed by a discussion of precision and effects of various sampling 
strategies and experimental designs.

3.1  |  Bias

3.1.1  |  Sample size

Adjustments to E(r2) developed by Waples (2006a) largely eliminated 
downward bias in N̂e when n < Ne. As discussed in the next section, 
an interaction between sample size and allele frequency can affect 
bias to some extent.

Researchers should keep in mind that, assuming other model 
assumptions are met, two main sources of uncertainty are associ-
ated with using genetic methods to estimate effective size: sampling 
individuals and sampling some of the ~109–1010 DNA base pairs in 
a typical genome. For moderate values of these key variables, re-
searchers can often trade off efforts for sampling genes vs individ-
uals, but these experimental-design trade-offs have limitations. In 
particular, the trend in recent genomics studies to assay larger num-
bers of SNPs on fewer individuals places important constraints on Ne 
estimation. In small samples, the amount of LD can be very sensitive 
to the pedigree of the sampled individuals. As more SNPs are used, 
the estimate of r2 will converge on a value that reflects the relation-
ship structure of the sampled individuals and not the population as 
a whole (the latter generally being what one is interested in). This 
limitation—which can only be alleviated by taking larger samples of 
individuals, not by arbitrarily large increases in the number of ge-
netic markers—is particularly acute for analyses (such as estimation 
of contemporary Ne) that are strongly affected by pedigrees from 
the most recent generations (King et al., 2018). In coalescent models 
that describe evolutionary processes over long time scales, individ-
uals become more interchangeable, and just a few individuals might 
be an adequate sample.

3.1.2  |  Allele frequency

The bias correction developed by Waples  (2006a) and incorpo-
rated into the LDNe software (Waples & Do, 2008) was based on 

(6b)N̂e =
1

(

r2 − 1∕n
)

1

3
=

1

3r2�
,
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    |  5 of 16WAPLES

simulations of diallelic loci and excluded alleles with frequencies 
<0.05 or >0.95. In more extensive evaluations that included mod-
elling of highly variable ‘microsatellite’ loci, Waples and Do (2010) 
found an upward bias to N̂e when lower frequency alleles are used, 
with the bias reduced for larger samples. The most effective strat-
egy for minimizing bias is to screen out all singleton alleles, which 
only occur in one copy [at frequency 1/(2n)]. With missing data, 
usable sample sizes vary among pairs of loci, which means that 
using a single cut-off for screening out rare alleles (Pcrit) will not 
produce uniform results with respect to bias reduction. The soft-
ware NeEstimator (Do et al., 2014) has an option for screening out 
only singleton alleles for each pair of loci. Beyond removal of sin-
gletons, some modest further reductions in bias can be achieved 
by removing alleles at frequency up to about 0.05, but generally 
with some reductions in precision. Figure 1 shows a typical pat-
tern of slightly increasing N̂e as alleles with lower frequency are 
allowed into the analysis.

3.1.3  |  Linkage

When only a handful of allozymes or microsatellites were avail-
able for analysis, it was not unreasonable to assume that the loci 
were all on separate chromosomes or, if not, far enough apart 
that they were effectively independent. With genomics-scale 
datasets, that assumption is no longer tenable, and formally ac-
counting for the effects of physical linkage is essential. This link-
age, of course, is vital information for variations of the LD method 
that aim to estimate historical Ne (see Section  2.2.1), but it will 

downwardly bias estimates of contemporary effective size based 
on theoretically unlinked loci, because LD due to linkage is inter-
preted as a signal of drift. In stable populations, the magnitude 
of downward bias does not depend on the number of loci but is 
inversely correlated with genome size, with a linear regression 
N̂e ∕ trueNe = .098 + .219∗ ln(C), where C is the number of chromo-
somes of size 100 cM (Waples et al., 2016).

Three general strategies are available for dealing with this bias:

1.	 Ignore it;
2.	 adjust for it;
3.	 restrict comparisons to pairs of loci on different chromosomes.

Whether Option 1 is acceptable depends on one's objectives, 
tolerance of uncertainty, and study organism. For example, if the 
focal species has 25 chromosomes (mean number for vertebrates; 
Li et al., 2011), expected downward bias to N̂e is only about 20%, 
but that jumps to 60% for species with only four chromosomes. 
Option 3 should be optimal for the estimation of current Ne, as 
all pairs of loci then have c = 0.5, and NeEstimator can implement 
this option provided the required genome-structure information is 
available. Option 2, which corrects for expected bias using the re-
gression above, is something of a compromise and was developed 
for a constant-N model, but it could be a Goldilocks ‘just right’ 
choice for many species because all it requires besides the raw 
data is an estimate of C or genome size. If genome-size information 
is not available for the focal species, it likely is for some closely 
related ones (Li et al., 2011). Recent studies that have accounted 
for linkage in estimating contemporary Ne using either Option 2 or 
3 include (Bootsma et al., 2021; Nadachowska-Brzyska et al., 2021 
and Walsh et al., 2022).

3.1.4  |  Changes in abundance

Equations  2, 6a, and similar equations by other authors assume 
that an equilibrium level of LD has been achieved, such that the 
amount of LD lost each generation by recombination is offset by 
new LD generated in all finite populations. Changes in population 
size can disrupt this process, but for pairs of loci that assort in-
dependently the effects are limited by rapid decay of existing LD 
(50% per generation, measured by D). Furthermore, when D de-
creases by a factor of 2, D2 and hence r2 are reduced by a factor 
of 4, so for unlinked markers the signature of historical Ne fades 
quickly and is replaced by a signal related to effective size in the 
most recent generation(s) (Waples,  2005). This response is par-
ticularly rapid following a bottleneck, where new LD from the 
recent, smaller Ne quickly dominates the signal from higher back-
ground Ne. Tallmon et al. (2010), Antao et al. (2011), and Schweizer 
et al. (2021) all documented the ability of the LD method to detect 
reduction in effective size within 1–2 generations of a bottleneck, 
provided a temporal sequence of samples is available. Similarly, 
the LD method can rapidly detect population fragmentation, 

F I G U R E  1 Estimates of contemporary Ne for three indigenous 
Iranian horse breeds, as a function of the criterion for screening out 
rare alleles (MAF = PCrit). With MAF = 0, all alleles are used. Data 
are from Mousavi et al. (2023), and results were obtained for the 
LDNe model in NeEstimator, after restricting comparisons to pairs 
of loci on different chromosomes. Before screening rare alleles, 
the dataset included 40,120 SNPs. Sample sizes of individuals 
were n = 29, 52 and 67 for Turkmen, Persian Arabian and Kurdish, 
respectively.
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6 of 16  |     WAPLES

where a single, large population divides into several smaller, iso-
lated ones, each of which has experienced a bottleneck/founder 
effect (England et  al.,  2010). Consequences of population size 
change are not symmetrical with respect to effective size estima-
tion. Following a population expansion, the drift signal for the new 
Ne is small relative to the large amount of residual LD generated by 
the formerly smaller effective size, so a few more generations are 
required for mean r2 to break down enough to closely approximate 
the expected value for the new Ne (Waples, 2005).

These results have practical application to computer model-
ling of evolutionary processes. A common way to initialize an in-
dividual-based population genetic model is to draw genotypes in 
generation 0 randomly and independently for each locus based 
on specified initial allele frequencies. Conceptually, this is equiv-
alent to modelling reproduction in a population of infinite size, so 
LD in the offspring (generation 0) is all attributable to sampling 
error, not genetic drift. By generation 5–6, mean r2 is essentially 
indistinguishable from that expected for a stable population with 
the modelled Ne (Waples, 2005). This allows a very rapid burn-in 
process with discrete generations, which, however, might have to 
be extended a bit to deal with age structure (Antao et al., 2020; 
see Section 3.1.8). In contrast, reaching an equilibrium level of LD 
can take much longer in models that involve physical linkage and 
low recombination fractions. Among others, Tallmon et al. (2010), 
England et  al.  (2010), Luikart et  al.  (2021), and Schweizer 
et al. (2021) have empirically evaluated how changes in abundance 
affect LD-based estimates of Ne.

3.1.5  | Migration

This section considers the combined effects of migration and subse-
quent interbreeding on LD in samples taken from a single local popu-
lation. See Section 3.1.6 for consideration of sampling designs that 
might incorporate individuals from different populations or demes, 
with or without actual migration. At equilibrium under migration, 
E(r2) has two components, one due to drift and one due to popula-
tion mixture (Waples & England, 2011):

The drift term for unlinked markers (from Equation  6a) is ap-
proximately 1/(3Ne). The mixture term reflects a kind of two-locus 
Wahlund effect that occurs in a mixture of genetically divergent in-
dividuals (Nei & Li, 1973); its magnitude is a function of the migra-
tion fraction (m) and the degree of genetic divergence between the 
donor and recipient populations, which can be represented by FST 
(Waples & England, 2011).

From the point of view of a sample taken from a local popu-
lation, migration affects both of the terms in Equation  7, but in 
contrasting ways. The drift term reflects the effective number of 
parents that produced the sampled offspring. Migration expands 
the number of potential parents, and (all else being equal) this 

tends to reduce 
(

r2
)

drift
. However, genetically divergent migrants 

introduce mixture LD that increases 
(

r2
)

mixture
. The net effect of 

migration on E(r2) depends on the relative importance of these 
two factors.

In Wright's  (1943) widely used island model, in each genera-
tion every local population exchanges a fraction m of individuals 
with the larger metapopulation as a whole. Under the equilibrium 
island model, N̂e based on local samples will provide a largely unbi-
ased estimate of local Ne, provided that m is no higher than about 
5%–10% (Waples & England,  2011). The surprising generality of 
this result across a wide range of plausible migration rates occurs 
because when migration is common populations are weakly differ-
entiated so little mixture LD is generated, whereas when m is low 
and FST is higher, the mixture LD that is generated is uncommon 
and has relatively little overall effect. When m exceeds about 10%, 
however, the entire metapopulation behaves more like a single 
population, and N̂e based on local samples approaches metapopu-
lation Ne rather than local Ne. Waples and England also modelled 
episodic migration scenarios, where occasional large pulses of ge-
netically divergent migrants flood into a population. Under those 
conditions, the mixture term in Equation  7 can be very large, in 
which case the inflated r2 translates into a substantial underesti-
mate of local Ne.

Gilbert and Whitlock  (2015) examined bias and precision of 
several single-sample and temporal Ne estimation methods across 
a wide range of migration scenarios. They found that LDNe per-
formed better than other single-sample methods they considered 
and was comparable to the best temporal estimators, except when 
migration rate was high (m ≥ 0.1) and population size was relatively 
large (Ne ≥ 500).

For practical applications, researchers should remember that 
individual datasets often have idiosyncrasies that cause deviations 
from ‘average’ behaviour, which in studies like those cited above 
typically reflect means across many simulated replicates. Empirical 
r2 can depend heavily on which individuals appear in your sample. If 
the sample by chance includes one or more first-generation migrants, 
or descendants of recent migrants, effects on r2 can be substantial, 
and this is particularly true for smaller samples, where deviant in-
dividuals have relatively large influence (Waples & England, 2011). 
Unless recent immigration can be excluded, it would be prudent 
for researchers to use PCA, assignment tests, or other methods to 
try to identify genetic outlier individuals, so their effects on results 
can be evaluated (see fig. 4 in Waples & England, 2011 for an exam-
ple illustrating how the criterion for screening out rare alleles (Pcrit) 
can be used in this way). Palstra and Ruzzante (2011) and Ruzzante 
et al. (2019) also illustrate practical application of methods for man-
aging the effects of migration on Ne estimation.

Finally, researchers should be cautious in applying equilibrium 
models to contemporary samples from species that have been 
strongly influenced by human-mediated changes to their ecosys-
tems. Although pulse migration—where a large number of genetically 
divergent individuals appear in a local population—would not be ex-
pected under equilibrium conditions, it could occur if anthropogenic 

(7)E
(

r2
)

= E
(

r2
)

drift
+ E

(

r2
)

mixture
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    |  7 of 16WAPLES

changes have altered natural barriers that previously precluded mi-
gration and fostered strong genetic divergence.

3.1.6  |  Interactions between sampling and 
spatial structure

If one expands the geographic scale of sampling beyond a single 
local deme or population, the sample can include ‘pure’ individuals 
from more than one gene pool, even in the absence of recent migra-
tion. Effects of these outlier individuals would therefore be similar to 
first-generation migrants in a metapopulation model.

One spatial structure scenario whose effects on LD have been 
evaluated is Wright's (1946) isolation-by-distance model for contin-
uously distributed species. Neel et al. (2013) modelled this scenario 
by creating new individuals each generation for every node in a 2D 
matrix, with genotypes being drawn randomly from parents within a 
specified distance of the focal cell; this was referred to as the breed-
ing window, and consequences of natal dispersal were reflected in 
the emerging genetic structure. Neel et al. (2013) found that when 
samples were taken within the breeding window, N̂e agreed closely 
with Wright's (1946) neighbourhood size, and other dynamics of the 
system agreed with predictions of Wright's isolation-by-distance 
model. As the scale of sampling increased relative to the breeding 
window, N̂e increased more slowly and plateaued at a value sub-
stantially below global Ne. This pattern presumably reflects the in-
creasingly strong downward bias from mixture LD as larger sample 
windows increasingly included more genetically divergent individu-
als. In support of this interpretation, Neel et al. found that increas-
ingly strong heterozygote deficiencies (positive FIS, consistent with 
a Wahlund effect) were found as soon as the scale of sampling ex-
ceeded the breeding window. Shirk and Cushman (2014) reported 
results consistent with these patterns in a study of mountain goats 
(Oreamnos americanus) inhabiting a complex landscape. As noted 
by Battey et  al.  (2020), departures from many other predictions 
of standard, discrete-population genetic models can be expected 
when they are applied to continuously distributed species.

The need for additional research on the effects of combining in-
dividuals across more than one partially isolated population is high-
lighted in Section 5.2.

3.1.7  | Mutation and selection

In contrast to migration and drift, which have profound effects on 
LD, the other two evolutionary forces (mutation and selection) have 
little influence on r2 for unlinked loci. Saura et al. (2015) found that 
estimating a mutation parameter from empirical genetic data im-
proved an LD-based estimate of Ne, but this adjustment was applied 
to estimates of historical Ne based on estimates of c for syntenic 
pairs of loci. Apart from its role in producing new rare alleles (see 
Section 3.1.2), mutation has no appreciable influence on r2 for pairs 
of loci on different chromosomes.

Much of the early research on LD involved searches for evidence 
of selection, but those were largely unsuccessful. Subsequent re-
search (e.g. Thomson,  1977; Barton,  2000) demonstrated a wide-
spread phenomenon known as genetic hitchhiking, whereby the 
fate of a neutral allele is affected by selection acting on one or more 
loci it is linked to. For Ne estimation, however, the key question is 
not whether selection is associated with LD, but whether selection 
biases estimates of effective size that assume selective neutrality. 
Using simulations to address this question, Novo et al.  (2022, p. 1) 
found that estimates of historical Ne from the GONE software de-
veloped by Santiago et al.  (2020) were ‘virtually unaffected by se-
lection’. It is reasonable to conclude that estimates of contemporary 
Ne also should show little or no bias from selection, given that half of 
existing LD at unlinked loci breaks down every generation through 
recombination.

3.1.8  |  Age structure

The above analyses all assumed discrete generations. For the large 
fraction of the world's species that are age-structured and have 
strongly seasonal reproduction, one needs to be concerned with 
two effective sizes: for a full generation (Ne), and the effective 
number of breeders (Nb) in one season (hereafter assumed to be 
1 year). Ne is more important for determining the rate of genetic 
drift, but Nb is generally much easier to estimate and monitor, and 
it provides key insights into mating systems and reproductive biol-
ogy. Two general life histories have been studied using the con-
temporary LD method.

In semelparous species with variable age at maturity (including 
Pacific salmon, annual plants with seed banks, monocarpic peren-
nials and diverse other taxa), samples from individual cohorts (prog-
eny of adults reproducing in 1 year) that are analysed with the LD 
method provide an estimate that primarily reflects Nb for that year, 
with some influence from background LD that is a function of gener-
ational Ne. Because each individual reproduces in only 1 year, Ne per 
generation is an additive function of Nb per year: Ne ≈ gNb, where g is 
generation length. If Nb varies, Ne is approximately g times either the 
harmonic mean Nb [Pacific salmon (Waples, 2002) and monocarpic 
perennials (Vitalis et al., 2004)] or the arithmetic mean Nb [annual 
plants with seed banks (Nunney, 2002)], with the difference deter-
mined by the method of population regulation (see Waples, 2006b 
for details).

It seems intuitive that Nb also should be <Ne in iteroparous species, 
but it turns out that is not always true: across 63 diverse taxa, Waples 
et al. (2013) found Nb < Ne, Nb = Ne, and Nb > Ne. The ratio Nb/Ne can be 
predicted with a reasonable degree of certainty by two widely studied 
life history traits (age at maturity and adult lifespan), plus a metric that 
quantifies changes in fecundity with age. To evaluate performance of 
the LD method to estimate contemporary Nb and Ne under iteropar-
ity, Waples et al. (2014) modelled eco-evolutionary dynamics in 21 of 
these 63 species having expected Nb/Ne in the range 0.27–1.7, esti-
mated Ne and Nb from genetic samples and compared these with the 
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pedigree Ne and Nb calculated from the observed mean and variance in 
offspring number. Results can be summarized as follows:

•	 For single-cohort samples, after accounting for sampling error, 
E
(

r2�
)

≈ 1∕
[

3∗Hmean
(

Nb,Ne

)]

, where Hmean is the harmonic 
mean.

•	 If Ne ≠ Nb, the LD-based estimate of Nb (N̂b) based on single cohorts 
is biased; this bias can largely be removed by adjusting N̂b as follows:

where Nb/Ne can be estimated from life history traits as described 
above.

•	 Ne can be estimated indirectly by calculating N̂b(Adj) from 
Equation 8 and dividing by the estimated Nb/Ne ratio.

•	 Waples et  al.  (2014) found that for all 21 modelled species, di-
rect LD-based genetic estimates based on mixed-age samples of 
adults underestimated true Ne by ~10%–50%, with less bias gen-
erally occurring when the number of age classes in the sample 
approximated the generation length.

•	 For three species having a wide range of life history traits and 
Nb/Ne ratios, Figure 2 shows how raw LD-based estimates com-
pare to true Nb and Ne for experimental designs that randomly 
sampled all individuals or only adults, or combined samples from 
1 to 3 consecutive cohorts. Similar plots for other species are in 
Waples et al. (2014), and evaluations for additional species are in 
Robinson and Moyer (2013).

Among others, Ruzzante et  al.  (2016), González-Ferreras 
et al. (2022) and Brooks et al. (2023) have adjusted raw estimates of 
Nb or Ne based on a species' life history traits. With long-term data-
sets, Nb and/or Ne can be monitored over time (Kamath et al., 2015; 
Waples, Scribner, et al., 2018; Whiteley et al., 2015).

3.1.9  | Mating system

Equations  2 and 6a apply equally to dioecious species with separate 
sexes and no permanent pair bonds and to monoecious species with 
random selfing (Weir & Hill, 1980). Under lifetime monogamy, the drift 
signal for E(r2) is exactly doubled for c = 0.5 (being 2/(3Ne) rather than 
the 1/(3Ne) shown in Equation 6a; Weir & Hill, 1980). If the selfing rate 
increases from the random 1/N expectation, N̂e from the LD method be-
comes increasingly biased downwards, and the LDNe method can also 
substantially underestimate Ne in haplodiploid systems (Wang, 2016).

3.1.10  |  Combining estimates of effective size

Often researchers want to get an overall N̂e by combining two or 
more individual estimates that in theory are estimating the same 

parameter. This might occur, for example, if a researcher had multi-
ple temporal samples from the same population, or a series of rep-
licate estimates from simulated data with a constant Ne. There are 
two correct (and equivalent) ways of doing this and many incorrect 
ways that lead to systematic bias (Box 1). The correct ways are to 
either: (1) compute a grand mean r2 across all replicates and use the 
result to estimate Ne (Method 1); or (2) compute N̂e for each replicate 
and take the harmonic mean of these (Method 2). If the r2-Ne rela-
tionship were as simple as shown in Equation 6a,6b, Methods 1 and 
2 should produce identical results, apart from rounding errors. With 

(8)N̂b(Adj) =
N̂b

1.26 − 0.323
(

Nb ∕Ne

) ,

F I G U R E  2 Relationship between genetic estimates of 
contemporary effective size using the LD method (filled circles and 
solid lines) and true Ne (dashed-dotted lines) and true Nb (dotted 
lines) in three species with low (male elephant seal), medium 
(bison) and high (great tit) Nb/Ne ratios. Age-structured simulations 
modelled each species' vital rates (age-specific survival and 
fecundity), and results are shown for several sampling strategies 
(sampling from one to three consecutive cohorts or randomly from 
all adults or the population as a whole). α = age at maturity and 
AL = adult lifespan. Reproduced from Waples et al. (2014).
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    |  9 of 16WAPLES

the more complicated estimation procedure in LDNe, results should 
be similar but not necessarily identical.

In my experience, by far the greatest confusion about combining 
N̂e values comes when empirical r2 is less than the value expected 
from sampling error alone, with the result that r2′ is negative and 
so is the resulting N̂e. Although a negative Ne is conceptually prob-
lematical, the estimate still contains valuable information about ge-
netic drift, so the correct approach is to compute the harmonic mean 
across the entire vector of N̂e values. Ignoring negative or infinite 
estimates systematically leads to underestimation of the composite 
Ne (see Box 1). Some proprietary software might refuse to compute 
the harmonic mean if any values are negative, but this is simple to 
accomplish using the definition of a harmonic mean as the reciprocal 
of the mean of the reciprocals:

where k is the number of estimates.
If negative or infinite N̂e values give researchers heartburn, a 

simple approximation is to replace all such values with a large pos-
itive number, like ‘999999’. These large values contribute little to 
Σ
(

1∕ N̂e

)

 but they minimize bias associated with omitting them. 
Alternatively, researchers can compute a composite N̂e as the me-
dian of the individual estimates (including the ‘999999’ values). With 
an adequate number of replicates, the median will generally be close 
to the harmonic mean.

3.1.11  | Missing data

Missing data reduce precision but there is no reason it should affect 
bias of N̂e from the LD method, provided the missing data points are 
independent of the true genotype. In LDNe, each pairwise r2 value is 
computed across all individuals having data for both loci, and no miss-
ing genotypes are imputed. Peel et al. (2013) developed a method for 
weighting the pairwise r2 to account for missing data that improved 
slightly the method used by Waples and Do (2008), and the Peel et al. 
algorithm is incorporated into the LD module of NeEstimator.

It would be prudent for researchers to evaluate whether missing 
data are actually independent of genotype, in which case missing 
data can skew inferred genotypic ratios and bias downstream analy-
ses (Anney et al., 2008), including Ne estimation.

3.1.12  |  Genotyping errors

The most common genotyping errors for both microsatellites and 
SNPs are allelic dropout/null alleles, which lead to apparent het-
erozygote deficiencies (positive FIS). Null alleles also upwardly bias 
r2 and hence downwardly bias N̂e (Sved et al., 2013; Waples, 2018). 
Although the increase to raw r2 might be relatively small [for null 
alleles at frequency Pn, r2 is increased by the factor 1/(1−Pn)2; Sved 
et al., 2013], the proportional change to r2′ (and hence N̂e) can be 
substantial, especially if Ne > > n. Prudent researchers will estimate 
Pn in their data and evaluate the consequences for N̂e. Bravington 
et al. (2016) estimated Pn at 25 mSAT loci used in a close-kin mark–
recapture study of southern bluefin tuna (Thunnus maccoyii); subse-
quently, Waples, Grewe, et al. (2018) used the same data to estimate 
Ne, and they evaluated sensitivity to null alleles by repeating the es-
timates after dropping two loci with estimated Pn > 0.1.

3.2  |  Precision

In Equation 5, k is the number of locus pairs used to compute r2  , and 
these pairs are assumed to be independent. Under that assumption, 
k is the number of degrees of freedom associated with the estimate, 
and parametric confidence intervals (CIs) for N̂e can be calculated 
using eq.  12 in Waples  (2006a). Precision of the LD method has 
been extensively evaluated for small to moderate numbers of ge-
netic markers, for which the independence assumption is not un-
reasonable (Waples & Do, 2010; Gilbert & Whitlock, 2015; Luikart 
et al., 2021; Wang, 2016). These evaluations have shown that the 
method can provide very robust estimates, provided that true Ne is 
not too large (e.g. assuming all model assumptions are met, with 50 
offspring sampled from a population with Ne = 100 and genotyped 
for 100 SNPs, almost all N̂e should fall in the range 60–150; Figure 3).

Modern genomics datasets can have thousands to millions of 
SNPs. Because the number of locus pairs increases with the square 
of the number of diallelic loci, this suggests that the LD method 
might have essentially unlimited precision to estimate contemporary 
Ne, even when effective size is very large. In real-world applications, 
however, a large number of locus pairs can never be independent, 
for two reasons. First, with L loci there are L(L−1)/2 pairs but only L/2 
nonoverlapping pairs, so the full matrix of r2 values contains many 
pairs that share one locus with another pair, and this creates pos-
itive correlations among r2 values. Second, many pairs of loci will 

N̂e(composite) =
1

∑

i=1,k

�

1∕ N̂e(i)

�

∕k
=

k

∑

i=1,k

�

1

N̂e(i)

� ,

BOX 1 Combining multiple estimates of Ne

Two essentially equivalent methods are optimal for combining multiple estimates of effective size: compute a grand mean r2 across all 
replicates and use that to compute the composite N̂e (Method 1); or compute N̂e for each replicate and take the harmonic mean of these 
(Method 2). To illustrate the underlying issues involved, Monte Carlo methods were used to simulate LD in 1000 replicate populations. 
For each population, r2 was calculated across all pairs of loci, and this was used to estimate Ne using the LDNe method (details and code 
to replicate the simulations are provided in Data S1). True Ne and sample size of individuals (n) were fixed at 200 and 50, respectively.

 17550998, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13879 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 16  |     WAPLES

Mean r2 is a random variable and its distribution converges on the normal as the number of pairs of loci increases. In Scenario A, with 100 
SNPs and 4950 locus pairs, the distribution of r2 was ~normal, with an overall mean of 0.02291 (Figure B1a, top). With n = 50, in the LDNe 
model this translates to an overall estimate of N̂e(Method1) = 202. Because of the inverse relationship between r2 and Ne (Equation 6a,6b), 
the distribution of ̂Ne is not normal; instead, it is skewed towards high values (Figure B1a, bottom). Consequently, the arithmetic mean is not 
a good measure of central tendency, and the harmonic mean is used instead. Harmonic mean N̂e across all replicates is N̂e(Method2) = 202, 
the same as obtained under Method 1. In contrast, arithmetic mean N̂e (243) is biased high by the right tail of large values.

Scenario B considers a harder estimation problem, using only 30 loci. Still, with 435 locus pairs to average over, the distribution of 
r2 is ~normal and symmetrical around the overall mean 0.02286; however, with less data the spread of r2 values is considerably 
increased (Figure B1b, top). Using LDNe, the overall r2 produces N̂e(Method1) = 209. The wider range of r2 values leads to a wider 
range and increased skew of N̂e (Figure B1b, bottom). Furthermore, in 16% of the replicates, empirical r2 was less than that expected 
from sampling error alone [E(r2

sample) = 1/n + 3.19/n
2 = 0.021276], in which case both r2� = r2 − E

(

r
2
sample

)

 and N̂e are negative. These 
replicates provide no evidence for genetic drift, so the interpretation is that N̂e = ∞. Despite the presence of negative N̂e values, the 
correct way to implement Method 2 is to take the harmonic mean of all the estimates, which here leads to N̂e(Method2) = 206, nearly the 
same as obtained under Method 1. Confused by how to interpret negative or infinite N̂e values, many researchers simply ignore them. 
This is a serious error; these estimates are consistent with a large Ne and trimming them systematically leads to downward bias. In 
this example, computing harmonic mean N̂e only for the positive estimates leads to N̂e(Trim) = 161, which is biased downwards by 20%.

These examples have balanced designs and used unweighted means and harmonic means. If numbers of loci and/or individuals used 
differ among replicates, individual estimates can be weighted as described in Waples and Do (2010).

F I G U R E  B 1 Distribution of r2 (top panels) and N̂e (bottom panels) in simulated populations with true Ne = 200, sample size of 
n = 50 individuals and r2 averaged over pairwise comparisons of 100 (Panels a) or 30 (Panels b) diallelic loci. In the bottom panels, the 
bar with the ‘*’ represents all estimates that were finite but >1000; in panel b, bottom, the bar labelled ‘Inf’ represents all negative 
estimates, which imply N̂e = ∞. Arithmetic mean N̂e is not meaningful when some of the estimates are negative (Panel b, bottom).

BOX 1 (Continued)
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be linked and hence provide correlated information. Both of these 
factors reduce the information content of pairwise LD data, with 
the result that the effective degrees of freedom (k′) is less than the 
number of locus pairs (k). A key question thus becomes, how much 
is k′ reduced compared with k? Unfortunately, a general analytical 
answer to this question does not seem to be feasible.

In the original implementation of LDNe, Waples and Do (2008) 
estimated k′ by jackknifing over loci, but this proved to be inade-
quate. Jones et al. (2016) showed that a better approach is to jack-
knife over individuals, and their improved method for generating 
CIs for r2 and N̂e was incorporated into NeEstimator V2. The new 
jackknife approach is very useful for application to specific datasets 
but less useful for understanding the factors that influence the ratio 
k′/k, and this information is crucial for researchers in planning ex-
perimental designs. Furthermore, previous evaluations of precision 
had primarily considered datasets with no more than a few dozen 
microsatellites (or their equivalent in SNPs), so little information was 
available regarding precision to be expected in large genomics-scale 
datasets, where L often is 103–107, even for nonmodel species.

To address these data gaps, Waples et al. (2022) explored a 4-di-
mensional parameter space (n, Ne, L and C) and across many replicate 
simulations estimated k′ by measuring how quickly the variance of r2 
declined as L increased. The main themes of their results are shown 
in Figure 4. Genome size has a predictable effect: as the number of 
loci increases compared with the number of chromosomes, lack of 
independence becomes more severe and k′/k declines. With 64 chro-
mosomes, k′/k was largely indistinguishable from the value expected 
when all loci are unlinked. However, even for large genomes k′ is 
greatly reduced compared with k when the number of loci is large, and 
this effect is due to the finite size of all real populations. As evident 

from Equation  2, LD disappears entirely and E(r2) = sampling error 
alone if Ne = ∞. As Ne becomes smaller, effects of linkage are seen at 
greater distances along a chromosome. Finite Ne also strongly en-
hances the effects of overlapping pairs of loci in making pairwise r2 
values nonindependent, and these effects are seen even for unlinked 
loci. The net result is that precision does not increase much after a few 
thousand SNPs (or their equivalent in multiallelic loci) are used.

Why is large Ne so difficult to estimate reliably? From Equation 5, 
for a given amount of data (numbers of individuals and loci), CV(N̂e) 
increases almost linearly with Ne. When the ratio Ne/n is very large, 
uncertainty associated with the estimate generally also will be very 
large (Marandel et al., 2019; Wang, 2023; Waples, 2016). The under-
lying problem is that large Ne produces a very weak drift signal, so 
most empirical r2 arises from random sampling error. In that scenario, 
r2

′
 will generally be close to 0, and tiny changes in r2 have large ef-

fects on N̂e. For example, with the same amount of data that provides 
high power to estimate Ne when true Ne = 100 (Figure 3), if Ne is 105, 
about half the estimates will be ∞, about half will fall in the range 100–
10,000, and only a tiny fraction will be finite and >104 (Figure 5A). 
With large Ne and only a moderate sample of individuals, one typically 
obtains a bimodal distribution of N̂e: many estimates that are much 

F I G U R E  3 Expected distribution of r2 (coloured graph 
segments) and resulting N̂e estimates (numbers) for scenarios where 
true Ne = 100, n = 50 offspring were randomly sampled, and r2 was 
averaged across all k = 100 × (100 – 1)/2 = 4950 pairs of 100 diallelic 
(SNP) loci. Expected distribution of r2 reflects the expectation that 
r2 ∕E

(

r2
)

 is distributed as chi-square with k degrees of freedom 
(Hill, 1981). The r2 values were converted into N̂e using Equation 6b. 
These results apply to the inference model of Weir and Hill (1980) 
and Hill (1981), which assumed discrete generations, constant Ne, 
and no selection or migration.

F I G U R E  4 Effective degrees of freedom = effective number 
of locus pairs (k′) for r2 as a function of the number (L) of diallelic 
(SNP) loci used to calculate r2. k′ was calculated from simulated data 
based on the rate of decline in var(r2) as more loci were used. Top: 
Effect of number of chromosomes (Chr), with Ne = 200 and n = 50. 
Bottom: effect of Ne, with Chr = 16 and n = 25. Modified from 
Waples et al. (2022).
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too high, many that are much too low, and very few that are close to 
the true value (Waples,  2016). Using more loci increases precision, 
but those benefits decline rapidly after a few thousand SNPs are used 
(Figure 4). As a consequence, when true effective size is very large, 
robust estimates of Ne cannot be expected from the LD method with 
small samples of individuals, regardless of how many loci are used. In 
that scenario, the only way to meaningfully increase precision is to 
increase the sample size and hence reduce the Ne/n ratio. This can 
be effective even with relatively modest numbers of genetic mark-
ers: When 5000 rather than 50 progeny were sampled from the large 
population shown in Figure 5A, the majority of the N̂e were within 
an order of magnitude of the true effective size (Figure 5B). In a re-
al-world application, Bravington et  al.  (2016) used genetic data (26 
highly variable microsatellite loci) from over 13,000 juvenile and adult 
southern bluefin tuna to obtain a large abundance estimate (~2 million 

adults) using close-kin mark–recapture. Subsequently, the same data 
were used in the LD method to obtain a robust estimate of the Ne/N 
ratio of ~0.1–0.5 (Waples, Grewe, et al., 2018).

3.3  |  Sampling issues

All of the above assumes random sampling, which implies both 
equiprobability and independence: Each individual has an equal 
chance of being sampled, and whether individual A is sampled has no 
effect on whether individual B, individual C, or any other individual is 
also sampled. Perfectly random sampling is generally difficult or im-
possible to achieve in nature, so the goal should be to avoid major de-
partures from randomness that can substantially bias results. For Ne 
estimation, the most common (and often the most serious) sampling 
bias occurs when close relatives are sampled at higher rates than they 
occur in the population as a whole. In population genetics analyses, 
researchers often prune samples by removing all but one member of 
a putative family group (Goldberg & Waits, 2010; Hess et al., 2015; 
Peterman et al., 2016). However, this is dangerous for Ne estimation 
because the incidence of relatives is a core part of the genetic-drift 
signal. Removing putative siblings predictably makes Ne appear larger. 
This is counterproductive if the sample is truly random; if close rela-
tives are over-represented in the sample, without additional informa-
tion it is impossible to know how many to remove to approximate a 
random sample (see Waples & Anderson, 2017 for details).

4  |  SUMMARY

For practical applications, the most important considerations re-
garding the LD method are the following:

•	 Researchers should endeavour to approximate random sampling 
as closely as possible. If progeny are not well mixed, local sampling 
will provide a drift signal from local parents rather than the pop-
ulation as a whole. Purging some putative siblings is not a reliable 
way of removing this bias.

•	 Little extra precision is gained by using more than a few thousand 
SNPs (or their equivalent in multiallelic markers)—but the benefits 
of using more loci are greater when true Ne is large.

•	 If Ne > > 1000, robust estimates cannot be expected from small 
samples of offspring, regardless of how many loci are used.

•	 The most effective way to minimize upward bias from rare alleles 
is to exclude singletons [alleles present in one heterozygote, at 
frequency 1/(2n)].

•	 Physical linkage is inevitable in all but the smallest datasets and 
will downwardly bias N̂e unless it is accounted for, by either ex-
cluding comparisons of loci on the same chromosome, or applying 
a bias correction.

•	 Equilibrium migration has relatively little effect on the estima-
tion of local Ne unless it is high in genetic terms (>5%–10%). 
Pulse migration of genetically divergent individuals can lead to 

F I G U R E  5 As in Figure 3, using 100 ‘SNP’ loci, but for true 
Ne = 100,000. Sample size (n) was 50 individuals in the top panel 
and 5000 in the bottom panel. After accounting for sampling error 
by subtracting 1/n = 0.02 (top panel) or 0.0002 (bottom panel) from 
the raw r2 values, adjusted r2

′
 that were ≤0 were treated as N̂e = ∞. 

The thin black vertical bar is the range of r2 values that lead to 
finite estimates that are larger than 104 (top) or 106 (bottom).
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substantial bias, so researchers should examine evidence for 
genetic outlier individuals.

•	 The LD method is well suited for rapid bottleneck detection 
within one to a few generations, if a series of samples is available; 
it is a little slower to detect expansion, as residual LD from the 
smaller size in the recent past can depress estimates Ne for several 
generations.

•	 In age-structured populations, the most robust estimates are of 
Nb for one year/season, based on sampling a single cohort of off-
spring. Mixed-age samples generally relate to Ne, but with more 
variation across species. N̂b can be converted to N̂e based on the 
species-specific Nb/Ne ratio, which can be estimated from life his-
tory data.

•	 N̂e is skewed high so the arithmetic mean is not a reliable indicator 
of central tendency; the harmonic mean or median N̂e should be 
used in computing composite estimates.

•	 Do not exclude negative estimates; they suggest that genetic drift 
is negligible and hence Ne is large, so ignoring them leads to down-
ward bias in composite N̂e. Even if the point estimate is infinity, 
the lower bound to N̂e can be informative for conservation and 
management.

It is important here to reflect on why one wants to estimate Ne, 
because that affects how one should interpret and use the estimates. 
The LD method primarily provides information about local effective 
size, as equilibrium migration has relatively little influence unless it is 
high. But even very low migration rates (~1 individual per generation) 
are sufficient to spread alleles widely, so the amount of genetic diver-
sity in a local population reflects local Ne only under strong and long-
term isolation. For similar reasons, as noted by Ryman et al. (2019), in 
local populations the rates of inbreeding and the amount of additive 
genetic variance (factors that led to the ‘50–500’ rule of thumb for 
how large Ne should be to promote short-term and long-term per-
sistence, respectively) can depend heavily on metapopulation dy-
namics. But estimates of local Ne are still valuable, for several reasons. 
First, they provide useful information about reproductive biology and 
mating system dynamics. And local Ne influences the effectiveness 
of natural and sexual selection, which also primarily occur locally. 
Second, the distribution and variability of local Ne are key elements in 
metapopulation models that more comprehensively predict dynamics 
of interacting groups of individuals. Finally, local Ne is a good predic-
tor of future levels of genetic diversity and genetic variance in popu-
lations that become fragmented and isolated, which is an increasingly 
common occurrence in the Anthropocene.

5  |  TOPIC S THAT MERIT FURTHER STUDY

5.1  |  Weighting alleles

Sved et al. (2013) suggested weighting r2 for different pairs of alleles 
by allele frequency (P), because alleles at higher frequency occur 
in more copies and hence contain more information. A weighting 

scheme also could potentially alleviate bias associated with null al-
leles. This idea merits further exploration for effects on bias and pre-
cision, including different weighting schemes (e.g. perhaps weighting 
by variance in allele frequency [P(1−P)] rather than linearly by P).

5.2  |  Combining samples

Given that small n limits precision, under what conditions is it rea-
sonable to lump samples from different geographic areas? This 
makes sense if the area encompassed by samples represents a sin-
gle, random-mating population: In that case, the separate samples 
are estimating the same parameter. When spatial and genetic struc-
ture exists, however, the merits of lumping samples (or not) depend 
on the relative strengths of the drift and mixture contributions to 
LD (Equation 7). More extensive evaluations might uncover general 
rules to guide practical applications.

5.3  |  LD pruning

Pruning pairwise r2 values based on magnitude or statistical sig-
nificance does not remove all effects of physical linkage (see 
Section  3.1.3 and Waples et  al.,  2016), so it is not a substitute 
for restricting comparisons to loci on different chromosomes. 
Furthermore, the bias adjustment for linkage based on genome 
size (Waples et al., 2016) assumes that loci are randomly sprinkled 
across the genome, including some that are by chance tightly linked. 
Pruning those largest r2 values would therefore affect performance 
of the bias correction. Nevertheless, judicious pruning might be war-
ranted in some circumstances. Restriction-site-associated DNA se-
quencing (RAD-seq) and related methods start with restriction sites 
widely spread across the genome and then generate short sequence 
reads from each site. Limiting analysis to one SNP per RAD site or 
contig therefore could be consistent with the simulation model used 
by Waples et al. (2016) to develop the adjustment for linkage.

5.4  |  Genotype likelihoods

All of the above evaluations assume that discrete genotypes are 
called for every individual at every locus. Some methods (e.g. 
ANGSD; Korneliussen et  al.,  2014) instead use the distribution of 
genotypic likelihoods in downstream analyses, and one (ngsLD by 
Fox et  al.,  2019) is designed to estimate LD from genotypic likeli-
hoods. Evaluations are needed for potential biases to r2 (and hence 
N̂e) for pairs of loci that are unlinked.

5.5  |  Partial monogamy

Weir and Hill (1980) derived E(r2) for random mating and permanent 
pair bonds and showed that the drift component to r2 is twice as 
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large under monogamy. Those two models are available in LDNe and 
NeEstimator, but many species practise only seasonal monogamy 
or find new partners if theirs dies. Empirical evaluations might un-
cover useful rules for these common scenarios. Santiago et al.. (un-
published) carried out some limited evaluations of effects of partial 
monogamy on LD.
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