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Molecular population genetics is one of the most active and exciting fields 
in biology, combining advances in molecular biology and genomics with  
mathematical and empirical findings from population genetics. Its results are 
regularly presented in top journals, and there are multiple scientific meetings 
that feature work in this field every year. Yet the bar for entry into molecu-
lar population genetics is almost unbelievably high. For instance, there are 
at least five different meanings attached to statistics represented by the letter 
“D,” there are almost as many meanings of the commonly used term “allele,” 
and researchers regularly and without explanation rename each other’s terms 
to fit their own system of notation. There are widely known, uncorrected 
errors in the literature, and practitioners can sometimes appear to be speak-
ing a secret language known only to other molecular population geneticists. 
Despite the many excellent books covering the field of population genetics 
as a whole, none has brought together the methods and results of molecular 
population genetics in a single volume. While this book is not intended to 
codify molecular population genetics, hopefully it will serve as a record of the 
field as it stands now.

This book is my attempt at turning a one-semester graduate course into 
a practical text that can be used as a reference by novices and experts alike. 
It came about because I was forced to cobble together pieces of many differ-
ent books, reviews, and primary research articles into a coherent users’ guide 
to the field of molecular population genetics. Without trying to teach such a 
course I don’t think I would have remembered just how hard it was for me to 
pick up many of the pieces by myself earlier in my career. But once the idea of 
a book took hold, I couldn’t stop noticing and noting all of the complex ideas, 
methods, and terminology being used without sufficient explanation. And so, 
nine years later, here we are.

Molecular population genetics is in many ways distinct from the other two 
main branches of the field: classical population genetics and quantitative ge-
netics. Since the time of R. A. Fisher, Sewall Wright, and J. B. S. Haldane, clas-
sical and quantitative population genetics have been largely concerned with 

PREFACE
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predicting the course of evolutionary change over time. Whether this change 
is examined in terms of allele frequencies (Dp) or phenotype frequencies (Dz), 
these two disciplines consider the effects of evolutionary forces such as  natural 
selection, genetic drift, mutation, and migration on the future trajectory of 
populations. Molecular population genetics, on the other hand, is explicitly a 
historical science, concerned with inferring the actions of evolutionary forces 
that have operated in the past. Knowledge of the larger field of population 
genetics is necessary for any researcher—after all, we would not be able to 
understand the effects of natural selection on molecular data without under-
standing its effects on individual mutations or phenotypes—but molecular 
population genetics is largely devoted to analyzing data that tell us about the 
past rather than to predicting the future. We are, in Norman Johnson’s words, 
“Darwinian detectives.”

Researchers use molecular population genetics techniques to address three 
main types of problems. First, for those lucky enough to have identified the 
gene or mutation underlying a phenotypic trait of interest, molecular varia-
tion can be used to understand the forces that have acted on the phenotype. 
Few methods can tell us so directly about how evolution has acted in the past 
on a phenotype. Second, molecular population genetics is used to examine 
the relative effects of evolutionary forces across the genome. While this may 
be an indirect indicator of selection on phenotypes, the questions asked in 
such studies are generally concerned with the forces maintaining genetic 
variation, whether or not there is a direct connection to phenotypic varia-
tion. Finally, many studies utilize molecular variation to infer the history of 
populations. Molecules can tell us about the movement of individuals and 
the timing of population demographic shifts and can therefore inform our un-
derstanding of recent evolutionary history. As sequencing technologies have 
become cheaper and faster—and more and more loci can be sequenced as a 
result—these three areas have quickly been converging: in order to under-
stand selection on individual genes we must understand the general effects 
of selection across the genome; in order to understand both of these we must 
also understand the historical context in which selection acts and the effects of 
this history on molecular variation. My hope is that this guide can be used by 
researchers asking about any one of these three areas, and that the techniques 
and methods used by one area can easily be picked up for use in another.

As I require the students in my molecular population genetics class to write 
programs that implement many of the methods covered, I have also written 
this book with the intention of providing enough detail so that anybody can 
do the same. While I do not think the casual user will necessarily need this 
level of detail (there are certainly enough software packages available to carry 
out these analyses, e.g., Librado and Rozas 2009; Excoffier and Lischer 2010), 
I also believe that good scientists must understand much more than how to 
use a pull-down menu. This being said, I am fairly superficial in my theoreti-
cal treatment of many areas—there are people more qualified than I who have 
written excellent mathematically oriented texts on all of the subjects covered 
here. Hopefully the many references to these papers and books given in each 
chapter will point those looking for more detail in the right direction.
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I have assumed that readers of this book have a basic understanding of 
classical population genetics and evolutionary thinking. Without such know-
ledge, it will be very difficult to understand the basis for many of the meth-
ods presented here. With that knowledge, the book can either be read straight 
through or used as a reference for specific subjects. There are of course a huge 
number of methods in molecular population genetics, many more than could 
possibly be covered in a coherent manner. I have tried to be as inclusive as 
possible, but I am sure there are important papers and important areas of re-
search that I have failed to acknowledge. I apologize in advance to all of the 
authors of these studies and hope there is a chance to include them in future 
editions of this book.
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Evolution begins as one mutation, on one chromosome, in one indi-
vidual. Molecular population genetics is the study of such mutations 
as they rise and fall in frequency in a population. Various evolutionary 
forces can accelerate or impede the movement of a mutation through 
the population, and the action of these forces can be inferred from pat-
terns of molecular variation among individuals. 

Although the use of genetic markers goes back to the discovery of 
the ABO blood groups in 1900, the beginning of true “molecular” pop-
ulation genetics dates to the groundbreaking studies of Harris (1966) 
and Lewontin and Hubby (1966). These researchers showed that there 
was much more variation among individuals at the molecular level 
than had previously been anticipated from studies of morphological 
phenotypes. However, these studies used allozymes (a portmanteau 
of “allele” and “enzyme”; Prakash, Lewontin, and Hubby 1969) to 
 uncover molecular variation and were therefore still only observing a 
fraction of all variation—those mutations that caused proteins to run at 
different speeds through a gel because of a change in electrical charge. 
It was not until 1983 that the first studies of molecular variation at the 
nucleotide level appeared (Aquadro and Greenberg 1983; Kreitman 
1983). By sequencing every nucleotide, these studies allowed us to fully 
observe the genetic variation segregating in natural populations.

Molecular population genetic studies ask a wide range of ques-
tions about the effects of evolutionary processes on natural popula-
tions. In order to do this, they generally use DNA sequences from a 
small sample of individuals to understand the forces that have acted on 
the whole population. The pattern of genetic variation obtained from 
even a single locus can be used to make inferences about the forces 
of  mutation, recombination, and natural selection, as well as details of 
the demographic history of a population—for instance, its relative size 
or history of migration. These inferences can be made because a large 
body of population genetics theory has been developed in the past 
100 years that tells us what we should expect to observe when each of 
these forces is acting. Early theoretical research in population genetics 
was not done with molecular data in mind, but the rise of molecular 
methods has inspired a growing body of work explicitly concerned 
with modeling the processes of molecular evolution. 

MODELS OF 
EVOLUTION 1
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Molecular population genetics theory is essential in making inferences 
from DNA sequence data, and it is therefore important to at least review the 
predominant models and their assumptions here. The brief introduction pro-
vided in this chapter is not intended to cover the fundamentals of population 
genetics, and it assumes that the reader is familiar with many basic concepts. 
Instead, this chapter attempts to distill the most relevant theory and models 
that are applied to molecular population genetic data. These models are those 
used in the field to make inferences from sequence data, so understanding 
their structure is key to understanding how these inferences are being made. 
Additionally, this chapter attempts to clarify the often-confusing way in which 
common terms are used in this field and defines the way in which they will 
be used throughout the book. It closes with a discussion of the neutral theory 
of molecular evolution, attempting to explain the meaning of this theory and 
some of its common misconceptions.

BASIC SEQUENCE TERMINOLOGY

The DNA sequence data collected in molecular population genetic studies 
will resemble the alignment shown in FIGURE 1.1. This alignment shows four 
DNA sequences, each with 15 nucleotides, from the same locus (location) on a 
chromosome. I will refer to the four homologous DNA strands as sequences or 
chromosomes, because the data come from four unique homologous chromo-
somes, whether or not the sequences themselves are unique. This terminol-
ogy will be used throughout the book, but it should be noted that there are 
many terms used in the literature for the four DNA sequences, including genes, 
 alleles, samples, cistrons, and allele copies. Use of the word genes to imply multiple 
 sequences sampled at a single locus is not as common as it was 20 years ago, 
 especially now that individual researchers regularly collect multiple sequences 
from multiple genes within a species. But many studies still use the term allele 
to refer to each sampled chromosome, in effect using the “different by origin” 
definition of allele (Gillespie 2004, pp. 6–8). I will use the word allele only to 

refer to the individual nucleotides (or amino acids) 
when they differ at a single position in the alignment, 
as in the A or C alleles. This usage is referred to as the 
“different by state” definition of allele. So we might say 
that there are n = 4 chromosomes in the alignment in 
Figure 1.1. Note that this terminology does not depend 
on whether the four sequences come from two random 
diploid  individuals, four haploid individuals, or four 
separate inbred (isogenic) diploid lines. In all cases, we 
have still sampled four chromosomes from nature.

Within the alignment we can see that there are differ-
ences among  sequences at several positions, with one 
nucleotide or another present in different  individual 
chromosomes. We will mainly focus on biallelic sites 
because they are the most common type of variation 
observed, although there can be more than two alleles 
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FIGURE 1.1 An alignment of four 
 sequences. In this example the sample 
size is n = 4, with each  sequence 
having a length of L = 15. In total 
there are six sites with nucleotide 
 differences among the sequences  
(at positions 2, 5, 8, 11, 13, and 15), 
so S = 6.
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at any position in the alignment. There are many different terms used to de-
scribe these DNA differences: we can say that there are six polymorphisms or 
segregating sites or mutations or single nucleotide  polymorphisms (SNPs) in our 
sample (at positions 2, 5, 8, 11, 13, and 15). The terms  polymorphism and segre-
gating site have been the most common terms historically, though SNP (pro-
nounced “snip”) has become much more common recently. (The earliest use of 
the abbreviation SNP dates to Nikiforov et al. [1994].) The set of alleles found 
on a single sequence is referred to as a haplotype.

Different fields treat the term mutation quite differently. It can be used to 
mean the process by which a change in DNA takes place or the new allele gen-
erated by this process. Sometimes mutation is used as a synonym for any poly-
morphism, or refers only to rare polymorphisms (those that occur <1–5% of 
the time or are present in only a single sequence) in more medically oriented 
population genetics (Cotton 2002). Because all polymorphisms must arise as 
mutations initially, and because I will be discussing the evolutionary origin 
of variation in this book, I attempt to confine my use of mutation to mean the 
variation-generating process and the new mutations this process generates. 
Finally, I will reserve the term substitution to mean only those DNA differences 
observed between species, as distinct from variation within species. 

We generally do not consider insertion/deletion (indel) polymorphisms 
as segregating sites, though indels 1 base pair (bp) in length are sometimes 
included in this classification. The reason for this is that it is difficult to count 
the actual number of differences between two sequences with multinucleotide 
indels—is a 2-bp indel counted as one polymorphism or two? The answer 
depends on whether we think that a single 2-bp mutation or two separate 
1-bp  mutations have occurred. Alignment columns with indels or missing 
data of any kind are often not considered in analyses, and therefore the value 
of the sample size (n) may differ across sites (see Chapter 3). 

MODELS OF EVOLUTIONARY PROCESSES

Models of populations
In all populations, for all polymorphisms, genetic drift acts to change allele 
frequencies. Drift is simply the stochastic change in allele frequencies that is 
due to the finite nature of all populations and occurs because in each new gen-
eration some chromosomes leave more descendants than others. Drift differs 
from natural selection (a deterministic force) because of the fact that there is 
no consistent difference among alleles or genotypes in their numbers of off-
spring, and therefore each individual allele does not consistently rise or fall in 
frequency as a result of drift alone.

Models of drift are necessarily models of how individuals within popu-
lations replace themselves from generation to generation. One of the most 
commonly used models is the Wright-Fisher model (Fisher 1930b; Wright 
1931). This  model imagines a population of constant size with N diploid 
hermaphrodites; we require them to be hermaphrodites (i.e., monoecious) 
so that all individuals can mate with one another, but the model can be 
extended to populations with different sexes. Since individuals are diploid, 
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there are 2N chromosomes in the population every generation for autosomal 
loci. If our model included sex chromosomes and equal numbers of individu-
als from two separate sexes, there would be 1.5N X or Z chromosomes, 0.5N Y 
or W chromosomes, and 0.5N mitochondrial or chloroplast genomes, depend-
ing on the biological system being studied. In order to form the next genera-
tion of individuals, we will assume that individuals mate at random and that 
chromosomes are sampled uniformly with replacement to leave descendants. 
No individuals survive into the next generation—instead, the entire popu-
lation is replaced by its descendants. This model is most applicable to spe-
cies with non-overlapping generations, such as annual plants or insects that 
appear once a year (annual vertebrate species are rare but do exist; see, e.g., 
Karsten et al. 2008).

To see the effect of drift on changes in allele frequencies in the Wright-Fisher 
model, consider a single nucleotide position with two alleles, A1 and A2. In 
generation t there are i chromosomes carrying allele A1, which is at frequency 
pt  =  i/2N. This implies that there are 2N  −  i chromosomes carrying allele 
A2, which is at frequency qt = 1 − pt. The sampling of chromosomes for the 
next generation is equivalent to sampling from a binomial distribution with 
parameters 2N and i/2N. Therefore, the mean and variance of p in the next 
generation for the Wright-Fisher model are:

 E(pt+1) = pt (1.1)

 Var(pt+1) = pt qt / 2N (1.2)

where E(•) represents the expectation (mean) of a random variable and Var(•) 
represents the variance. These equations say that when only drift is acting 
(no mutation and no selection), mean allele frequencies are expected to stay 
the same over time. Because the expected change in allele frequency is 0, no 
predictions can be made about the rise or fall of any particular allele. On the 
other hand, the variance in the process is directly related to the population 
size, such that there will be predictably larger changes in allele frequency in 
smaller populations and with intermediate allele frequencies. Importantly, 
even though no mean change is expected, independent populations start-
ing at the same allele frequency will inevitably begin to differ in their aver-
age allele frequencies, leading to evolutionary divergence. Alleles will drift 
toward frequencies of 0 or 1, at which point the allele that is at frequency 1 
will be said to be “fixed.” Once fixation of one or the other allele occurs, no 
further change is possible because one of the two alleles has been lost from 
the population.

A related consequence of these changes is that the level of genetic variation 
in a population is expected to decline when drift is the only force acting. If 
we define heterozygosity as the probability that two chromosomes chosen at 
random will have different alleles, then the expected amount of heterozygos-
ity for a biallelic locus in a randomly mating population is 2pq (this idea is cov-
ered in greater depth in Chapter 3). As one allele becomes more common than 
the other, heterozygosity will decline (because it is maximized at p = q = 0.5); 
in the Wright-Fisher model the expected heterozygosity declines as a func-
tion of 1/2N per generation. Although the decline in heterozygosity is not a  
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direct measure of change in allele frequency, the above result provides insight 
into the very slow rate at which allele frequencies change when drift is the 
only force acting.

A second population model—more realistic than the Wright-Fisher in some 
respects and more mathematically tractable for some purposes—is the Moran 
model (Moran 1958). In the Moran model individuals of different ages can co-
exist, and we do not wholesale replace the population with new individuals 
each generation. Strictly speaking, the Moran model only applies to haploid 
populations, but for ease of comparison with the Wright-Fisher model we will 
consider a constant-size population of 2N haploid individuals. At a given time 
point a single individual is chosen at random to reproduce, and a second in-
dividual (not necessarily different from the first) is chosen at random to die. 
At the next time point the new offspring individual as well as all surviving 
individuals are available to reproduce, and again one individual is chosen to 
reproduce and one is chosen to die. If we were to repeat this birth-and-death 
step for 2N time points, we would have the equivalent of a single generation 
in the Wright-Fisher model. This is because, on average, each individual will 
have been replaced; however, some individuals will live less than a “genera-
tion” and some individuals will live longer.

Changes in allele frequency under the Moran model occur when an in-
dividual carrying one allele is chosen to reproduce and an individual carry-
ing the alternative allele is chosen to die. It can of course also be the case 
that the individual chosen to reproduce and the one chosen to die carry the 
same allele, and in this situation there will be no allele frequency change. After 
2N time points repeating the birth-and-death operations, we can ask what 
the mean and variance of allele frequencies are in the next generation. Again 
considering a biallelic locus of the same type described for the Wright-Fisher 
model, the mean and variance of the allele frequency p in the next generation 
for the Moran model are:

 E(pt+1) = pt  (1.3)

 Var(pt+1) = 2pt qt / 2N (1.4)

As with the Wright-Fisher model, no change in the mean allele frequency 
is expected. However, the variance in allele frequencies in a Moran popula-
tion is twice as large as that in a Wright-Fisher population. This is due to the 
fact that the variance in offspring number per individual is twice as large in 
the Moran model. An intuitive explanation for this increased variance in off-
spring number relative to the Wright-Fisher model is the variance added by 
individuals who reproduce at variable numbers of time points (i.e., who are 
“alive” for different amounts of time). A consequence of this difference is that 
there is twice as much drift in the Moran model, and therefore heterozygosity 
is lost at twice the rate (1/N). Evolution by drift is still very slow in the Moran 
model, but it is twice as fast as in the Wright-Fisher model.

Neither of the two population models described here are realistic for most 
species, and for some applications there are other more realistic models used 
in population genetics—notably, the Cannings model (Cannings 1974). The 
Cannings model can have any arbitrary variance in offspring number and is a 
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generalization of the Wright-Fisher model. However, the Wright-Fisher model 
both is immediately intuitive and allows for the derivation of many important 
evolutionary results. As we will see in the next section, it also acts as a touch-
stone for results derived under other population models, serving as a model 
to which all others can be compared.

The effective size of a population
A central concept in population genetics is the effective population size, usu-
ally denoted Ne (Wright 1931). In contrast to the census population size 
(which is simply a count of the number of individuals at a given time), the 
effective population size is an abstract value that allows real populations 
to be modeled as Wright-Fisher populations with the equivalent amount of 
genetic drift. Because there are many forces that increase the variance in 
offspring number in natural populations beyond the value expected in a 
Wright-Fisher model, the effective population size is usually smaller than 
the census population size.

The effective size of a population gives us a way to compare different 
populations and species to each other in a single frame of reference—namely, 
the amount of drift expected in an idealized Wright-Fisher population. In this 
way, we have a single value that helps to quantify the role of genetic drift in 
determining the effectiveness of mutation, selection, recombination, and mi-
gration. We can even conceive of different effective population sizes for differ-
ent regions of the genome, each with a history equivalent to that which would 
be seen in a Wright-Fisher population with different levels of genetic drift. 
These differences can then be manifested as differences in many evolutionary 
processes across the genome (see Charlesworth 2009 for a review).

 However, effective population size can also be a vague and widely mis-
understood concept as a result of both its definition and its application. One 
problem is that there are at least four ways in which the effects of drift can 
be characterized, and therefore four different ways in which any given popu-
lation could be equivalent to some aspect of drift in a Wright-Fisher pop-
ulation. This leads to multiple definitions of effective population size: the 
variance effective size, the inbreeding effective size, the eigenvalue effective 
size, and the coalescent effective size. In equilibrium populations that meet 
the assumptions of the Wright-Fisher model (and in many nonequilibrium 
populations), these measures of the effective population size will be equal. 
But in some populations with nonequilibrium histories these effective sizes 
can differ substantially from one another and can even be undefined—that is, 
there is no equivalent Wright-Fisher population in these cases (Ewens 2004). 
For molecular sequence data the most applicable effective size is likely the 
coalescent effective population size, although it is still undefined in some cir-
cumstances (Sjödin et al. 2005; Wakeley and Sargsyan 2009). Under this defi-
nition we are equating the amount of genetic drift to the rate of coalescence 
(see Chapter 6).

The concept of an effective population size is also commonly misused, or 
at least its meaning and application are broadened unnecessarily. As stressed 
by Ewens (2004, p. 38), “it would be more indicative of the meaning of the 
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concept if the adjective ‘effective’ were replaced by ‘in some given respect 
Wright-Fisher model equivalent.’” The essential connection of Ne to an ideal-
ized Wright-Fisher population model (and specifically to drift in this model) 
is often missed or assumed to be more important than it really is. As discussed 
in the previous section, the Wright-Fisher model is fundamental to much of 
theoretical population genetics, acting as a central comparator in understand-
ing the behavior of many different populations of interest. But the size of this 
Wright-Fisher population is not equivalent to the effective number of breeding 
individuals, the number of individuals contributing to the next generation, or 
any “real” population size at all. We could just as easily have defined the ef-
fective size as that equivalent to a Moran population with the same amount 
of genetic drift, though in this case the numerical value of Ne would be half 
as large. This all means that while the numerical value of Ne is not extremely 
useful, the rank-order values among regions of the genome or among organ-
isms may still tell us about the relative expected strength of drift and selection 
(see Chapter 3). 

Models of mutation
There are many models of the process of DNA mutation. Multiple models 
are needed both because there are many different types of mutations and be-
cause different molecular biology techniques have provided varying amounts 
of information about the underlying variation. Some models are used simply 
because they are more mathematically tractable. It is important to realize that 
these are not specific molecular models of how mutations arise in the germ-
line (e.g., how the DNA polymerase and associated proofreading enzymes 
incorporate incorrect bases). Instead, these models are intended to explain in 
general quantitative ways how the polymorphisms detected in current-day 
samples arose many generations ago and how different rates of mutation can 
result in different numbers of observed polymorphisms. Population genetic 
models of mutation can also be simpler than many phylogenetic models of this 
process, largely because we expect to find many fewer differences  between 
 sequences being compared. 

Despite the differences among population genetic models of mutation, there 
are also many similarities. All assume that mutation is random, although what 
is meant by random may differ from general usage. Mutations in nature are 
highly nonrandom in many ways. For instance, all mutations are not equally 
likely. It is well known that nucleotide transition mutations (those   between 
purines or between pyrimidines) are more common than nucleotide transver-
sions (mutations from a purine to a pyrimidine, or vice versa). All loci are 
also not equally likely to mutate—for instance, there are large regional dif-
ferences in mutation rate along chromosomes (Hodgkinson and Eyre-Walker 
2011), and mutation rates may be 10-fold higher at CpG sites (those where 
a G follows a C along the DNA strand) relative to nearby sites (Bird 1980). 
However, random in the evolutionary sense only means that mutations that 
are advantageous or deleterious in one environment are not relatively more 
or less likely to arise in another environment, though the overall mutation rate 
may change. Regardless of the many complexities of the mutational process 
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that could be taken into account, these mutation models generally ignore the 
details of the nucleotide changes involved, considering only whether or not 
a mutation has occurred. Furthermore, in the models of mutation considered 
here, generally only mutations with no effect on fitness (neutral mutations) 
are considered.

The randomness our mutation models require relates to their origin in time 
and space, which both can be described by a Poisson process. Neutral muta-
tions are assumed to accumulate independently among sites and along lin-
eages at a constant rate m (expressed per generation), such that the number 
of mutations observed after t generations will be Poisson-distributed with 
mean mt. The Poisson distribution is appropriate because mutation rates are 
very low, on the order of 10−8 to 10−9 per generation per site in eukaryotes 
(Lynch 2010). The mutation rate may be expressed per locus or per site, and 
in the latter case the number of mutations observed in a single generation 
across L nucleotide sites will be Poisson-distributed with mean mL. In models 
that consider the arrangement of nucleotide changes along a sequence, we 
assume that each site has an independent probability of mutating. Given 
newer  methods that consider the spacing of polymorphisms along a chromo-
some (e.g., Li and Durbin 2011), assumptions about the independence of mu-
tations and constant rates of mutation among sites may be very important. 
Unfortunately, neither assumption is always true (e.g., Schrider, Hourmozdi, 
and Hahn 2011; Harris and Nielsen 2014), though the effect of these violations 
on most methods may not be large.

The simplest mutation model involves two alleles (FIGURE 1.2A). In clas-
sical population genetics these are often denoted as A and a or as A1 and 
A2, and could represent two different nucleotides, two different amino acids, 
or two different haplotypes. (I will generally use A1 and A2 in this book, 
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FIGURE 1.2 Models of mutation.  
four different models are demon-
strated in (A): The two-allele model 
refers to single sites with two alleles, 
though these sites are also consis-
tent with other models. The infinite 
sites model refers to sequences in 
which at most one mutation occurs 
per site. The finite sites model refers 
to sequences in which multiple mu-
tations can occur at the same site. 
The infinite alleles model treats each 
entire sequence as an allele, rather 
than alternate states at a single site 
(such that there are three alleles 
shown here). (B) The stepwise muta-
tion model, under which mutation 
can cause changes only between 
neighboring alleles, generally differ-
ing in their number of repeats.
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except in Chapters 5 and 9, where I use other denotations to avoid confu-
sion with alleles in populations 1 and 2.) This two-allele model is the most 
common mutation model used when considering data from single sites. 
One of the two alleles can be assigned to be the ancestral state if such assign-
ments are also known in the data being modeled, though these assignments 
are not necessary. An important feature of the model that must be specified 
in each usage is the number and type of mutations that are allowed. Often 
only A1 → A2 (or A2 → A1) mutations are allowed, in which case we say that 
there is no possibility of a back-mutation. This is not the same as allowing 
only a single mutation from A1 → A2 to occur in the history of a sample, as 
sometimes this condition can be relaxed without relaxing the restriction on 
back- mutations.  But often only a single origin of each mutation, with no 
back-mutation, is modeled.

A straightforward extension of the two-allele model to larger DNA se-
quences is known as the infinite sites model (Kimura 1969). In this model we 
imagine that we have DNA sequences of sufficient length such that there are 
multiple segregating sites in our sample. Because the mutation rate is low, 
the  infinite sites model assumes that every mutation in the history of the 
sample occurred only once, that there are no back-mutations, and that each 
mutation to a new allele occurred at a new site in the sequence (Figure 1.2A). 
These assumptions ensure that individuals will be similar at the DNA level 
because of a shared history rather than convergent mutations. The assump-
tions also mean that each segregating site will be at most biallelic, with only 
two alleles (e.g., A1 and A2) present in the sample. The mutations are assumed 
to occur independently according to a Poisson process.

In some cases, multiple mutations may have occurred at a site in the 
history of the sampled chromosomes. Because we no longer meet the in-
finite sites assumptions, we must instead use a finite sites model. Finite 
sites models are most commonly encountered in comparisons of DNA se-
quences among species, for which the long time-periods involved mean 
that sites may have changed multiple times. Several methods, such as the 
Jukes-Cantor correction (Jukes and Cantor 1969; Chapter 7), are available 
to accurately estimate distances between sequences in the presence of mul-
tiple substitutions at a site. In analyzing polymorphism data, the finite sites 
model is most commonly needed when segregating sites are triallelic or 
quadrallelic (Figure 1.2A). In these cases, the number of segregating sites 
is no longer equal to the number of mutations in the history of a sample, 
as individual sites may have experienced two or more changes of state. 
Such changes can take the form of a new derived state, back-mutations 
to preexisting ancestral alleles, or recurrent mutations to a derived allele 
already present in the sample. Mutations in finite sites models can still be 
Poisson-distributed, but there must now be a chance for each new muta-
tion to occur at sites that have already experienced mutations and to allelic 
states that already exist.

For both the infinite sites and finite sites models we have assumed per-
fect knowledge of the underlying DNA sequence. However, in the early days 
of molecular population genetics the DNA sequences themselves were not 
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available. Allozyme technologies (e.g., Hubby and Lewontin 1966) only al-
lowed one to distinguish sequences that differed at amino acid changes, 
causing proteins to run at different speeds through a gel. This meant that 
many amino acid mutations and all synonymous mutations (those that do 
not change the amino acid encoded by a codon) were undetectable. In order 
to model such a system—in which different alleles were identified as elec-
trophoretically distinguishable variants—researchers used the infinite alleles 
model (Kimura and Crow 1964). This model posits that each new mutation 
at a locus creates a new allele that does not exist in the population, without 
necessarily having knowledge of the underlying DNA sequence and without 
dealing with the details of the sites that have mutated. 

At this point we must clarify the relationship between the meaning of 
 alleles in the infinite alleles model and its meaning in the infinite sites models 
(Figure  1.2A). As discussed above, we currently use allele to distinguish 
 alternative states at a single nucleotide or codon position. The different  alleles 
in the infinite alleles model, however, are equivalent to different haplotypes, 
where each haplotype may be distinguished by multiple nucleotide changes. 
The infinite alleles model does not consider the number of sites that differ 
 between haplotypes/alleles and therefore does not take advantage of the 
full sequence information. In addition, although many historically important 
 results have been derived for the infinite alleles model (e.g., Ewens 1972), 
they have generally ignored the effect of recombination in creating new hap-
lotypes. For all of these reasons, the infinite alleles model is rarely used in 
modern molecular population genetics. 

Related to the infinite alleles model is the stepwise mutation model, which 
was originally proposed in order to represent the effects of mutation moving 
between closely related alleles (Ohta and Kimura 1973). In the original 
model the alleles represented haplotypes, but the haplotypes were ordered 
such that mutations could take you between A1 and A2 or between A2 and 
A3, but not between A1 and A3 (FIGURE 1.2B). After its original usage in mod-
eling allozyme loci, the stepwise mutation model has found much wider 
use as a model of microsatellites. Microsatellites—also called short tandem 
repeats (STRs) or variable number tandem repeats (VNTRs)—are made up 
of short repeat units (usually 1–6 bases in length) that can be repeated 1 to 
50 times in a row (Goldstein and Schlötterer 1999; Ellegren 2004). There are 
often many alleles at polymorphic microsatellites, with each allele having a 
different number of repeat units. Mutations at microsatellites are thought to 
occur via polymerase slippage, resulting in more or fewer repeats. The step-
wise mutation model allows allele sizes to change by adding or subtracting 
a single repeat unit, with symmetric probabilities of gain and loss and no 
relationship between allele size and mutation rate (Figure 1.2B). Real micro-
satellite data have revealed that there are multistep mutations that result in 
the gain or loss of more than one repeat at a time, and that the direction of 
mutation is often biased (Di Rienzo et al. 1994; Rubinsztein et al. 1995; Sun 
et al. 2012). For these reasons, alternative models that allow any allele to be 
reached from any other (also called infinite allele models) or that allow any 
particular distribution of step sizes and mutation rates, either symmetric 
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or asymmetric, can be used (such models are known as generalized stepwise 
models; Kimmel and Chakraborty 1996).

Models of recombination
Modeling recombination is generally similar to modeling mutation. 
Recombination events are thought to occur in a Poisson-like manner along a 
chromosome, with the recombination rate given by the parameter c, defined 
as the probability of a crossing-over event occurring between two markers. 
In reality crossing over is more complicated than this, but we ignore most 
of these complications (e.g., cross-over interference) in population genetic 
models. We often measure the recombination rate per site per generation, 
so that the expected number of recombination events occurring in a single 
generation between two sites L nucleotides apart is cL. A prominent feature 
of crossing over in some organisms is the presence of so-called recombina-
tion hotspots (Jeffreys, Kauppi, and Neumann 2001; McVean et al. 2004). 
Recombination hotspots  represent small regions where crossing-over events 
are clustered together, generally increasing the recombination rate many-
fold above the background rate. Even organisms that appear to lack true 
hotspots (e.g., Singh, Aquadro, and Clark 
2009; Comeron, Ratnappan, and Bailin 2012; 
 Manzano-Winkler, McGaugh, and Noor 
2013; Kaur and Rockman 2014) show a wide 
range of recombination rates along chro-
mosomes. For recombination in general— 
and for scenarios including hotspots in 
particular— all of this means that events are 
often modeled in a “finite sites” manner, in 
which more than one recombination event 
can occur at the same position in the history 
of a sample.

One of the main differences between 
mutation and recombination is that re-
combination events do not change allele 
frequencies at single loci. By rearranging 
alleles along chromosomes, crossing over 
only changes the  frequencies of DNA haplo-
types (FIGURE 1.3A) while leaving the allele 
frequencies at each site unchanged. In addi-
tion, although crossing over is one outcome 
of recombination, another is gene conver-
sion, the non-reciprocal exchange of genetic 
material (FIGURE 1.3B). In gene conversion 
(which does not have to involve a gene), 
one of the two allele copies in an individual 
acts as the donor, while the other acts as the 
 acceptor. The donor’s DNA “overwrites” 
the   acceptor’s, resulting in two identical 

Before crossing-over

(A)

(B)

After crossing-over

A1 B1 C1 D1

A2 B2 C2 D2

A1 B1 C2 D2

A2 B2 C1 D1

Before conversion

After conversion

A1 B1 C1 D1

A2 B2 C2 D2

A1 B1 C1 D1

A2 B1 C1 D2

FIGURE 1.3 different outcomes of recombination.  
(A) A diploid individual heterozygous at four loci, 
A, B, C, and D. A crossing-over event (indicated 
by the ×) occurs between the B and C loci, result-
ing in two recombinant haplotypes. (B) The same 
initial setting, with a conversion event affecting the 
B and C loci. Because the B1 and C1 alleles act as 
the donors, the result is an individual that is homo-
zygous for the B1 and C1 alleles.
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alleles. Sometimes this happens in a biased manner, such that one allele is 
more likely to be the donor (e.g., Galtier et al. 2001; Marais 2003). Whether 
biased or not, gene conversion can change allele frequencies. There can also 
be the non-reciprocal exchange of genetic material between duplicated loci 
within a genome, which is referred to as non-allelic or interlocus or ectopic gene 
conversion (Arnheim et al. 1980; Miyata et al. 1980; Scherer and Davis 1980).  
Here I  consider only gene conversion between alleles; this is referred to as 
 allelic or intralocus gene conversion. 

The inclusion of gene conversion necessitates the introduction of two ad-
ditional parameters to models of recombination. One is the rate of gene con-
version per site per generation, g, and the other is the mean length of gene 
conversion tracts, q (Andolfatto and Nordborg 1998; Langley et al. 2000; 
Wiuf and Hein 2000). Because all recombination events result in a short gene 
conversion tract but not all events result in crossing over, the ratio of g/c 
(sometimes represented as its own parameter, f) is usually much larger than 
1, ranging from about 4 in D. melanogaster (Comeron, Ratnappan, and Bailin 
2012) to about 7 in humans (Frisse et al. 2001). Gene conversion tracts (i.e., the 
stretch of DNA converted) are on the order of 100–1,000 nucleotides (Chen, 
Cooper, et al. 2007), with a length distribution similar to a geometric distribu-
tion with parameter 1/q. Gene conversion tracts are initiated with probability 
g at each site, and then the tract is modeled as extending to the right of the site 
of initiation (Wiuf and Hein 2000). Further details on both crossing over and 
gene conversion are considered in Chapter 4.

Models of natural selection
There are many aspects of natural selection that are relevant to molecular 
population genetics, not all of which can be discussed here. Perhaps the most 
useful introduction will simply be to define commonly used terms and to 
point out the ambiguities in the definitions as they are used in the field today. 

With respect to its effects on organismal fitness, there are three conse-
quences of a new mutation: it may be advantageous, deleterious, or neutral rela-
tive to the fitness of the ancestral allele. New mutations can of course have 
variable effects on fitness across genetic backgrounds and in heterozygous or 
homozygous form, but here we are interested in the average marginal effect of 
a mutation across backgrounds and population frequencies. If we define s as 
the selection coefficient of a new mutation—that is, the difference in relative 
fitness between individuals with one copy of the new allele and individu-
als homozygous for the ancestral allele—then for advantageous mutations, 
s > 0; for deleterious mutations, s < 0; and for neutral mutations, s = 0 because 
the two alleles have equal fitness. Mutations of large effect have larger |s|, 
either increasing or decreasing fitness, recognizing that in natural populations 
s = 0.10 (a 10% increase in fitness) is considered a very large effect. As we will 
see in Chapter 7, advantageous mutations with much smaller effects than this 
will quickly spread through a population.

As a way of summarizing the selective history of a gene or locus, we often 
use the phrases negative (or purifying) selection, positive selection, and balanc-
ing selection. These very useful, but often highly ambiguous, summaries of 
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natural selection are not always aligned with the terms used to define the 
effects of single mutations. Negative selection refers to a history of a locus in 
which the vast majority of mutations that have arisen have been deleteri-
ous. A gene or noncoding region under negative selection is often therefore 
one that is conserved, with natural selection removing most mutations that 
change a functional DNA sequence. In some cases the primary sequence may 
not be conserved but the sequence can still experience purifying selection, 
as the length of a sequence or average biochemical property of a sequence is 
the selected trait (e.g., Podlaha and Zhang 2003; Lunter, Ponting, and Hein 
2006). We also often say that such regions or nucleotide sites are constrained 
by  selection to a limited region of sequence space. It should be clear from this 
definition that almost all protein-coding genes are under negative selection 
all the time, even if there is a large (or small) fraction of mutations that are 
neutral or advantageous. A region not under negative selection is not con-
strained and is under no selection. One ambiguity that arises when using the 
phrase negative selection is the meaning of a gene under “stronger” negative 
selection than another. This could mean that the average selection coefficients 
of alternative bases at constrained sites have become more negative; this is 
certainly what is implied by the phrase “weak selection,” when s is close to 
0. Alternatively, it could mean that more sites in a region (e.g., more amino 
acids within a protein) are under any constraint, and therefore that the aver-
age number of substitutions observed across the region is lower. Regardless, 
negative selection is a commonly used shorthand that has a clear meaning in 
most situations.

Positive selection refers to the history of a locus in which advantageous 
 mutations have arisen and fixed or are in the process of fixing. Because advan-
tageous mutations are much rarer than deleterious mutations, it is assumed 
that negative selection is acting on almost any conserved and functional 
region. By contrast, a locus with even a single detectable advantageous sub-
stitution is said to be under positive selection. Such substitutions may have 
happened in the distant past or may currently be passing through a popula-
tion. Advantageous mutations can rapidly increase in frequency, and many 
patterns generated by this rapid rise are used to detect signatures of positive 
selection. As detecting positive selection has become a raison d’être of molecu-
lar population genetics, we will return to it many times throughout the book.

The final concept used to summarize the selective history of a locus is 
 balancing selection. Multiple different selective models are subsumed under 
this term, but all have in common the maintenance of selected polymorphisms 
within a population or species. These models are in contrast to those with 
universally advantageous or deleterious mutations, as balanced polymor-
phisms consist of alleles whose relative fitness changes with time, space, or 
population frequency. As a result, balancing selection is often contrasted with 
the models of “directional” selection that include positive and negative selec-
tion. Commonly observed instances of balancing selection include heterozygote 
advantage (or overdominant selection), in which heterozygous genotypes have 
higher fitness than either homozygous genotype; negative frequency-dependent 
selection, in which rare alleles have higher fitness; and spatially or temporally 
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varying selection, in which the fitness of alleles in a population is dependent 
on the environment or season, respectively, in which they are found. In many 
cases spatially varying selection is considered a form of local adaptation 
rather than balancing selection, although at the level of the whole species any 
such polymorphism is maintaining diversity and is therefore under balancing 
selection. For some forms of balancing selection, the balanced polymorphism 
may be biallelic or multiallelic. That is, there may be either two alternative al-
leles at a site that are balanced (e.g., Kreitman and Aguadé 1986) or multiple 
alleles—usually at multiple sites—that are balanced (e.g., Ségurel et al. 2012).

One last comment must be made on the language used to describe natural 
selection on quantitative traits, such as height, weight, and even some fea-
tures of genomes (e.g., Kimura 1981). Quantitative traits are usually deter-
mined by the combined effect of alleles at many loci, and any one of these 
loci may be under negative, positive, or balancing selection. However, the 
phenotypes themselves are said to be under stabilizing, directional, or disrup-
tive selection. Each of these processes is analogous to a form of selection on 
DNA, but the analogy only goes so far. For instance, stabilizing selection is 
not the same as negative selection—stabilizing selection acts to eliminate phe-
notypically extreme individuals, either by eliminating unconditionally delete-
rious  alleles, maintaining balanced polymorphisms, or simply retaining the 
optimal number of alleles of near-equivalent fitness at many loci. Directional 
selection on phenotypes is most similar to positive selection on individual 
loci, although the strength of selection on any one allele that contributes to a 
quantitative trait can be very weak. Finally, disruptive (or diversifying) selec-
tion on phenotypes corresponds to selection against individuals with inter-
mediate trait values but does not necessarily require balancing selection at 
any particular locus. Note, too, that the term diversifying selection is sometimes 
used to mean either multiallelic balancing selection at a locus (e.g., Foxe and 
Wright 2009) or rapid protein evolution across a phylogeny (e.g., Murrell et al. 
2012). The take-home message should simply be that there are many forms of 
natural selection and many terms used to describe each of these, and that care 
must sometimes be taken in order to clearly communicate the model invoked 
in any particular case.

Models of migration
Models of migration in population genetics are largely just models of how 
populations—also called demes or subpopulations—are structured in an envi-
ronment (more discussion of the definition of populations can be found in 
Chapter 5). These models require very little detail on how individuals actually 
move between populations and interbreed, and generally only the number 
and type of alleles being exchanged is of interest. However, there are several 
important details to the migration process that are common to all models of 
migration. These details are key in understanding how we infer patterns 
of gene flow across a species.

The migration rate, m, is defined as the fraction of all individuals (or chro-
mosomes) in a population in the current generation that came from a different 
population in the previous generation. That is, the migration rate represents 
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the proportion of individuals in a population that are migrants each genera-
tion. These migrants are assumed to be a random sample of individuals from 
the source population, and it is assumed that neither the size of the source 
nor the receiving population changes as a result of migration. The first as-
sumption means that we can easily calculate the expected change in allele 
frequency as a result of migration based on the allele frequencies in the source 
and recipient populations (and the migration rate). The second assumption 
also makes it easier to keep track of expected changes in allele frequency: be-
cause any particular population can be both a source of migrants and a recipi-
ent of  migrants, we do not have to account for every individual’s movements. 

A large number of models of migration involve discretely organized popu-
lations in which random mating occurs within each population and migrants 
may be exchanged between populations. These “island” models have inter-
esting parallels with mutation models, the most obvious being that we can 
have infinite island models (FIGURE 1.4A) and finite island models (FIGURE 1.4B). 
The more assumption-laden of these is the infinite island model (generally 

(A)  In�nite island model

(C)  Stepping-stone model (D)  Two-dimensional stepping-stone model

(B)  Finite island model

FIGURE 1.4 Models of migration. (A) The infinite island model assumes an infinite number of popula-
tions of equal size, all exchanging equal numbers of migrants with one another. dashed lines represent 
migration with unseen populations. (B) The finite island model posits a limited number of populations, 
each with their own size and with a specific number of migrants entering and departing. The thickness of 
the arrow denotes differences in the migration rate. (C) The stepping-stone model assumes equally sized 
populations that can only exchange migrants with neighboring populations. (d) The two-dimensional 
stepping-stone model also only allows migration between neighboring populations.
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ascribed to Wright 1931), which stipulates that there are an infinite number 
of populations of equal size, each of which exchanges migrants with every 
other population at the same rate, and assumes no selection and no muta-
tion. These assumptions mean that this model has no geographic structure, 
as populations that are spatially proximate are no more likely to exchange 
migrants than those found at greater distances from one another. The infinite 
island model assumes that populations are at migration-drift equilibrium, 
so that there is also no trace of shared ancestry among populations that is 
not due to recent migration. For all of these reasons it has been called the 
“Fantasy Island” model (Whitlock and McCauley 1999), though many of its 
assumptions can be violated without large effects on the inferences regarding 
migration that are made (Neigel 2002). Nevertheless, more realistic migration 
models allow for more precise estimates of population parameters.

Finite island models include only a limited number of islands, each of 
which can have its own size and its own migration rate (Figure 1.4B). The 
simplest model involves two populations, of size N1 and N2, and two migra-
tion rates, m1 and m2. The migration rates specify the movement of alleles 
from  population 2 into population 1 (m1) and from population 1 into pop-
ulation 2 (m2). It is common to see the assumption that migration rates are 
symmetric— that is, m1 = m2—so that only one parameter needs to be speci-
fied or estimated. Other versions of the two-island model assume that the two 
populations differ greatly in size, such that only migration from the larger 
population (the “continent”) into the smaller population (the “island”) has 
any effect on allele frequencies. This continent-island model is therefore simply 
a two-island model with one-way migration. For finite island models with 
more than two populations, we must specify the size of the ith population, Ni, 
and the migration rate between the ith and jth population, mij, for all i and j. 

Continuing the parallel between migration and mutation models, just as the 
stepwise mutation model only allows changes to create neighboring  alleles, 
the stepping-stone model of migration (Kimura 1953) only allows individuals to 
migrate between neighboring populations (or assumes that such migration is 
the most likely). Stepping-stone models are most commonly one-dimensional 
(FIGURE 1.4C) or two-dimensional (FIGURE 1.4D), but any number of dimen-
sions can be accommodated (Kimura and Weiss 1964; Weiss and Kimura 1965). 
One issue with stepping-stone models of a finite number of populations is how 
the ends of the lattice are dealt with—that is, what to do when one  arrives at 
the last population in a string of populations. For one- dimensional models, 
a simple fix is to arrange the populations in a circle so that all populations 
have two neighbors; for two-dimensional models, the equivalent shape is a 
torus (effectively, a donut). Interestingly, however, including true boundaries 
in the model can provide insight into the apportionment of diversity among 
an array of populations (e.g., Wilkins and Wakeley 2002).

Finally, an often more realistic model of migration is one that posits a con-
tinuously distributed population spread across a one- or two-dimensional 
surface. Such models are most often associated with Wright’s concept of isola-
tion by distance (IBD; Wright 1943), though the same pattern of IBD will be pro-
duced by stepping-stone models. In these models of continuously distributed 
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populations (there is no common name for such models, though the term con-
tinuum models has been used; Felsenstein 1976), individuals proximal in space 
are more likely to be closely related because dispersal is limited, or at least 
much smaller than the scale of the habitat. Migration in the model is gener-
ally described by the variance in dispersal distance, s2, drawn from a normal 
distribution. These models have recently experienced a resurgence in popu-
larity with the advent of “landscape genetics” (Manel et al. 2003) and will be 
discussed further in Chapter 9.

Models of mating 
Much of population genetic theory is equally applicable to haploids and dip-
loids, sexual and asexual organisms, and males and females. While this is not 
always true—and there are some very important exceptions—often the de-
tails make little difference in the predicted outcomes. One relevant area in 
which the details matter is when we must consider the frequency of diploid 
 genotypes in sexual organisms. Because we often make inferences about evo-
lutionary processes based on the observed frequencies of different genotypes 
(e.g., in identifying population structure; see Chapter 5), we must have a 
model to describe the expected genotype frequencies in the absence of these 
processes. The most widely used of such models is the Hardy-Weinberg model 
(Hardy 1908; Weinberg 1908).

In order to understand this model and its predictions, let us first con-
sider what we are predicting. For a single locus with two alleles, A1 and A2, 
there are three possible diploid genotypes, A1A1, A1A2, and A2A2. The first 
and the third are homozygous genotypes, while the second is a heterozy-
gote. We denote the frequencies of alleles A1 and A2 as p and q,  respectively, 
and the frequencies of the three genotypes as pA1A1, pA1A2, and pA2A2. The 
Hardy-Weinberg model gives us a way to calculate the expected genotype 
frequencies, assuming no selection, no mutation, no migration, no drift, 
and random mating between the sexes. Under these assumptions, the 
 expected frequency of each genotype is:
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These expected genotype frequencies are equivalent to the expected outcome 
of choosing alleles from the population in proportion to their frequency in 
order to form the next generation, and are sometimes referred to as the random 
union of gametes. When a population matches the expected genotype frequen-
cies, we say that it is at Hardy-Weinberg equilibrium (HWE). 

There are a number of ways in which individuals can mate nonrandomly. 
Individuals may choose a mate with a similar phenotype, which we call posi-
tive assortative mating; if they mate with dissimilar individuals it is called nega-
tive assortative (or disassortative) mating. Because similar phenotypes are likely 
determined by similar alleles, positive assortative mating leads to more homo-
zygous genotypes at the loci underlying the relevant traits, while the majority 
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of the genome remains at HWE. An extreme form of assortative mating that 
affects all loci is inbreeding, in which relatives mate with each other more than 
is expected by chance. The inbreeding coefficient, F (Wright 1922), ranges from 
0 to 1 and represents the fraction of loci in the genome that have alleles “iden-
tical by descent” as a result of matings between relatives. Inbreeding usually 
manifests as an excess of homozygous genotypes, such that more inbreeding 
(larger F) leads to more homozygosity in the population. Inbreeding can be 
due to multiple processes, including more mating within than between sub-
populations (with an inbreeding coefficient denoted as FST) or more mating 
among relatives within the same subpopulation (denoted FIS). Chapter 5 and 
Equation 5.3 deal with the excess of homozygotes that is due to FST in much 
more detail. 

MODELS OF MOLECULAR EVOLUTION

The neutral theory of molecular evolution
There are relatively few models used as wide-ranging explanations for pat-
terns of molecular variation, and only one body of work that has ever risen 
to the level of scientific theory in this field. That work—the neutral theory of 
molecular evolution—proposed independently by Motoo Kimura (1968) and 
Jack King and Thomas Jukes (1969), is one of the cornerstones of modern stud-
ies of molecular data. A wonderfully concise description of the neutral theory 
is given by Kimura himself (Kimura 1983, p. 306):

The neutral theory claims that the great majority of evolutionary mutant 
substitutions are not caused by positive Darwinian selection but by 
random fixation of selectively neutral or nearly neutral mutants. The 
theory also asserts that much of the intraspecific genetic variability at 
the molecular level, such as is manifested in the form of protein poly-
morphism, is selectively neutral or nearly so, and maintained in the spe-
cies by the balance between mutational input and random extinction or 
fixation of alleles.

The neutral theory is effectively making two claims about molecular evolu-
tion: (1) that differences between species at the molecular level are largely 
due to the substitution of one allele with another that is equivalent in fitness 
(i.e., neutral); and (2) that alternative alleles polymorphic within species are 
fitness neutral with respect to each other and have dynamics dominated by 
mutation-drift equilibrium. A consequence of these two claims is that poly-
morphism and divergence are simply two phases of the same process, with 
neutral alleles entering the population and eventually being lost or fixed by 
drift (Kimura and Ohta 1971). The neutral theory is therefore a framework for 
understanding both the causes of divergence between species and the pro-
cesses that maintain variation within species. 

There are a number of very valuable features of the neutral theory that have 
ensured its continuing use. One of the key insights of the neutral theory is its 
ability to explain differences in the rate of evolution among sites within genes, 
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or among genes within a genome, by positing different levels of selective con-
straint. Although this point is often misunderstood (as we will see in the next 
section), the neutral theory does not deny a role for negative selection—in 
fact, it is variation in the strength of negative selection that is proposed to be 
the major determinant of the rate of evolution (as opposed to variation in the 
strength or frequency of positive selection). This insight can be summarized in 
the following equation (Kimura 1983, eq. 5.1):

 f0µ ν=  (1.6)

Here the rate at which neutral mutations arise (m) is determined both by the 
total mutation rate (n) and by the fraction of all mutations that are neutral (f0). 
Assuming a constant total mutation rate across a gene or genome, the neutral 
theory says that variation in the rate of evolutionary change is due to variation 
in the fraction of mutations that are neutral. This fraction, f0, represents the 
amount of constraint, so that “the weaker the functional  constraint, the larger 
the fraction of mutations that are selectively neutral and therefore, the higher 
the evolutionary rate” (Kimura 1983, p. 308). Consider levels of polymorphism 
and divergence at different positions within a codon. Fourfold  degenerate sites 
evolve faster than twofold degenerate sites, which evolve faster than nonde-
generate sites (e.g., Li 1997, fig. 7.2). The total (or “ underlying”)  mutation rate 
will be very similar among sites within the same codon or within the same 
gene. What differs among sites is the amount of constraint (f0), which in turn 
results in differences in the observed numbers of neutral polymorphisms or 
neutral substitutions.

It is important to understand what is meant by variation in the neutral 
mutation rate, m. In the way Kimura intended it to be used, the neutral mu-
tation rate can vary from site to site, codon to codon, among regions of the 
same protein, or among proteins. The neutral mutation rate varies because 
negative selection varies in strength across sites and genes. Nondegenerate 
sites within a codon (those at which mutations always result in nonsynony-
mous changes) may have a very different neutral mutation rate than fourfold 
degenerate sites (those at which mutations never result in a nonsynonymous 
change). Neutral rates for a single gene are themselves likely to be averages of 
different neutral rates among all the sites within a gene, as f0 may, for instance, 
be lower for codons within functionally more important parts of a protein. 
Fourfold degenerate sites are generally assumed to have f0 = 1—to have no 
constraint whatsoever—and are therefore thought to reflect the underlying 
rate of mutation (see Chapter 7 for more discussion of this assumption). But 
every gene and every site has its own neutral mutation rate—this is the rate at 
which neutral alleles arise, no matter how rarely. The distinction between total 
mutation rate and neutral mutation rate has important implications for many 
topics discussed throughout this book, and is a key concept underlying much 
of the way in which we understand molecular variation.

Another major contribution of the neutral theory has been its ability to help 
explain variation in levels of nucleotide polymorphism among species and 
populations. If most polymorphisms observed within species are neutral—
not slightly deleterious polymorphisms kept at mutation-selection balance, 



20  CHAPTER 1

han39657_ch01_001-024.indd 20 02/26/18  06:41 PM

not balanced polymorphisms maintained at intermediate frequency, and not 
advantageous mutations streaking through the population on their way to 
fixation— and there is no effect of selection on linked mutations, then the 
amount of variation expected within a population is determined by a balance 
between neutral mutation and genetic drift (FIGURE 1.5). Polymorphisms are 
added by (neutral) mutations and are removed by drift after being either lost 
completely or fixed. Assuming equivalent neutral mutation rates, larger pop-
ulations experience less drift and therefore can maintain more polymorphism 
(Figure 1.5). The joint contributions of drift and mutation are one reason that 
we consider the product Nem to be the determinant of levels of polymorphism 
(though not the only one), and similarly why we focus on other compound 
parameters that include the contribution of drift (via Ne) in assessing levels of 
recombination (Nec) and levels of migration (Nem) within a population. 

If the assumptions of the neutral theory are true and populations are at 
mutation-drift equilibrium, we have a large body of work describing the 
expected level and frequency of polymorphisms within species, much of it 
thanks to Kimura himself. The neutral theory provides a theoretical basis for 
understanding DNA variation with clear, testable hypotheses that enable the 
use of an array of statistical tools that can detect the action of natural selec-
tion. This corpus drives most of the expectations explained in this book, and 
ensures the continuing use of the neutral theory as a framework for studying 
molecular population genetics. 

However, the neutral theory also has major difficulties in explaining much 
of the data being produced by the growing number of studies of molecular 
variation. To clearly grasp these problems, it is helpful to consider a weak ver-
sion and a strong version of the neutral theory. The weak version states that 
most substitutions observed across the genome are in fact neutral and are fixed 
by random processes. The same is true for polymorphisms: across the genome 
most are neutral, representing the same alleles that will eventually be lost or 
fixed in a population. Because most mutations in a genome (at least in large, 

Large population Small population

Mutation

Loss

Fixation

4Neµ 4Neµ

FIGURE 1.5 Equilibrium levels of variation.  Equilibrium is reached when the input  
of variation into a population by mutation (solid arrow) is exactly equal to the 
combined output of variation through either loss or fixation of new alleles (dashed 
arrows). The population size (indicated by the size of the circle) determines the 
 effects of drift, so that there is both more loss and more fixation in small populations 
 (indicated by thicker arrows), such that the equilibrium level of variation is lower in 
small populations. note that the rate of loss and the rate of fixation of alleles are not 
equal to each other, but the arrows have the same thickness for simplicity.
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eukaryotic genomes) occur at noncoding, nonfunctioning sites, the weak ver-
sion of the neutral theory continues to be accepted. The strong version says 
that most amino acid substitutions are also neutral, and that mutation-drift 
equilibrium is the major force determining levels and frequencies of neutral 
polymorphisms. Even if the vast majority of substitutions across a genome are 
neutral, what most researchers care about are substitutions that could have an 
effect on fitness—either those in coding regions or those in functional noncod-
ing regions. And for these types of substitutions the neutral theory continues 
to be rejected (reviewed in Hahn 2008; Wright and Andolfatto 2008; Sella et al. 
2009). Similarly, even if all observed polymorphisms were neutral—at coding, 
noncoding, and nonfunctional sites—observed patterns of polymorphism do 
not conform to the expectations of mutation-drift equilibrium, or even demo-
graphic perturbations of this equilibrium, likely because of selection on linked 
mutations. In summary, the weak version of the neutral theory is correct and 
invaluable; the strong version is almost certainly incorrect, but still sometimes 
useful. The tension between rejection of this theory and its remaining utility 
has still not been satisfactorily resolved (Kreitman 1996; Hahn 2008).

Misunderstanding and misuse of the neutral theory
As with any widely used scientific theory, the neutral theory has inevitably 
been misunderstood and, consequently, misused. Many of these problems 
recur even within molecular population genetics and lead to unnecessary 
confusion and miscommunication among authors. Most of the problems are 
caused because the neutral theory and the term neutral are both understood 
to mean “no selection,” although Kimura stressed that “the theory does not 
assume that all the mutations at the time of their occurrence are selectively 
neutral” (Kimura 1983, p. 307).

In his formulation of the neutral theory Kimura was attempting to explain 
the DNA and protein sequence data accumulating in the early days of mo-
lecular biology, and the neutral theory is a statement about how he thought 
the world worked. He did not argue that the neutral theory should be a null 
model for evolution, though he certainly thought that it had fewer ad hoc as-
sumptions than the models of pan-adaptationism proposed as alternatives. 
However, it is now common for neutral model to be used as a synonym for 
null model, with the implication that any model without positive or balancing 
selection is more parsimonious than one that includes them. It is of course 
useful to be able to specify a model with no positive or balancing selection, 
and commonly used phrases for such a model include standard neutral model 
or neutral-equilibrium model. 

More confusing is the conflation of a generic “neutral model” with the idea 
of a model without any selection. Where does this sense of the term neutral 
come from? It likely started innocently enough with models of quantitative 
traits, for which researchers interested in the contributions of mutation and 
drift to the evolution of phenotypes coopted the term selective neutrality to 
mean a trait under no selection (Lande 1976). This understanding was even 
developed into a general model for such traits under the name neutral theory 
of phenotypic evolution (Lynch and Hill 1986). The moniker has been taken up 
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many times since in many fields for models that do not include any sort of se-
lection, including those found in studies of biodiversity (Hubbell 2001), gene 
expression (Khaitovich, Pääbo, and Weiss 2005), and cultural data (Lansing 
and Cox 2011).

A similar, and perhaps more continually vexing, conflation is between the 
neutrality of mutations and the neutrality of sites. To be clear, only mutations 
can be neutral: the term is explicitly a statement about the relative fitness of 
alternative alleles. There is no such thing as a locus that is neutral or “strictly 
neutral,” but there can be loci under no selection. Unfortunately, a common 
shorthand in the field is to use neutral locus to refer to either a locus that pro-
duces only neutral mutations (i.e., is unconstrained), a locus with neutral 
polymorphisms that is linked to one with non-neutral polymorphisms, or a 
randomly chosen locus that is not known to be involved in a specific adaptive 
trait. The problem then arises not because this useful shorthand is deployed, 
but because many researchers do not understand that it is just shorthand for 
a more complex concept.

The misapplication of the term neutral to loci or positions in a sequence is 
more than simply an alternative usage of the word—it leads to a host of mis-
understandings about both data and concepts in population genetics. Here are 
some of the misunderstandings that are commonly seen in the literature as a 
result of the application of the term neutral to both loci and mutations:

• It causes one to think that only unconstrained sites can have neutral 
mutations. Under the neutral theory all sites can have neutral muta-
tions, and therefore all sites can have polymorphisms maintained by 
the balance of mutation and drift. The neutral mutation rate may be 
lower at sites that are constrained, but levels of diversity and rates of 
substitution can still be governed by population size and mutation 
rate. Understanding the expectations underlying, for instance, the 
McDonald-Kreitman test (Chapter 7) is dependent on understanding 
this distinction—that there are different neutral mutation rates at dif-
ferent types of sites. This seems to be an especially common conflation 
in comparative genomic studies, which aim to estimate the mutation 
rate in the absence of selection using analyses of substitution rates at 
unconstrained sites. 

• It causes one to think that unconstrained sites present a pattern of 
nucleotide variation unaffected by the action of natural selection. This 
confusion is commonly seen in studies of demography and phylo-
geography, in which the use of markers thought to be under no direct 
selection (e.g., microsatellites, mitochondrial D-loop) leads researchers 
to believe they are studying patterns of variation that are not under 
the influence of selection. Instead, the fact that many unconstrained 
loci are linked to those loci under selection means that the level and 
frequency of variation is very much affected by selection—and can be 
“non-neutral” in the sense that they are not driven only by mutation-
drift balance. It may be that unconstrained sequences offer the op-
portunity to examine the mutational process unimpeded by direct 
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selection (e.g., Petrov, Lozovskaya, and Hartl 1996), but this is a very 
different use of the data.

• It causes one to think that genes or loci with constraint are always 
“non-neutral.” We will discuss many tests of neutrality in this book 
and the many ways in which loci can be evolving neutrally (or not). 
But the main theme will be that we are almost never testing for the 
action of negative selection—again, this is assumed to act on functional 
sites. Instead, we will be asking whether there is evidence for positive 
selection, balancing selection, or the presence of segregating deleteri-
ous polymorphisms. A locus evolving neutrally is not one evolving 
without negative selection, but rather one for which there is no evi-
dence for one of these alternative forms of selection. 

• It causes one to think that loci or broad types of mutations that have 
segregating polymorphisms with Nes = 0 are not under selection. This 
category of error is the converse of the ones described above: if we es-
timate selection on current polymorphisms (be they nonsynonymous 
amino acids, gene copy-number variants, or transposable elements) 
and find that they are all neutral, some researchers incorrectly infer 
that there is no selection on any mutations of these types. Obviously 
such a pattern would be perfectly consistent with the expectations 
of the neutral theory—which says that the polymorphisms we ob-
serve are neutral—and would in no way imply that all such mutations 
are neutral.

Alternative models of molecular evolution
If the neutral theory cannot explain current patterns of variation, what can? 
Though there is not a consensus answer to this question, we can at least begin 
to consider possible alternative models that are consistent with the data. An 
informative place to start may not be with theories that can explain the data, 
but rather with alternative models that are likely incorrect. By enumerating 
these possibilities, the hope is that we form a better idea of what a good theory 
will look like.

A set of related models that are almost certainly wrong are those in which 
the vast majority of polymorphisms and substitutions are not neutral (i.e., 
they are not even consistent with a weak version of the neutral theory). There 
are three obvious models of this type. A deleterious mutation model would 
propose that all variation is at least slightly deleterious and is maintained 
at mutation-selection balance. Polymorphism would be dominated by low-
frequency variants, and all substitutions between species would be made up 
of the few deleterious variants that are able to fix. An advantageous muta-
tion model would posit a constant influx of advantageous mutations. In this 
model all polymorphisms (or at least those at possibly functional sites in the 
genome) would represent adaptive alleles on their way to fixation, likely at 
high frequencies in the population. All substitutions between species in this 
model correspond to the fixation of advantageous alleles. A balanced mu-
tation model would propose the maintenance of balanced polymorphisms 
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throughout the genome. Polymorphism would comprise these intermediate-
frequency variants, with substitutions made up of the rare balanced allele that 
drifts to fixation. There are many reasons to doubt each of these models, based 
on both empirical and theoretical grounds. 

The two models that are largely consistent with current data both include a 
large role for the effect of selection on linked neutral variation (see Chapter 8 
for more discussion). While neither has reached the critical mass of theo-
retical results and empirical support that generally accompany a “Theory,” 
both are well-developed models that provide detailed predictions about 
 molecular variation. The background selection model (Charlesworth, Morgan, 
and Charlesworth 1993; Charlesworth, Charlesworth, and Morgan 1995) 
proposes that the constant influx of deleterious mutations that must be re-
moved from a population reduces neutral polymorphism at linked sites. This 
model is not the same as the deleterious mutation model described above, 
as background selection does not propose that the polymorphisms we ob-
serve are  themselves non-neutral. Though the background selection model 
does not always explain patterns of divergence very well (Stephan 2010; 
but see McVicker et al. 2009), the ubiquity of deleterious mutation means 
that it almost  certainly influences levels of variation across all genomes 
(Charlesworth 2012). The hitchhiking model (Maynard Smith and Haigh 1974; 
Kaplan, Hudson, and Langley 1989) proposes that the rapid fixation of ad-
vantageous alleles reduces  polymorphism at linked sites. Again, this model 
is quite different from the advantageous mutation model, as most polymor-
phisms are assumed to be neutral; it is the effect of rapidly fixing substitu-
tions on levels of linked neutral polymorphism that is the major feature of the 
model. In addition, the hitchhiking model is consistent with the high rates of 
adaptive substitution observed in many species (Hahn 2008; Sella et al. 2009). 
It is almost certainly the case that both background selection and hitchhik-
ing are acting in all species—what remains to be determined is the relative 
importance of each process across regions of the genome and across species.

Finally, it is also worth briefly mentioning the nearly neutral theory of 
 molecular evolution (Ohta 1972a, 1972b), as it is often considered to be an alter-
native to the neutral theory. The nearly neutral theory posits a large number 
of slightly deleterious (and/or slightly advantageous) mutations, and was ini-
tially proposed to explain unexpected constancy in the observed rate of amino 
acid substitutions (Ohta 1992). However, rates of amino acid substitution are 
now known to vary widely across species, and the nearly neutral theory does 
not explain observed variation in levels of diversity across the genome. While 
there undoubtedly are many slightly deleterious mutations produced each 
generation, and—as is predicted under the nearly neutral theory—patterns of 
protein evolution are weakly correlated with population size (Akashi, Osada, 
and Ohta 2012), the theory remains explanatory for only a small slice of data. 
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In order to make inferences about the evolutionary process, molecular 
population genetic approaches require DNA sequences from a random 
sample of chromosomes. Although this seems like a relatively straight-
forward task to accomplish, deciding how many samples to collect, how 
to ensure that they are “random,” and exactly how to obtain the sequence 
data are all important issues that deserve attention. These uncertainties 
are especially relevant now that large datasets can be collected relatively 
easily and cheaply using next-generation sequencing (NGS) technolo-
gies. Because the optimal experimental design largely depends on the 
questions being asked, I discuss a number of different approaches below. 

POPULATION SAMPLING 

Datasets in molecular population genetic studies generally use between 
10 and 50 individual chromosomes (i.e., 5 to 25 diploid  individuals). 
This is because many inferences can be made about population param-
eters from even very small samples. For instance, if we are not overly 
concerned with allele frequencies but simply need a count of segre-
gating sites, then two chromosomes may be sufficient as long as there 
is enough variation between them. Sequencing more and more indi-
viduals always results in diminishing returns to the number of segre-
gating sites discovered, and for many purposes sequencing a longer 
region rather than more individuals may be optimal (Pluzhnikov and 
Donnelly 1996). If we are applying methods that are exquisitely tuned 
to allele frequencies, then sample sizes larger than 50 may be required. 
However, most of our tests and statistics are intended for use with 
small samples, and there is often little increase in statistical power with 
sample sizes larger than 50 (Simonsen, Churchill, and Aquadro 1995). 
In fact, interpreting sequence data when the sample size n is close to 
the population size N can be problematic (e.g., Wakeley and Takahashi 
2003; see Chapter 6). To some extent the “optimal” experimental design 
for molecular population genetics will always be dominated by the 
costs and constraints of the latest sequencing technologies, rather than 
the availability of samples. Because of these anticipated constraints it 
will be more helpful not to give prescribed numbers of individuals to 
use, but instead to provide general guidelines as to how studies can be 

EXPERIMENTAL 
DESIGN 2
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judiciously conducted. When discussing particular methods used to infer evo-
lutionary histories throughout this book I will be sure to note when sample 
sizes outside the range of 10 to 50 chromosomes can or must be used.

The samples collected must be a set of unrelated individuals, or at least 
chosen without respect to relatedness. Of course all individuals in a popula-
tion are related to some degree, but avoiding the selection of siblings as well 
as parents and their offspring is especially preferred. If there is known to be 
some microstructuring of a habitat—such as relatives living in the same nest 
or seeds falling not far from the parental tree—then it is recommended that 
samples be chosen from sites spaced at least as far as the structuring occurs. 
Many sequencing datasets in human population genetics are now collected 
as “trios,” comprising a mother, father, and offspring. If data from trios are to 
be used for molecular population genetics, then only the mother and father 
sequences should be used since they usually represent unrelated individuals. 

Most, but not all, inference in molecular population genetics requires a set 
of sequences sampled from a single population. We define a population as a 
group of randomly mating individuals. This definition is clearly not very help-
ful in dealing with asexual or primarily selfing species; we will see that making 
inferences about the evolutionary history of such species can often be diffi-
cult exactly because it is hard to define populations. But the theoretical basis 
for most population genetic methods is derived assuming a single panmictic 
population. As a result, these methods can be extremely sensitive to the sam-
pling procedure. Sampling 1 individual from each of 10 subpopulations rather 
than 10 individuals from just 1 subpopulation can provide a very different set 
of results. Researchers may have no idea about possible population structure 
within their study species, and we will discuss how to test for the presence 
of multiple subpopulations in Chapter 5. Obviously, many questions revolve 
around differentiation between subpopulations, in which case multiple sub-
populations will purposely be sampled. In these scenarios the general guide-
lines on sample sizes given above apply to each subpopulation. It may also be 
the case that chromosomes are sampled from different subpopulations in order 
to provide the maximal amount of variation—for instance, to obtain molecular 
markers for crossing studies. There are a number of applications that can use 
these types of datasets, and I will point out each of them as they are discussed. 

In addition to sampling sequences from within a species of interest, it is 
common to sample one or a few homologous sequences from a closely related 
species. Such outgroup sequences can provide estimates of divergence between 
species and can be used to “polarize” segregating alleles into ancestral and 
derived states. Again, different population genetic methods require slightly 
different numbers of outgroup sequences, or outgroups at different degrees of 
divergence, and so are discussed as each method is introduced. 

DNA SEQUENCING

One of the most important requirements of the DNA sequences used in molec-
ular population genetic studies is that they be obtained by direct sequencing, 
with full ascertainment of all variation present in the sample. In other words, 
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variation in the sample of interest should not be confined only to polymor-
phisms that were previously known, but should include all mutations. There 
are a number of important exceptions to this rule (see the final section of this 
chapter), but for the vast majority of cases we still require full sequence data 
from each sampled chromosome. This ensures that our sample corresponds to 
the assumptions underlying our models.

Decisions about which locus to sequence, how many loci to sequence, or 
whether to simply sequence a whole genome will depend on the specific aims 
of each experiment. Assuming a set cost for sequencing a single nucleotide, 
for some purposes it is better to sequence more individuals rather than more 
loci, and vice versa (Pluzhnikov and Donnelly 1996). Some statistical methods 
require multiple loci (e.g., Hudson, Kreitman, and Aguadé 1987), and there-
fore application of these methods constrains experimental design. Different 
technologies also differ in their ease of application to one or multiple loci: for 
instance, next-generation sequencing technologies are wonderful for whole-
genome studies but less useful for targeted studies of a limited number of 
loci. Additionally, next-generation technologies have small but nonnegligible 
costs related to the preparation of each individual library to be sequenced, 
and therefore a more complex calculation must be made about the exact se-
quencing approach taken (i.e., there is not a fixed cost per nucleotide). In 
the next two sections I discuss many of the technical aspects of sequencing 
DNA for a single locus using traditional Sanger sequencing. Extensions to 
multiple loci using this technology follow directly from these single-locus ap-
proaches. Although these methods have largely been surpassed by the use 
of other technologies, in order to understand the older literature it is impor-
tant to understand what has been done previously and why. Following this 
review, I attempt to distill the most important considerations common to all 
next- generation sequencing approaches and the implications of these ideas 
for studies of population genetics.

Sanger sequencing
The most common, direct method for obtaining sequence data uses poly-
merase chain reaction (PCR; Saiki et al. 1985) to amplify the locus of  interest, 
followed by chain-termination DNA sequencing (Sanger, Nickleu, and 
Coulson 1977). This combined approach is usually simply referred to as 
Sanger sequencing, but within this relatively straightforward approach are a 
number of  variations that will determine the nature and quality of sequence 
data. Consider the gene shown in FIGURE 2.1A. There are multiple exons and 
introns, and the  entire coding region covers more than 20 kilobases (kb). 
While some long- amplification (LA-) PCR methods may be able to amplify 
the entire region in one reaction, it is more likely that multiple primer pairs 
will have to be designed to amplify multiple amplicons (FIGURE 2.1B). If the 
latter is the case, then researchers must decide whether they need sequence 
data from both coding and noncoding regions or whether they are only in-
terested in coding regions. One important thing to remember is that varia-
tion in the primer sequences themselves will not be detected, except indirectly 
through amplification failure. This means that placing primers inside exons 
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(when the aim is to sequence only coding sequences) will reduce the number 
of sites considered. (Needless to say, primer sequences should not be included 
in resulting alignments.) Of course if a genome sequence is not available then 
primer design may have to rely on relatively more conserved coding regions 
in order to work at all, and so there will be no option to place primers in flank-
ing intronic or noncoding regions.

Sanger sequencing methods provide only about 700 bases of high-quality 
DNA sequence per read. Because the current standard is that DNA should be 
sequenced on both strands (i.e., that the forward and reverse primers should 
be used to generate overlapping sequences), any amplicon longer than this 
will require multiple internal sequencing primers (FIGURE 2.1C). There do not 
appear to be any inherent advantages to using either fewer, longer amplicons 
that use different internal sequencing primers or more, shorter amplicons that 
do not require internal primers. So other than the fact that all PCR primers 
can be reused for sequencing if each amplicon is smaller than 700 bp, the op-
timal choice will depend on the length of the target sequence and the cost of 
PCR reagents.

Another important choice to be made is whether PCR products will be 
cloned into DNA vectors before sequencing. If sequencing is done directly 
from amplified PCR products, then primers will actually be sequencing off of 
thousands of individual DNA strands. For non-inbred diploid individuals this 
means that both chromosomes will be sequenced for any locus, and therefore 
that some sites will be heterozygous (a point that will be elaborated below). In 
contrast, if PCR products are first cloned into a DNA vector, then sequencing 
proceeds from clones of only a single DNA template, and no heterozygotes 
are possible. Although a large number of companies produce easy-to-use kits 
for cloning, it is a relatively time-consuming process. One reason it is so time- 
consuming follows from the fact that the error rates of DNA  polymerases 

Exon Intron UTR

(A)  Target gene

(B)  PCR primers

(C)  Sequencing primers

Forward primer Reverse primer
LA-PCR

Standard PCR

1 kb

FIGURE 2.1 DnA sequencing.  (A) Target gene to be sequenced. Coding exons 
(colored boxes), untranslated regions (UTRs; open boxes), and introns are shown. 
(B) Primer pairs for PCR, either long- amplification PCR (lA-PCR) or standard PCR. 
(C) sequencing primers, using existing PCR primers when possible.
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used for PCR are relatively high: approximately 10-4 for Taq and 10-6 for 
Pfu (Hengen 1995). This implies that there can be errors introduced during 
PCR, and that any single DNA clone may therefore represent an incorrect se-
quence. For these reasons, singleton mutations—those found only on a single 
 chromosome—are routinely resequenced from multiple clones, increasing the 
amount of work that must be done to collect even a single  sequence. Because 
data obtained directly from PCR products gives the average DNA sequence 
from among the millions present in the reaction, it is unlikely that errors of 
this sort are introduced using this approach.

The results of chain-termination sequencing reactions are obtained as fluo-
rescently labeled nucleotides passed across a laser, resulting in peaks of inten-
sity corresponding in color to one of the four dyes attached to the four bases. 
The depiction of these raw data of peak heights and identities is called either a 
chromatogram, an electropherogram, or a trace. High-quality DNA sequences will 
have peaks of approximately equal intensity for each base, with equal area 
under each peak and regular spacing of peaks. Automated algorithms that 
call bases from raw chromatograms are the key to collecting high-confidence 
DNA sequences. There are a number of methods for doing this that come with 
the most commonly used proprietary software packages (e.g.,  Sequencher, 
CodonCode, Vector NTI), but the most popular software is the free phred 
 package (Ewing et al. 1998; Ewing and Green 1998). (Phred stands for Phil’s 
read editor—“Phil” being Phil Green, one of the original developers of the 
program.) One of the most useful aspects of phred is that it attaches a  quality 
score to each base, colloquially called a phred score, based on the shape of peaks 
in the chromatogram. The phred score, Q, equals -10*log10(p), where p is the 
error probability for each base. This means that a base with a score of 30 should 
have a probability of being incorrect of less than 1 in 1,000. In practice, phred 
scores greater than 20 are generally accepted (0.01 error probability); most 
proprietary software packages will represent bases with phred scores lower 
than this (or below some equivalent proprietary algorithm’s score) with an 
“N” in the final sequence. When using phred users can choose to accept base-
calls with whatever minimum quality score they wish, replacing low-quality 
bases with Ns.

Although PCR error may not present a large problem when clones are not 
used, distinguishing homozygotes from heterozygotes when direct sequencing 
from an outbred diploid individual can be challenging. This is because both bases 
will be represented at a single position in the chromatogram, resulting in over-
lapping peaks. Fortunately, a number of methods have been created specifically 
for the purpose of identifying heterozygous positions in samples of  sequenced 
individuals (e.g., PolyPhred [Nickerson, Tobe, and Taylor 1997], novoSNP 
[Weckx et al. 2005], PolyScan [Chen, McLellan, et al. 2007]). The newest version  
of PolyPhred (Stephens et al. 2006) provides a measure of statistical confidence 
for each potentially heterozygous position and is reported to have 99.9% ge-
notyping accuracy. All of these methods appear to miss a relatively higher 
number of singleton polymorphisms because the minor allele is not observed 
in other samples, though this is still a small number overall. One feature that 
PolyPhred does not yet have but that can be found in novoSNP, PolyScan, and 



30  CHAPTER 2

han39657_ch02_025-042.indd 30 02/26/18  06:44 PM

some proprietary packages is the ability to account for heterozygous indels. 
The effect of heterozygous indels on chromatograms can be severe: in this case 
sequences from the two strands may overlap one another such that even high-
quality sequences can appear to be unreadable. Algorithms that disambiguate 
the two strands have relatively good success when indels are short and there 
are not multiple indels in a single read (Weckx et al. 2005).

Haplotypes
If multiple heterozygous sites are present in a DNA sequence, then there is 
another major difference between direct sequencing and sequencing from 
cloned PCR products: direct sequencing does not give us the gametic phase 
of the heterozygous alleles. As a simple example, imagine that a single indi-
vidual has two heterozygous sites 100 bases apart from each other, one an A/G 
polymorphism and one a C/T polymorphism. In this case there are two pos-
sible configurations of alleles on the two homologous chromosomes carried 
by the individual, either AC/GT (with the A and C alleles inherited from one 
parent and the G and T from the other) or AT/GC (FIGURE 2.2). The two config-
urations of alleles on chromosomes are also called the individual’s haplotypes.

Sequencing from cloned PCR products gives us the phase of the alleles di-
rectly, as each sequence is read from only one of the two chromosomes at a 
time (ignoring the possibility of PCR-mediated recombination). Of course, if 
the heterozygous sites lie far apart and cannot be captured in a single am-
plicon, then there is also no information about the phase of the alleles. One 
reason to sequence from inbred individuals is that there are no heterozygotes, 
and therefore the phase is known regardless of the sequencing method used. 
This is also the reason that so many early studies in molecular population 
genetics focused on genes found on the X chromosome—sequencing hemizy-
gous males avoided the problems associated with obtaining the phase.

For many applications we do not need the gametic phase of alleles, and in 
these cases it is perfectly appropriate to randomly assign alleles to haplotypes 
if necessary (e.g., many software packages expect sequences to be represented 
as distinct haplotypes even if the haplotypic information is never used). But 
what if haplotypes are needed? There are some experimental techniques that 
allow us to phase genotypes—such as cloning—but these are generally limited 
to small genomic regions that can be inserted into the cloning vector. There 
are also some technologies that allow for the isolation of individual chromo-
somes (e.g., hybrid cell lines), but these are often extremely time-consuming 
and not at all amenable to applications involving a population of individuals. 
Other promising experimental technologies are being developed (reviewed in 
Snyder et al. 2015) but so far have not been widely applied. 

Because of experimental limitations and cost, 
the most common methods used to phase alleles 
(i.e., to turn genotypes into haplotypes) have been 
computational (Browning and Browning  2011). 
Given only genotypic information, there are a huge 
number of possible haplotypic configurations: 
2S  for S biallelic segregating sites. Luckily there 
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FIGURE 2.2 Haplotype  configurations.  
 given two heterozygous sites, A/G and C/T, 
the two possible haplotypes are shown.
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is not free recombination between all polymorphisms, and consequently 
there are always many fewer than 2S combinations found in natural popula-
tions. This means that it is possible to infer haplotypes. Many computational 
methods have been developed for inferring the phase of alleles, including 
basic parsimony methods (Clark 1990), more advanced  maximum likeli-
hood methods using expectation-maximization (Excoffier and Slatkin 1995), 
hidden Markov model (HMM)–based methods (Browning and Browning 
2007), and Bayesian methods (Stephens, Smith, and Donnelly 2001; Stephens 
and Donnelly 2003). The Bayesian methods implemented in the software 
package PHASE (Stephens, Smith, and Donnelly 2001; Stephens and 
Donnelly 2003) have been found to be most accurate for smaller samples 
(Marchini et al. 2006), while BEAGLE (Browning and Browning 2007) and 
fastPHASE (Scheet and Stephens 2006) are much faster and possibly more 
accurate for very large samples. These methods are all applied to samples 
of unrelated individuals from a population, although alternative methods 
can be used with groups of related individuals (e.g., Kong et al. 2008). While 
experimental phasing is the generally preferred method, because of recom-
bination during PCR it is sometimes the case that computational methods 
can be more accurate than experimental methods (Harrigan, Mazza, and 
Sorenson 2008). 

All computational methods are based on a similar idea—the haplotypes 
for some pairs of sites in some individuals from a population are known 
because they either are doubly homozygous or have only a single heterozy-
gous site. Following from the example above, if we observe an individual 
whose genotype is A/A at the first site and T/T at the second site, we know 
that the two haplotypes must be AT/AT. All of the computational meth-
ods take advantage of individuals with known phase in order to infer the 
phase of doubly heterozygous individuals, essentially assuming that there 
are few recombination events that will break up allelic combinations. Once 
all genotypes in a population have been phased, researchers will often treat 
these haplotypes as if they were experimentally obtained. However, some 
programs will also report confidence scores for the placement of individ-
ual alleles (e.g., PHASE), explicitly incorporating uncertainty into the esti-
mated haplotypes. 

Next-generation sequencing
To a larger and larger extent, studies relying solely on Sanger sequencing are 
being overtaken by whole-genome (or at least genome-wide) datasets that 
use next-generation sequencing technologies. Even though PCR followed by 
Sanger sequencing is still considered the gold standard, the high through-
put and relatively low cost per nucleotide of next-generation approaches 
allows large amounts of population genetic data to be collected quickly and 
cheaply. For many whole-genome studies this means that only the most in-
teresting loci will be further Sanger sequenced in a targeted manner, possibly 
among a larger number of individuals (and even this approach is becoming 
less common all the time). There are still some species for which a reference 
genome sequence is not available; for these species many NGS applications 
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to genomic DNA will not be appropriate, and Sanger sequencing will have to 
be used. However, alternative approaches using RNA sequencing or reduced 
representation sequencing may be a way to collect large amounts of data on 
sequence variation even from non-model organisms (see below).

Along with the enormous datasets produced by NGS technologies 
come a number of important issues, including both technology-specific 
biases and general data-handling problems. Discussing the technical de-
tails of any particular technology in a book is a losing proposition: the 
ever-evolving nature of the field means that the specific approaches 
taken now will become  obsolete in a short period of time. In a little more 
than a decade, high- throughput  alternatives to Sanger sequencing have 
 included Affymetrix sequencing microarrays (Chee et al. 1996; Hacia et al. 
1996), 454   pyrosequencing (Margulies et al. 2005; Wheeler et al. 2008), 
Solexa/Illumina sequencing- by-synthesis (Bentley et al. 2008), ABI SOLiD 
sequencing- by-ligation (McKernan et al.  2009), and Complete Genomics 
nanoball sequencing (Drmanac et al. 2010). Not included in this list is the 
growing number of even newer technologies, most of which have not yet 
been applied to the sequencing of population samples (see Chapter 10). 
Some of the technologies that have made major contributions to studies of 
variation—most notably array sequencing (e.g., Cargill et al. 1999; Cutler 
et al. 2001; Hinds et al. 2005; Kim et al. 2007)—are already obsolete. (This 
latter approach should not be confused with arrays used for genotyping, 
which are discussed later in the chapter.) 

Despite the important technical differences among commonly used next-
generation sequencing platforms, we can identify two key features shared by 
all of them that are likely to be challenges for most analyses. These two  features 
are (1) short sequence reads, and (2) high error rates.

For most NGS technologies the reads are getting both longer and more ac-
curate, so to some extent both of these problems will be mitigated soon. But 
it appears that at least some concerns will remain for the foreseeable future, 
and therefore it is best to understand how these features affect downstream 
analyses. To understand the effects of these problems, it is first important to 
understand a few more general characteristics of next-generation sequencing 
approaches.

NGS technologies typically produce millions of individual sequence reads 
from a single run. The reads are derived from the source DNA, which has 
been fragmented into many small pieces in order to serve as an efficient tem-
plate for the sequencing reaction. The random sequencing of the input DNA 
(“shotgun sequencing”) results in a wide distribution of read depths for each 
position in the genome (FIGURE 2.3). The read depth at each position—in 
other words, the number of sequence reads originating from a specific por-
tion of the genome—is expected to be Poisson-distributed under simplifying 
assumptions (Lander and Waterman 1988). In practice there are a number of 
different features that bias read depth, including GC-content of the template 
sequence and the exact DNA preparation protocol used. Most importantly for 
studies of variation, the read depth will vary from site to site and will not nec-
essarily be consistent between samples. In other words, some positions in the 
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genome will be sequenced many times over, and 
some will be sequenced very rarely, but the cover-
age of any particular position can differ between 
one individual and the next. All of this means that 
we will have variable sequence quality along chro-
mosomes, and that we cannot expect that every 
sequenced sample will have a genotype call at 
every position. We must therefore use appropriate 
methods that are able to deal with large amounts 
of missing data (e.g., Ferretti, Raineri, and Ramos-
Onsins 2012). In what follows I generally use the 
terminology associated with Illumina sequencing, 
but most of the issues described arise in conjunc-
tion with all NGS technologies.

The effect of short sequence reads 
Depending on the technology and the precise set-
tings used within a technology, NGS platforms 
used in population studies generate reads between 
35 and 600 nucleotides long. Reads can often be 
produced as either single-end or paired-end. 
Paired-end means that two reads of equal length 
come from the same larger piece of DNA, the 
length of which is approximately known. These 
sequences can be quite useful in effectively in-
creasing the number of sequenced bases from any 
particular genomic location because the paired 
reads must have originated from the same tem-
plate, though some DNA in the middle may not be sequenced. Paired-end 
sequences are also crucial to identifying copy-number variants (CNVs), or 
indeed any form of structural variation in a sampled genome (for a review see 
Schrider and Hahn 2010; Alkan, Coe, and Eichler 2011).

The most important consequence of collecting relatively short sequence 
reads is that we cannot make de novo genome assemblies for each of the sam-
ples sequenced. Instead, with this method we “map” individual reads against 
an existing genome assembly, one that has been constructed to be used as a 
reference sequence for the whole species. The need to map millions of reads to 
a genome—that is, to find the genomic location corresponding to the source 
of each read—means that we must use approximate, fast methods that do 
not rely on performing millions of individual alignments. There are many 
software packages that can carry out this mapping step, using a number of 
different computational shortcuts. The most popular programs include BWA 
(Li and Durbin 2010), Bowtie (Langmead et al. 2009), SOAP (Li, Kristiansen, 
and Wang 2008), and Stampy (Lunter and Goodson 2011). There are a large 
number of new mapping programs being introduced all the time, each with 
their own advantages and disadvantages, and each often best for a specific 
NGS technology.

6

7

5

4

3

2

1

Fr
eq

ue
nc

y 
(M

b)

0 20 40 60 80
Read depth

Unique only
Poisson

All

FIGURE 2.3 Read depth for the human x 
chromosome using illumina sequencing 
technology.  The read depth sampled at 
every 50th position along the chromosome 
is plotted for uniquely mapped reads and 
all mapped reads. Average read depth 
across the chromosome was 40.6x, mean-
ing that most 50-bp windows were covered 
by 40.6 sequence reads. The Poisson 
 expectation for a distribution with the same 
mean as the uniquely mapping reads is also 
plotted. (After Bentley et al. 2008.)
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The general approach taken to discover polymorphisms using NGS reads 
is to find high-quality differences between sequenced samples and the refer-
ence genome (FIGURE 2.4). At any genomic position the sequenced samples 
can be either homozygous for the base that matches the reference, homozy-
gous for an alternative base, or heterozygous. (I frame the discussion in terms 
of SNPs, but similar logic applies to any kind of variation.) This approach is 
often called resequencing because it requires a preexisting genome from an in-
dividual of the same species. There are some cases in which multiple de novo 
assemblies have been made from a single eukaryotic species (e.g., Gan et al. 
2011; Li et al. 2011), but this is still rare (see Chapter 10). 

The use of a reference genome means that we are highly dependent on 
this sequence, and that to some extent this sequence constrains the varia-
tion we see. Reference genomes are produced in a variety of ways, from 
a variety of material. Reference genomes can be made from single inbred 
lines (e.g.,  Adams et al. 2000), single outbred individuals (e.g., Mikkelsen 
et al. 2005), a group of partially inbred individuals (e.g., Holt et al. 2002), or 
a mixture of a limited number of outbred individuals (Lander et al. 2001). 
The individuals to be sequenced are often chosen because of the availability 
of high-quality DNA, not because they signify any particular genotype or 
the consensus genotype. Regardless of who is chosen as the reference line 
or individual, we represent genome sequences as haploid in online data-
bases; this means that any variation present within the individual or pool 
must be collapsed down into a haploid state, whether or not that particular 
haplotype exists in nature. All of this implies that the genome sequence we 
use to map NGS reads against represents only a single sequence taken from 
nature and cannot possibly include all of the variation present in a species 
or population. As a result, we will be unable to map sequence reads that are 
very different from the reference, or that include sequences not present in 
the reference (either because of an insertion in our sample or because of a 
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FIGURE 2.4 True polymorphisms are supported by multiple sequence reads.  The 
reference genome is represented at the top, with reads from both strands of the 
 sequenced sample presented below (indicated by arrows facing opposite directions 
and different shading). Only bases that differ from the reference are shown. The 
site at which a homozygous polymorphism exists is in bold and highlighted by verti-
cal bars; all other varying sites are intended to represent sequence errors. (After 
Thorvaldsdóttir, Robinson, and mesirov 2012.)
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deletion in the individual used to make the reference). This is also an impor-
tant reason why using a reference genome from even a very closely related 
species can result in biased read coverage: regions with high divergence will 
have fewer reads mapping to them. In general, resequencing approaches 
limit the type and level of variation that we detect.

A further consequence of short sequence reads is that they may map equally 
well to multiple places in a genome, especially after possible sequencing errors 
are taken into account. Longer reads (or paired-end reads) mean more confi-
dence in the placement of individual sequences, but some repetitive elements 
are quite long and can be several thousand nucleotides in length. Because of this 
problem, we often assign a mapping quality score to individual reads (Li, Ruan, 
and Durbin 2008). Uniquely mapping reads are those in which we place the 
most confidence, and the mapping quality score of all reads is inversely re-
lated to the number of places in the genome a read can map. Often nucleotide 
variants are inferred based solely on uniquely mapping reads, of which there 
are many fewer in any sequencing run (Figure 2.3). The amount of nucleotide 
variation within repeated sequences in reference genomes is especially hard to 
assess, as reads with allelic variants are difficult to assign to a particular repeat 
element. This means that it is very difficult to identify SNPs within repeats.

The effect of high error rates
Recall that for Sanger sequencing we had more confidence in the sequence 
derived from PCR products because of the high error rates associated with 
any particular cloned fragment. Similarly, for next-generation sequencing 
we must be wary of the sequence associated with any single read, instead 
gaining confidence only when many independent reads support a particular 
genotype (Figure 2.4). The problem of error is more severe for NGS technolo-
gies compared with Sanger sequencing: even though error rates are dropping 
quickly, per base error rates are still about 0.3% in a single read using the 
Illumina sequencing technology (Schirmer et al. 2016). This means that there 
will be a high false-positive rate for nucleotide mismatches if only single reads 
are used. Error rates often vary in a predictable manner along a read—for in-
stance, getting higher toward the end of reads—and there may be systematic 
errors that result in repeated mismatches at particular positions or associated 
with particular sequence motifs (Meacham et al. 2011). Sequence errors result-
ing in indels can occur at different rates than nucleotide mismatches, but de-
pending on the specific NGS technology used, they may be lower (Illumina) 
or higher (454) in comparison (Loman et al. 2012).

As with Sanger approaches, NGS technologies aim to assign a phred-
like base quality score to each nucleotide in a sequence read (these scores are 
“phred-like” because the numerical value given to each base is intended to 
reveal the same associated error rate as a phred score does). This base quality 
score represents the probability that the called base is in error and is generally 
fairly accurate (e.g., Hu et al. 2012). The consensus quality score of a position 
represents the final error probability associated with the specific nucleotide 
(or nucleotides, if heterozygous) at a site and is again a phred-like score. 
There are multiple ways in which consensus quality scores are determined 
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by different software packages or in different studies, but they all generally 
use a combination of base quality score, mapping quality score, and the base 
quality scores at nearby nucleotides. These values—and several others, in-
cluding those indicating the presence of neighboring indels—are then lev-
eraged so that more reads provide increasing consensus quality scores for a 
single genotype. Popular programs used to identify SNPs in NGS data are 
SAMtools (Li et al. 2009) and GATK (McKenna et al. 2010). One problem with 
combining scores from different reads is that these scores do not always pro-
vide independent data on nucleotide sequences: systematic errors resulting 
in the same nucleotide mismatch can occur on multiple reads. These system-
atic errors are consistently associated with reads derived from one template 
strand (1000 Genomes Project Consortium 2010; Meacham et al. 2011), so the 
consensus quality score can be further improved by including reads from both 
strands supporting non-reference bases (Figure 2.4). In general, and regard-
less of the specific technology used, increased coverage results in increased 
confidence in the inferred sequence.

Diverse experimental designs for next-generation 
genome sequencing
The above discussion begs the question: How much coverage is enough? The 
answer to this question for any particular sample will be determined by factors 
including the heterozygosity of the individual being sequenced, the genetic 
distance between the individual and the reference, and the repeat content of 
the genome. The Lander-Waterman model can be used to calculate a rough 
estimate of the fraction of the genome that will have sufficient coverage, 
though actual coverage may differ from these expectations (e.g., Figure 2.3). 
As a general guideline, for completely inbred lines of species with relatively 
low numbers of repeats, 10X coverage of Illumina single-end sequences re-
sults in a highly accurate genome sequence (e.g., Langley et al. 2012). In con-
trast, for a single human individual, we likely need at least 30X paired-end 
coverage to achieve low genotyping error rates, largely because many hetero-
zygous sites may be missed with lower coverage (e.g., 1000 Genomes Project 
Consortium 2010). Because we require multiple reads from both strands to 
support any allele that differs from the reference genome, the coverage re-
quirements for heterozygous individuals is disproportionately high relative 
to what is needed for homozygotes. Also note that the coverage values used 
above refer only to uniquely mapping reads: for genomes with very high 
repeat content (or high amounts of contamination in the sample preparation) 
the total amount of sequence data that needs to be collected may be signifi-
cantly larger.

The need for high read depth to ensure accurate genotypes means that 
whole-genome sequencing for large numbers of samples can be prohibitively 
expensive. Even with the huge amount of data produced by single runs of 
most NGS platforms, some genomes are so big that current costs do not allow 
a large number of individuals to be sequenced deeply (as in FIGURE  2.5A). 
One solution to this problem is to sequence multiple individuals to low 
depth (FIGURE 2.5B), leveraging the fact that true polymorphisms will appear 
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(A)  High-coverage whole-genome sequencing

(B)  Low-coverage whole-genome sequencing

(A)  High-coverage whole-genome sequencing

(B)  Low-coverage whole-genome sequencing

(C)  Exome sequencing

(D)  RAD sequencing

(E)  Pooled sequencing

FIGURE 2.5 Experimental design for next-generation sequencing.  (A) For high-
quality genotype calls in a single sampled individual, high read coverage is needed 
(each read is represented by a blue arrow, with the reference genome below). (B) 
low coverage for each individual can be used when multiple individuals from a pop-
ulation are sampled. (C) Exome sequencing is a reduced representation approach 
that provides high read depth at targeted regions using sequence capture (exons are 
indicated by yellow boxes). Transcriptome sequencing targets the same regions but 
does so by sequencing mRnAs. (D) RAD sequencing is a reduced representation ap-
proach that provides high read depth at restriction enzyme cut sites. At each cut site 
(indicated by vertical lines) reads generated from alternative template strands extend 
in opposite directions. (E) Pooled sequencing combines multiple unlabeled sample 
individuals in a single sequencing lane so that the source of each read cannot be 
determined. For demonstration purposes, reads from three hypothetical individuals 
pooled together are represented.
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many times in the total sample to find high-quality SNPs (e.g., Liti et al. 2009; 
Sackton et al. 2009; 1000 Genomes Project Consortium 2010). This approach 
does not necessarily ensure accurate genotypes for each individual—and will 
miss many low-frequency alleles—but it does have the advantage of quickly 
identifying a large number of variants. With very low coverage many sites will 
not even be sequenced in every sample, leading to different sample sizes at 
each base in the genome (e.g., Begun et al. 2007). Programs made specifically 
to estimate genotypes and allele frequencies from this type of error-prone data 
should be used in these cases (e.g., ANGSD; Korneliussen, Albrechtsen, and 
Nielsen 2014).

In order to obtain accurate calls for each sampled individual, several re-
duced representation approaches have been used to sequence a smaller por-
tion of each genome at higher coverage. The simplest reduced representation 
method is PCR: by amplifying only those regions of interest, one can get high 
coverage of a targeted set of loci. But PCR can produce only relatively short 
amplicons—even when long-amplification PCR is used—and therefore a very 
large number of reactions must be performed in order to justify the use of 
next-generation methods to obtain sequence reads. 

Instead of PCR, three alternative reduced representation technologies 
are now in wide usage. The first uses sequence capture to target specific loci 
for sequencing. The capture is often accomplished by hybridization to a 
microarray that has been constructed with thousands of oligonucleotides 
complementary to the targeted loci (Albert et al. 2007; Hodges et al. 2007; 
Okou et al. 2007). After the sample has been hybridized to the array and the 
non-complementary DNA has been washed away, the remaining DNA can 
be eluted and used as a template for next-generation sequencing. A similar 
approach using oligonucleotides suspended in a solution can also be used 
(Gnirke et al. 2009), even with non-model organisms (Jones and Good 2016). 
The most common application of sequence capture technologies is so-called 
exome sequencing (FIGURE 2.5C), in which every exon in an annotated genome 
is represented by capture probes, allowing deep coverage of coding regions 
within single samples to be achieved. This approach has now been used to 
find rare variants in samples of thousands of individuals (e.g., Tennessen 
et al. 2012).

Similar to exome sequencing, transcriptome sequencing (or RNA-seq) targets 
coding regions of the genome by sequencing mRNAs (Figure 2.5C). This re-
duced portion of the genome can be queried in multiple individuals cheaply, 
and using the same tissues in each individual ensures that similar genes are 
recovered. Transcriptome sequencing does not require a reference genome 
and therefore can be used in many non-model organisms (e.g., Vera et al. 2008; 
Parchman et al. 2010; Gayral et al. 2013; De Wit, Pespeni, and Palumbi 2015). 
The extraction of RNA and the necessary reverse transcription steps make 
transcriptome sequencing slightly more expensive per library than DNA se-
quencing, but it has become a powerful approach for population genomics 
(e.g., Romiguier et al. 2014; Pease et al. 2016).

A third reduced representation approach ensures that a relatively lim-
ited number of positions in the genome will be sequenced many times by 
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using restriction enzymes. This approach, called restriction-associated DNA 
(RAD) sequencing (Baird et al. 2008), uses oligonucleotide adaptors to cap-
ture and sequence only those template fragments that have been cut by a 
specific restriction enzyme (FIGURE 2.5D). Although multiple different vari-
ants on this approach are in use (e.g., Andolfatto et al. 2011; Elshire et al. 2011; 
Luca et al. 2011; Peterson et al. 2012), they all rely on the fact that there are 
usually only hundreds to thousands of sites that can be cut by any partic-
ular restriction enzyme in a given genome (collectively they are sometimes 
called  genotyping-by-sequencing [GBS] methods). While the cut-sites obtained 
via these methods are not necessarily specific targets of sequencing, each 
site can be reliably resequenced in each sample. By sequencing only the 
cut-sites, RAD-based  approaches provide deep coverage across many loci 
for single individuals. The resulting sequence data can provide an accurate 
view of genome-wide patterns of diversity within and between populations 
(e.g., Hohenlohe et al. 2010).

At the other end of the spectrum of genome sizes, for many species cur-
rent NGS platforms produce unnecessarily high read depth. Individual 
samples can be labeled with barcodes so that they can be combined in a 
single sequencing lane (i.e., in a single run of a particular platform), but 
each labeling reaction remains a moderate expense. Therefore, as an al-
ternative method to both discover high-quality SNPs and to estimate the 
sample allele frequencies of these SNPs, DNA from multiple individuals can 
be pooled together in a single lane without barcodes (FIGURE 2.5E). Pooled 
sequencing cannot provide individual genotypes, instead leveraging deep 
read depth to estimate accurate allele frequencies genome-wide (reviewed 
in Schlötterer et al. 2014). Pooled approaches were first applied to individu-
als hybridized to microarrays (Turner, Hahn, and Nuzhdin 2005) or to the 
DNA sequencing of reduced representation samples (e.g., Altshuler et al. 
2000; Van Tassell et al. 2008; Druley et al. 2009). They have now been used 
to sequence the whole genomes of multiple organisms using NGS technol-
ogies (e.g., Burke et al. 2010; Turner et al. 2010; Kolaczkowski et al. 2011; 
Cheng et al. 2012).

Pooled sequencing estimates allele frequencies by counting reads support-
ing each alternative allele. The aim is to have each read come from a differ-
ent sampled chromosome from among the input DNAs; for this reason, it is 
important to have a larger number of chromosomes than the average number 
of reads at a locus (Futschik and Schlötterer 2010). If there are too few chromo-
somes used in the pool some will be sequenced multiple times, leading to bias 
in allele frequency estimates (Futschik and Schlötterer 2010; Kolaczkowski 
et al. 2011). In any case, the minimum variance achievable in estimates of 
the allele frequency occurs when the number of reads equals the number of 
chromosomes in the pool (Futschik and Schlötterer 2010; Kolaczkowski et al. 
2011; Lynch et al. 2014). Although there are some valid concerns about the 
accuracy of pooled sequencing—especially regarding the false-positive rate 
for low-frequency alleles (Cutler and Jensen 2010)—empirical validation has 
provided remarkable support for the approach overall (Zhu et al. 2012). In ad-
dition to SNPs, pooled sequencing has been used to detect both transposable 
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elements (Kofler, Betancourt, and Schlötterer 2012) and copy-number variants 
(Schrider, Begun, and Hahn 2013).

While the optimal sampling design for NGS projects likely does not exist, 
the main goal must be to collect enough reads to ensure an accurate set of 
polymorphisms. Depending on the size and repeat content of the sampled 
genome, the experimental protocols described here attempt to find a balance 
between inadequate coverage per sample and too much coverage per sample. 
Further consideration must be contingent on the need for accurate allele fre-
quency estimates versus accurate genotypes of particular strains. And if indi-
viduals or strains can be sampled again in the future to improve coverage—or 
can be phenotyped for association studies—this knowledge can change the 
decisions one makes (e.g., on pooled sequencing versus low-coverage whole-
genome sequencing). Of course I have assumed that an investigator has only 
finite sequencing capabilities and that library costs are nontrivial. All of these 
considerations may change with the next next-generation of sequencing 
technologies.

GENOTYPING

A major issue in dealing with the high error rates associated with NGS plat-
forms is an unnecessarily high false-negative rate. In the above discussion we 
considered the read depth needed to avoid false-positive calls that are due to 
error, but just as important may be the number of true SNPs that are missed 
because of conservative criteria for calling non-reference bases. For many 
applications the missing genotype data and skewed allele frequencies that 
result from false negatives will cause larger problems than any false positives. 
Especially when the reference base happens to represent the ancestral state 
(which it often does; see Chapter 6), false negatives can cause a rather extreme 
downward shift in the estimated frequency of derived alleles. This is why it is 
preferable to treat unreliable base calls as missing data rather than defaulting 
to the reference allele.

As alluded to in the previous section, we can often take advantage of 
having a large sample of low-coverage genomes to make more accurate geno-
type calls by separating the variant discovery process from the variant genotyp-
ing process. The distinction between these two steps can be made clearer by 
considering the sequence evidence we would be willing to accept in order to 
call an individual heterozygous for a site at which we are sure there is a SNP 
in the population (say, an A/G polymorphism). Many people would readily 
accept even one high-quality A read and one high-quality G read as evidence 
of heterozygosity if this was already a known variant. Without independent 
knowledge of the A/G polymorphism, however, it is unlikely that one read 
supporting each base (or, more importantly, one read supporting the non- 
reference base) would tip the scales in favor of genotyping the individual as 
a heterozygote. 

In the above hypothetical scenario we have relaxed our stringency in 
the variant genotyping process because the variant discovery process has 
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identified a variant site. We have effectively started the genotyping process 
with a prior probability of there being a non-reference allele present and have 
changed our posterior probability of the genotype accordingly; this Bayesian 
approach is in fact how several programs achieve high genotyping accuracy 
(e.g., McKenna et al. 2010; DePristo et al. 2011; Le and Durbin 2011; Li 2011; 
Nielsen et al. 2012). In practice we may go through several iterations of the 
variant discovery and genotyping processes in order to more accurately iden-
tify high-quality polymorphisms, updating our prior probability at each it-
eration. This allele-aware approach to genotyping (which is also referred to 
as genotyping-by-sequencing) is especially effective in genetic crosses both 
because linkage disequilibrium in the recombinant population is high, and 
therefore missing genotypes can be imputed easily, and because there are no 
low-frequency alleles. Extremely low read depth can be used in recombinant 
populations designed to be homozygous (e.g., recombinant inbred lines), and 
accurate genotyping can be accomplished with even 0.1X coverage per indi-
vidual (Huang et al. 2009; Xie et al. 2010).

Putting aside NGS technologies, there are a number of fast, cheap, and 
accurate approaches to genotyping natural populations (for a review, see 
Gibson and Muse 2009, pp. 178–185). For most of these methods we must 
know not only the position of the SNP ahead of time, but also the identity of 
the two alternate alleles. Given this information we can then apply both low- 
and high-throughput methods that enable us to genotype individuals more 
cheaply than sequencing. The simplest genotyping method couples PCR with 
restriction digestion to genotype polymorphisms found in restriction enzyme 
cut-sites. This method—referred to as Snip-SNP, PCR-RFLP, or cleavable ampli-
fied polymorphic sequences (CAPS)—is dependent on the polymorphism being 
located within a nondegenerate position in a cut-site, with the two alternate 
alleles producing bands that run at different speeds when visualized on an 
agarose gel. A fluorescently labeled primer that enables automated scoring 
of individual genotypes can also be used. High-throughput methods for ge-
notyping can use array-based technologies to query hybridization intensity 
to alternative alleles; these are often referred to as SNP-chips. The first such 
arrays contained 500 SNPs (Wang et al. 1998), while current Affymetrix arrays 
(v. 6.0) contain more than 900,000 probes for known SNPs and more than 
900,000 probes for known CNVs in humans (McCarroll et al. 2008). Medium-
throughput methods can query many fewer SNPs but can genotype multiple 
individuals at a time (e.g., Sequenom iPlex assays). Such technologies can 
be useful for conducting follow-up experiments to whole-genome studies 
for a smaller number of interesting polymorphisms in a much larger sample 
(e.g., Jones et al. 2012).

One final caveat must be mentioned in regard to genotyped samples: we 
should remember that all the SNPs being used were previously ascertained. 
The original sample used to discover the SNPs was likely smaller than the one 
being genotyped—it may even have consisted of a single outbred individual 
sequenced to construct a reference genome (so n = 2). As a result, we have 
introduced an ascertainment bias to our study. We are biased because we are 
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disproportionately sampling intermediate-frequency polymorphisms in the 
small sample, and this bias can have important downstream effects on infer-
ences from population genetic data if it is not taken into account (e.g.,  Kuhner 
et al. 2000; Wakeley et al. 2001; Nielsen, Hubisz, and Clark 2004). We will 
consider the effects of ascertainment bias on various inferences in molecu-
lar  population genetics throughout the book, with Figure 6.6 providing an 
 illustrative explanation of the general problem.
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Once we have obtained a sample of sequences from a population of 
interest, we must describe the variation we observe. There are many 
ways to summarize molecular variation for individual nucleotides, 
microsatellites, and full sequences, and therefore many different 
statistics that describe the data. A statistic is simply a summary of 
the sample of observations (the sequences). In molecular popula-
tion genetics we tend to focus on those statistics that are estimators 
of the theoretical parameter θ (≡4Neμ), which represents the amount 
of variation found at autosomal loci in hypothetical populations 
in which all variation is neutral and at mutation-drift equilibrium.  
This focus is motivated by a desire to connect our empirical observa-
tions to theoretical predictions of the neutral model about both the 
amount of diversity found in nature and the expected dynamics of 
selected mutations in populations with varying values of θ. It is im-
portant to note, however, that the statistics discussed below are only 
estimators of θ under relatively restrictive assumptions—namely, ide-
alized populations without selection and at demographic equilibrium, 
with additional restrictions specific to each mutational model. There 
are alternative ways to understand these statistics, and later in the 
chapter I will discuss several different interpretations of summaries  
of variation.

There are also a growing number of maximum likelihood (ML) 
and Bayesian methods that can be used to estimate the parameter θ 
from data (e.g., Kuhner, Yamato, and Felsenstein 1995; Nielsen 2000; 
Beerli 2006). Some likelihood-based methods can even estimate θ from 
panels of pre-ascertained SNPs rather than full sequence data, as long 
as the ascertainment scheme is known exactly (e.g., Kuhner et al. 2000).  
While these methods are growing in popularity—and have some ad-
vantages over moment-based estimators—they also have some import-
ant limitations. Most of these limitations are simply computational: the 
size of the datasets that can be analyzed, in terms of both the number 
of samples and the length of sequences, is limited. These methods do 
not scale up to whole-genome (or even whole-chromosome) datasets.  
In addition, many likelihood-based methods (both ML and Bayesian) 

DESCRIBING 
VARIATION 3
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do not do particularly well with missing data, a limitation especially relevant 
to whole-genome resequencing projects that may have variable coverage 
across nucleotides. Many of these problems will be overcome as computa-
tional tools and resources improve, but here I will only discuss some of the 
most commonly used methods for summarizing sequence diversity from 
simple summaries of the data.

MEASURES OF SEQUENCE DIVERSITY

Common estimators of θ for SNPs under the infinite sites model
For individual nucleotide polymorphisms, the ith allele at a site has sample 
frequency pi, such that the sum of all allele frequencies is equal to 1. If we 
consider only biallelic sites, then obviously p1 + p2 = 1. A useful way to sum-
marize the variation at a single polymorphic site is by calculating the sample 
heterozygosity, which is given by:

 h
n

n
p
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1 i
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−

−  (3.1)

where n is the number of sequences in the sample. Although this value can be 
calculated from data obtained from outbred individuals, inbred lines, or hap-
loid chromosomes, it is referred to as heterozygosity (or, more properly, expected 
heterozygosity) because it is an estimate of the proportion of all individuals 
that would be heterozygotes if there was random union of gametes—that is, 
if chromosomes were randomly paired to create diploid individuals. In fact, it 
is common to refer to many measures of nucleotide diversity as measures of 
heterozygosity, regardless of the origin of the data. 

Given this measure of diversity at a single site, we now consider measures 
of diversity across an entire sequence. There are two methods that are most 
commonly used to summarize nucleotide diversity, as they do not require as-
signment of derived and ancestral alleles (additional measures that use this 
information are described below). Following our above definition of heterozy-
gosity at a single site, we can define the sum of site heterozygosities as: 
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where S is the number of segregating sites and hj is the heterozygosity as de-
fined in Equation 3.1 for the jth segregating site (Nei and Li 1979; Nei and 
Tajima 1981a; Tajima 1983). Under the infinite sites model for a diploid Wright-
Fisher population at equilibrium, E(π) = θ, which is why this statistic is some-
times called θπ. Statistics that are estimators of parameters are often denoted 
with a caret above them (e.g., θ̂π), but I will not use this notation here. Because 
heterozygosity at a monomorphic site is 0, we could also sum across all sites in 
an alignment with no change in result. Calculating π for the alignment shown 
in Figure 1.1, we find that the site heterozygosities are 0.5, 0.667, 0.5, 0.667, 0.5, 
and 0.5 for the six polymorphisms, resulting in π = 3.33. We often give this 
value per site, in which case π = 3.33/15 = 0.222.
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This measure of diversity gives us the average number of pairwise nu-
cleotide differences between any two sequences, and can therefore also be 
 calculated as: 

 
∑
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−
<

k

n n( 1)/2

ij
i j  (3.3)

where kij is the number of nucleotide differences between the ith and jth 
sequences in the sample and the denominator represents the number of 
unique comparisons being made between n sequences. If we were to cal-
culate the number of differences in each of the six possible pairwise com-
parisons of the four sequences in Figure 1.1, we would again find that the 
average number of differences is 3.33. If the number of sequences is large, 
calculating π using Equation 3.2 is much more efficient than calculating it 
using Equation 3.3. 

As discussed earlier in the book, we often ignore indel variation when cal-
culating differences between sequences. When applying Equation 3.2, indi-
vidual sequences with indels are treated as missing data, and therefore the 
value of n will differ across positions in calculating site heterozygosities. This 
will also be the case in resequencing datasets with varying coverage—and 
consequently a substantial amount of missing data—across sites. When ap-
plying Equation 3.3, it is common to simply ignore positions in the alignment 
with a gap character in any of the n sequences. This approach will make a dif-
ference in the calculations of π produced by Equations 3.2 and 3.3, as we can 
demonstrate using the modified alignment shown in FIGURE 3.1.

In this case π = 3.49 using Equation 3.2 (h = 0.66 instead of 0.5 at the first 
segregating site), but π = 2.83 using Equation 3.3 because we have completely 
excluded positions 1, 2, 9, and 10 from all of the pairwise comparisons. Even 
if there were no segregating sites within positions with gaps (as there is in 
the second site in Figure 3.1), the different methods would also give different 
results when calculated per base pair. This is because all 15 sites are included 
in the first calculation, but only 11 are included in the second. Especially for 
genome-scale datasets, it is much more useful to apply methods (such as those 
based on Equation 3.2) that can easily deal with large amounts of missing data 
(e.g., Begun et al. 2007; Ferretti, Raineri, and Ramos-Onsins 2012).

We can also express the expected amount of variance in π as a function of 
the parameter θ. We express the variance in terms of our theoretical models 
because we know there is a large historical compon-
ent to the structure of variation in our sample—that is, 
the structure of the genealogy that relates the sampled 
chromosomes. Although the theoretical variance of π 
under the neutral-equilibrium model will not always 
be ideal to use—for example, in cases where popula-
tions do not meet our assumptions—the alternative 
would be to use highly inaccurate expectations that 
do not take the hierarchical structure of the underlying 
genealogy into account and are much lower than the 
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values observed in most datasets. For the case of no recombination, the ex-
pected variance in π under this idealized model is:

 Var
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As Equation 3.4 shows, there is a large amount of variance associated with π, 
and even with a large number of samples the variance does not approach zero 
(Tajima 1983). The expected variance under increasing levels of intralocus re-
combination is given in Pluzhnikov and Donnelly (1996).

An alternative method to π for summarizing nucleotide variation uses the 
total number of segregating sites in the sample, S. However, because larger 
sample sizes will result in larger values of S, we must adjust the statistic to be 
(Ewens 1974; Watterson 1975): 
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The θW statistic is often referred to as Watterson’s theta, as it is also an estimator 
of the parameter θ assuming a Wright-Fisher population at equilibrium and 
the infinite sites mutational model. We can also rewrite the above equations to 
express the expected number of segregating sites as a function of θ: E(S) = θa. 
Given the alignment of sequences in Figure 1.1, θW = 6/(1/1 + 1/2 + 1/3) 
= 3.28. We can see that this value is very similar to the one given by π. Once 
again, differences in the exact value of θW can arise in alignments with gaps de-
pending on whether we include or exclude positions with gaps. If we include 
positions with gaps, we need to calculate separate values of θW for regions 
with different numbers of sequences, so that θW = 5/(1/1 + 1/2 + 1/3) = 2.73 
for positions with four sequences and θW = 1/(1/1 + 1/2) = 0.667 for positions 
with three sequences in Figure 3.1. The total value of the statistic is then the 
sum of these two, θW = 3.40, and per site measures would have to weight the 
number of positions with different numbers of samples accordingly. 

We can again give the expected variance of S in terms of θ, assuming a 
Wright-Fisher population at equilibrium and the infinite sites mutational 
model with no recombination:
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 (3.7)

When there is free recombination, the variance reduces to just the first term in 
Equation 3.7, as there is no longer any evolutionary variance (see Chapter 6). 
Pluzhnikov and Donnelly (1996) give the variance in S for intermediate levels 
of recombination. Equation 3.7 can also be used to find the expected variance 
in θW, which is given by Var (θW) = Var(S)/a2, with a as defined in Equation 3.6.



DEsCRibing VARiATion  47

han39657_ch03_043-058.indd 47 02/26/18  06:44 PM

(B)

0.1 0.2 0.3 0.4 0.5

4

3

2

1

0

Minor allele frequency

N
o.

 o
f s

eg
re

ga
ti

ng
 s

it
es

(A)

GCTCACCGGAATTATCCGATATGCTAGTA

GCTTACCGGAATTATGCGATATGCTTGTA

GCTCACCGGAATTATGCGATATGGTAGAA

GCTCACCGGAATTATGCGATATGGTAGAA

GCTCACCGGGATGATGCGATATGCTAGTA

GCTCACCGGAATTATGCGATATGCTAGAA

GCTTACCGGAATTATCCGATATGCTAGTA

GCTCACAGGGATTATGCGCTATGCTAGTA

GCTCACCGGAATTATGCGATATGGTAGAA

GCTCACCGGAATTATCCGATATGCTAGTA
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FIGURE 3.2 (A) For each segregating site the minor allele is blue and the  
major allele is black. For this sample, n = 10, L = 29, and S = 9. (b) The “folded”  
allele frequency spectrum for the alignment shown in (A).

Comparing the expected variances of our two estimators of θ, we see that the 
variance in θW is lower than the variance in π and approaches zero with larger 
sample sizes (albeit very slowly). This would seem to suggest that θW is the 
“better” of the two estimators. However, it is also much more sensitive to both the 
presence of slightly deleterious alleles and sequencing error, even in equilibrium 
populations (see below). It is therefore common to see both statistics used side by 
side, as well as a comparison of the two (i.e., Tajima’s D statistic; see Chapter 8).

The frequency spectrum of alleles
So far we have considered descriptions of variation using only a single sum-
mary statistic like π  or θW. But there are also useful graphical ways to de-
scribe variation, and these in turn will lead us to more measures of nucleotide 
 diversity. Consider the alignment shown in FIGURE 3.2A. Among these 10 chro-
mosomes are 9 segregating sites, each of which can have a frequency between 
1/n and (n  −  1)/n (remember that if an allele is present on all n chromo-
somes it is not polymorphic). If we do not know which allele is ancestral and 
which is derived, a simple way to describe the variation at each site would be 
the minor allele frequency (MAF), or the frequency of the less common allele. 
The minor allele frequencies in a sample therefore range from 1/n to 0.5.  
We can visually summarize the MAF of all the segregating sites in our sample 
by graphing the allele frequency spectrum, in which each bin in the histogram 
represents the number of sites (or proportion of sites) in the alignment with a 
given minor allele frequency (FIGURE 3.2B). If we define Si* to be the number 
of segregating sites with alleles found on i chromosomes, with the * specifying 
that this count is without regard to ancestral/derived relationships, and allow 
the value of i to range from 1 to n/2 (rounding down for odd-numbered n), then 
the allele frequency spectrum is simply a plot of the various values of Si*. The 
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allele frequency spectrum is also referred to as the site frequency spectrum (SFS), 
and when it shows only minor allele frequencies it is called the folded spectrum. 

In order to infer the ancestral and derived states of each allele it is common 
to use the sequences of one or more closely related species. It is generally 
 assumed that the allele matching these species represents the ancestral state, 
although parallel mutations in each lineage can lead to incorrect inferences; 
this is why using two outgroup species is often preferred—the chance of 
parallel mutations in all three lineages should be vanishingly small. If the 
outgroup species sequences do not match either allele, or if they are contra-
dictory, then no assignment of states as ancestral and derived can be made. 
FIGURE 3.3A shows the same alignment as in Figure 3.2A, but one allele has 
been assigned as the derived state. We can now describe variation at each 
site using the derived allele frequency (DAF), which can fall between 1/n and 
(n − 1)/n. Again, we summarize the DAF of all segregating sites by the 
allele frequency spectrum, this time in the unfolded state (FIGURE 3.3B). If we 
define Si to be the number of segregating sites with derived alleles found on 
i   chromosomes—with i now ranging from 1 to n − 1—then the allele fre-
quency spectrum is simply a plot of the various values of Si. For clarity I have 
plotted just Si, but it is also common to see the allele frequency spectrum 
plotted as Si/S, or the proportion of all segregating sites at each frequency 
(see Chapter 6 for further discussion of this point). It should also be clear 
that some alleles with MAF < 0.05 may actually have DAF > 0.95, since no 
distinction can be made without assigning derived and ancestral states. This 
implies that disregarding sites with MAF < 0.05 (as might be done if these are 
considered to be either sequencing errors or deleterious mutations) may lead 
to the loss of evolutionarily important variation. In addition to being a nice 
way to summarize variation, in later chapters we shall see that theoretical 
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FIGURE 3.3 same alignment as in Figure 3.2, but with alleles now polarized as 
ancestral and  derived. (A) For each segregating site the derived allele is blue. (b)  
The “ unfolded” allele frequency spectrum for the alignment shown in (A).
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predictions about the shape of the allele frequency spectrum can be used to 
infer the history of a set of sequences.

We now consider several statistics summarizing sequence diversity that 
use information about the frequency of derived alleles, as these capture more 
information about our data. Fu and Li (1993a) defined a statistic, ξ1, based on 
the number of derived singletons in a sample, which can be written in the 
terms used here as:

 S1 1ξ =  (3.8)

where S1 is the number of segregating sites with derived alleles found on only 
one chromosome. This statistic is sometimes referred to as θe (with e referring 
to external branches of genealogies). From the alignment in Figure 3.3A, we 
can calculate the value of ξ1 = 4. We cannot calculate ξ1 from Figure 3.1 or 3.2A, 
as we did not identify the derived alleles. However, we can also define a statis-
tic, η1, based on all singletons in a sample—whether or not they are ancestral 
or derived—which in the terms used here is written as:

 S
n

n
1

1 1
*η =

−
 (3.9)

with S1* as defined above (Fu and Li 1993a). From the alignment in Figure 3.2A, 
the value of η1 = 3.6. The (n – 1)/n term corrects for the fact that counting all 
singletons in a sample regardless of ancestral/derived relationship will tend 
to slightly overcount the expected number of derived singletons in a neutral-
equilibrium population. 

A second summary statistic of diversity that uses ancestral state informa-
tion is θH:
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where Si is again the number of segregating sites where i chromosomes carry 
the derived allele (Fay and Wu 2000). (According to Justin Fay, the H in θH 
refers to the weight this measure gives either to high-frequency derived al-
leles or to the homozygosity of the derived variant.) From the alignment in 
Figure 3.3A, the value of θH can be calculated as ([12 * 4] + [22 * 1] + [32 * 2] +  
[42 * 1] + [82 * 1])/45 = 2.36. We can see that this is slightly lower than the 
value of ξ1 because of the relatively large number of derived singletons in the 
sample.

All of these statistics—ξ1, η1, and θH—are estimators of θ in a Wright-Fisher 
population at equilibrium under an infinite sites mutational model; specific-
ally, E(ξ1) = E(η1) = E(θH) = θ. These relationships arise because we know the 
expected shape of the allele frequency distribution under our standard neutral 
assumptions (see Equation 6.8 and Figure 6.5). Knowledge of the expected 
spectrum and summary statistics of this spectrum will be especially useful 
in detecting natural selection (Chapter 8) and nonequilibrium demographic 
histories (Chapter 9).



50  CHAPTER 3

han39657_ch03_043-058.indd 50 02/26/18  06:44 PM

Incidentally, we can also define θW and π in terms of derived allele frequencies as:
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with a as defined in Equation 3.6, and:
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The values of θW and π from the alignment in Figure 3.3A are 3.18 and 2.98, 
respectively. See Chapter 8 for further discussion of the differences between 
estimators of θ.

Estimators of θ for SNPs under finite sites models and incorporating 
sequencing error
The statistics described above are estimators of the population mutation par-
ameter θ only under several restrictive assumptions. One of these assump-
tions is that mutations at a given site have only occurred once—that is, the 
infinite sites mutational model (Chapter 1). It is easy to see why these statistics 
are biased downward if there are multiple mutations at a site. For example, 
the θW statistic is an underestimate of diversity when polymorphic sites are 
not biallelic. In this case the total number of segregating sites is smaller than 
the number of separate mutations, and therefore θW underestimates the het-
erozygosity of the sample. In populations with low diversity this will not 
be much of a problem: in human samples there are relatively few triallelic 
sites and almost no quadrallelic sites (Hodgkinson and Eyre-Walker 2010). 
However, in species with high diversity this can be a real problem (e.g., Wang 
et al. 2010).

Conversely, in the presence of sequencing errors these estimators will be 
biased upward. This is because errors will be mistaken for true segregat-
ing sites, and consequently many of these sites will be included in calcula-
tions of diversity statistics. Sequencing error is bound to be a large problem 
in genome-scale datasets, simply because most next-generation sequencing 
technologies are more error-prone and many sites will have low sequencing 
coverage within a single sample, resulting in incorrect base calls.

In both cases—multiple true mutations at a single position or high se-
quencing error—the statistic θW will be more affected than π (Tajima 1996; 
Achaz 2008; Johnson and Slatkin 2008). There is less of an effect on π in the 
case of finite sites because the third (or fourth) allele at a site will contribute 
less to pairwise differences as a result of its lower frequency. Likewise, we 
expect sequencing errors to be present on only one or a few sampled chro-
mosomes, and these will therefore contribute little to the average number of 
differences between chromosomes. Nonetheless, all of the statistics described 
above will be affected by these complications to some degree (Clark and 
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Whittam 1992; Tajima 1996; Achaz 2008; Johnson and Slatkin 2008; Knudsen 
and Miyamoto 2009).

Tajima (1996) provided multiple ways to adjust the calculations of θW and π 
to account for a finite sites mutation model by using the Jukes-Cantor correction 
(Chapter 7) and assuming that there is no sequencing error. To adjust θW we first 
need to count the minimum number of mutations in the sample, S′, rather than 
the number of segregating sites, S. If there are j different alleles at a site in our 
sample, then there have been at least j − 1 mutations at this site; summing the 
values of j − 1 across all positions in an alignment gives S′. (Note that if all sites 
are biallelic, then S′ = S.) Using the number of mutations per site (i.e., dividing 
by the length of the sequence, L), Tajima showed that a new version of the sta-
tistic θW that takes into account the possibility of multiple mutations at a site is: 
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with a as defined in Equation 3.6 and b defined as:
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For the alignment shown in Figures 3.2A or 3.3A, S′ = S = 9 and θW(finite) = 0.125, 
which across the whole locus equals 0.125 * 29 = 3.62 (compared to θW = 3.18). 

Likewise, a new version of π that takes into account the possibility of mul-
tiple mutations at a site using the Jukes-Cantor correction is given by:
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 (3.15)

with π calculated according to Equations 3.2 or 3.3 (Tajima 1996). For the 
alignment shown in Figure 3.2A or 3.3A, π/L = 2.98/29 = 0.103. Following 
Equation 3.15, πfinite = 0.119, which over the whole locus would equal 3.45. 
We can see that the values of both statistics corrected for the possibility of 
multiple mutations at a site are slightly larger than the uncorrected versions, 
which is consistent with our intuition that the effect of ignoring finite sites is 
to underestimate nucleotide diversity. 

Sequencing errors will occur using any sequencing technology, from trad-
itional Sanger-based methods to modern next-generation methods. As dis-
cussed in Chapter 2, there are steps researchers can take to minimize errors, 
including sequencing multiple clones when doing Sanger sequencing and 
using strict filters—including minimum read depth and minimum quality 
scores—when using next-generation technologies. However, increasing the 
minimum acceptable quality score or read depth can also lead to bias: as more 
and more true polymorphisms are eliminated, the estimated levels of het-
erozygosity will inevitably go down (Lynch 2008). Instead, most corrections 
for errors in estimators of θ take advantage of the fact that errors will likely 
only be found on a single chromosome and will therefore appear as derived 
singletons in a sample (Achaz 2008; Johnson and Slatkin 2008; Knudsen and 
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Miyamoto 2009). Other methods are based on deep sequencing of only a single 
outbred individual, and errors are recognized at sites with more than two al-
leles (Lynch 2008). Because we do not know which singletons are errors in 
larger samples, we must ignore all singletons, adjusting the statistics that use 
the expected numbers of segregating sites (θW) and pairwise differences (π) 
after the expected number of singletons have been removed (statistics based 
on only the number of singletons in a sample obviously cannot be corrected 
in this way). Multiple methods have been proposed for carrying out this, or 
similar, corrections (e.g., Achaz 2008; Johnson and Slatkin 2008; Knudsen and 
Miyamoto 2009), but here I only present the error-corrected estimators given 
in Achaz (2008).

Let us define Smulti as the number of nonsingleton (multiton) segregating 
sites, that is, the number of segregating sites not including derived single-
tons: Smulti = S − S1. We can now introduce a new statistic based on Smulti that 
 adequately corrects for sequencing errors: 

 
S

a 1W(multi)
multiθ =
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 (3.16)

with a as defined in Equation 3.6. Using the alignment shown in Figure 3.3A, 
θW(multi) = 2.73 (compared to θW = 3.18 for the same dataset).

Similarly, if we define πmulti as the sum of site heterozygosities (Equation 3.2) 
for only those polymorphic sites that do not have derived singletons, then we 
can give another new statistic that takes errors into account: 
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Using the alignment shown in Figure 3.3A, θπ(multi) = 2.72 (compared to 
π = 2.98 for the same dataset). Achaz (2008) also shows how to correct θW and 
π for errors if the derived and ancestral states are not known.

Both θW(multi) and θπ(multi)  will accurately estimate the parameter θ  in a 
Wright-Fisher population at equilibrium under an infinite sites mutation 
model, assuming that all errors are present in the sample as singletons. Errors 
present on more than one chromosome, possibly because of a consistent bias 
in sequencing technologies, will not be accounted for by such approaches. 
Regardless of whether the assumptions of the standard neutral model are 
true, both θW(multi) and θπ(multi) represent statistics that summarize nucleotide 
diversity without counting derived singletons and may therefore be preferred 
when error rates are high. Note that while our corrections for finite sites and 
sequencing error are both special cases of the standard θW and π, they assume 
very different things about the process of mutation. Corrections for finite sites 
explicitly allow three alleles at a position but no error, while the framework 
for correcting sequencing errors assumes there are infinite sites and therefore 
no positions with multiple hits that are not errors. Finally, although we saw 
earlier that the theoretical variance for θW is lower than that for π, this ex-
pectation assumes no sequencing error. In the presence of sequencing error, 
π becomes a “better” measure of diversity as it is less affected by these errors 
(Achaz 2008; Johnson and Slatkin 2008). Of course both of these statistics are 



DEsCRibing VARiATion  53

han39657_ch03_043-058.indd 53 02/26/18  06:44 PM

more robust than estimators that use only singletons (ξ1 and η1), as these are 
expected to be the most affected by errors in sequencing.

Interpreting measures of nucleotide variation
Under a neutral model—in which all alleles at segregating sites are selectively 
equivalent and there is no effect of selection on sites linked to the neutral 
variants—the level of variation at a locus is governed solely by a balance be-
tween the input of mutation and the loss of alleles by genetic drift. If these 
assumptions hold and populations are at equilibrium (and even often when 
they are not), the expected average number of nucleotide differences between 
sequences per site, π, is (Li 1977; Tajima 1983):

 E N( ) 4 eπ θ µ= =  (3.18)

In this case, levels of polymorphism at a locus should be linearly proportional 
to both the effective population size (which determines the effect of genetic 
drift) and the neutral mutation rate. 

However, diversity is only weakly correlated with apparent population 
size. This early observation was called the paradox of variation (Lewontin 1974) 
and still remains even after many more datasets have been collected (Leffler 
et al. 2012; Corbett-Detig, Hartl, and Sackton 2015). Measurements of nucleo-
tide variation from hundreds of species across the tree of life continue to show 
that even though population sizes vary across many orders of magnitude (from 
ubiquitous bacteria to exceedingly rare vertebrates), the mean difference in nu-
cleotide diversity between bacteria and vertebrates spans less than two orders 
of magnitude (FIGURE 3.4). Among eukaryotes, levels of variation in mitochon-
drial DNA show no correlation with population size (Bazin, Glemin, and Galtier 
2006), and there is only a weak relationship between nuclear genes and what 
we assume is the census population size of different organisms (Figure 3.4). 

In addition to the lack of a linear relationship between the assumed popu-
lation size and levels of variation, there is an unexpected positive correlation 

10−3 10−2 10−1 100

π

Prokaryotes
  (0.1044)

Uni/oligocellular sps.
  (0.0573)

Invertebrates
  (0.0265)

Land plants
  (0.0152)

Vertebrates
  (0.0041)

FIGURE 3.4 The range of  
π values per site for synonymous 
variants from a range of prokary-
otic and eukaryotic organisms. 
The mean values are reported in 
parentheses. (From Lynch 2006.)
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between recombination rates and levels of variation (reviewed in Hahn 
2008; Cutter and Payseur 2013). This correlation is unexpected under a neu-
tral model but is expected under models that include the effects of linked 
selection (see Chapters 1 and 8). The two most complete models of linked 
selection predict either a weakly positive relationship (background selection; 
Charlesworth, Morgan, and Charlesworth 1993) or no relationship between 
diversity and population size (hitchhiking; Maynard Smith and Haigh 1974), 
and both predict a positive correlation between recombination rates and 
levels of variation. The background selection model proposes that the con-
stant influx of deleterious mutations that must be removed from a population 
reduces polymorphism at linked sites. The hitchhiking model proposes that 
the rapid fixation of advantageous alleles reduces polymorphism at linked 
sites. Although distinguishing between these two models is not straight-
forward (Stephan 2010; Coop and Ralph 2012), we can write down the ex-
pected average number of nucleotide differences between sequences per site 
under both models.

Under the background selection model, the expectation for π is:

 E N f( ) 4 eπ µ=  (3.19)

where f is the fraction of homologous chromosomes in the population that 
carry no deleterious mutations (Charlesworth, Morgan, and Charlesworth 
1993). The fraction of mutation-free chromosomes is dependent both on the ef-
fective population size and on the recombination rate, in a relatively complex 
way depending on assumptions about dominance, recombination, and muta-
tion (Charlesworth, Morgan, and Charlesworth 1993). But it is easy to see that 
with decreasing rates of recombination, sites with neutral polymorphisms 
will become increasingly linked to neighboring deleterious alleles, leading to 
a decrease in f and a concomitant decrease in π.

Under the hitchhiking model with recombination, one expression for 
the expected average number of nucleotide differences between sequences 
per site is:

 E N( ) 4 eπ µ
ρ

ρ α
=

+
 (3.20)

where ρ = 4Nec (the population recombination parameter; see Chapter 4) and 
α is a complex parameter that depends on the rate at which advantageous al-
leles arise, the population-scaled strength of selection (Nes), and the distance 
of selected alleles from the neutral polymorphisms being assayed (Wiehe and 
Stephan 1993). As can be seen, increasing levels of recombination result in 
levels of diversity that are quite close to the expectations with no selection. 
Increasing the effect of hitchhiking (i.e., increasing α) lowers levels of diver-
sity. The details of different models of hitchhiking give slightly different ex-
pectations for π, but there is almost always a positive relationship between 
levels of recombination and diversity.

These considerations imply that while by definition θ = 4Neμ, it is not ne-
cessarily the case that the statistics π, θW, θH, η1, or ξ1 are equal to 4Neμ, even 
though they are unbiased estimators of θ  in a Wright-Fisher population at 
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equilibrium under the infinite sites model. In the presence of linked  selection—
which can have a substantial influence even in regions of normal recombi-
nation (e.g., Loewe and Charlesworth 2007)—the statistics used to measure 
levels of polymorphism will tell us at least as much about the stochastic effects 
of natural selection on linked variation (genetic draft; Gillespie 2000) as they 
will about drift and mutation. This also implies that the value of the effective 
population size (Ne) that is calculated by dividing π by 4μ may not indicate an 
interpretable biological value (and certainly not a number of “individuals”; 
Chapter 1), as it only represents the effective population size under a neutral 
model. The coalescent effective population size definition of this quantity may 
still represent the timescale of coalescence, but no rescaling of the value of Ne 
will capture all aspects of the linked selection model (Neher 2013). Instead, 
the observation that π is correlated with apparent census population size—
however weakly (Figure 3.4)—suggests that using this or other summaries 
of nucleotide variation directly may be just as fruitful as using inappropriate 
estimates of Ne. Moreover, it is likely that the census population size is more 
important in determining the rate of adaptation than any effective popula-
tion size, as the census size plays a large role in determining the rate of input 
of adaptive mutations (e.g., Karasov, Messer, and Petrov 2010). The rate at 
which the selective environment changes is also likely to play a larger role 
in adaptive evolution than any conception of population size (Gillespie 2001; 
Lourenço, Glémin, and Galtier 2013).

ADDITIONAL MEASURES OF DIVERSITY

Microsatellite variation
Variation at a single microsatellite locus can be measured in much the same 
way as variation at a single nucleotide site, though there are usually many 
more than two alleles (often >10 alleles). These alleles will also differ quite 
a lot in terms of repeat lengths, with individual alleles having anywhere 
from 1 to >30 repeat units depending on the structure of the microsatellite. 
Variation does not have to be normally distributed about a mean repeat length 
and in fact is often bi- or even trimodal (see FIGURE 3.5 for examples). 

There are multiple methods for summarizing diversity at a microsatellite 
locus, including methods based on simple summary statistics (see below) and 
those based on maximum likelihood (e.g., Nielsen 1997; Wilson and Balding 
1998; RoyChoudhury and Stephens 2007). As with summarizing nucleotide 
variation, the most commonly used statistics are also estimators of the pop-
ulation mutation parameter θ in a Wright-Fisher population at equilibrium. 
In this context the mutation rate, μ, measures the rate of mutation to new neu-
tral alleles at the microsatellite locus, and we must assume a mutation model 
appropriate to microsatellites. The most commonly used model is the step-
wise mutation model (SMM), which allows only single repeat unit changes for 
each mutation (Chapter 1).

 A straightforward way to summarize variation at a microsatellite locus is 
to report the number of different alleles in the sample, K (sometimes denoted 
j, ne, or na). While this statistic can be used as an estimator of θ (e.g., Haasl and 
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Payseur 2010), in practice it is usually reported alone, without even a correc-
tion for the number of chromosomes sampled. 

There are two common statistical summaries of microsatellite variation 
that do provide an estimation of θ under a stepwise mutation model and in 
Wright-Fisher populations at equilibrium. The first uses the expected homo-
zygosity of the sample, F, which can be calculated as:

 F pi
i

K
2

1
∑=
=

 (3.21)

where pi is the frequency of the ith allele at a locus (out of K total alleles). 
Confusingly, unlike the calculation for nucleotide heterozygosity shown 
in Equation 3.1, commonly used calculations for homozygosity do not use 
Bessel’s correction for bias (the n/[n − 1] term). However, because the propor-
tions of heterozygotes and homozygotes must sum to 1, we also must define 
uncorrected heterozygosity, H, as 1 − F. Given this method for calculating 
the sample homozygosity, we can define an estimator of the parameter θ for 
 microsatellite loci as (Ohta and Kimura 1973):
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 (3.22)

Despite the fact that θF is a slightly biased estimator of θ, this bias can be re-
duced by using improvements based on simulation (Xu and Fu 2004).

The second estimator of θ for microsatellite loci under a stepwise muta-
tion model uses the variance in repeat number among alleles observed at a 
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FIGURE 3.5 Examples of allelic variation at microsatellite loci in humans. both loci 
have only  dinucleotide repeats, with adjacent bars indicating the frequencies of 
 alleles that differ by one repeat unit. (From Valdes, slatkin, and Freimer 1993.)
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single locus, V. Because mutations in microsatellites generally produce new 
alleles one or a few repeat units away from the original state, the variance 
in repeat number can be a good indicator of the amount of variation main-
tained at a locus. If we assume that only single-step mutations can occur, 
with an equal probability of mutations adding or subtracting repeat units, 
then E(V) = θ (Moran 1975; Goldstein et al. 1995; Slatkin 1995). A straight-
forward estimator of θ is therefore given by:

 VVθ =  (3.23)

While this estimator is unbiased, it has a large variance (Zhivotovsky and 
Feldman 1995).

All of the summary statistics presented here are only estimators of the par-
ameter θ under the stepwise mutation model and all of the other assumptions 
of the standard neutral model. However, it is possible to derive estimators of θ 
under a generalized stepwise model that has arbitrary properties with respect 
to the number of average repeat units added or subtracted and any asym-
metry in gain or loss of repeats (Kimmel and Chakraborty 1996). Although 
these estimators do require specification of the specific mutation model to be 
used—and many of the parameters in such a model will be unknown for any 
particular locus—it appears that even some of the estimators that assume the 
SMM may be relatively robust to model mis-specification (Xu and Fu 2004; 
Haasl and Payseur 2010).

Haplotype variation
If nucleotide sequence data are phased—either experimentally or computa-
tionally—then the 4 sequences in Figure 3.1 represent 4 haplotypes and the 
10 sequences in Figure 3.2A represent 10 haplotypes. In Figure 3.1 there are 
also four unique haplotypes, with all sequences representing a different com-
bination of nucleotides (these are also sometimes referred to as alleles; see 
Chapter 1). Figure 3.2A has eight unique haplotypes. With no recombination, 
new haplotypes can only be created by mutation, and the number of unique 
haplotypes, K (also sometimes denoted ne or na), is at most S + 1. With high 
recombination, new haplotypes can be created by both recombination and 
mutation, and there can therefore be up to 2S different haplotypes. Assuming 
a Wright-Fisher population at equilibrium and the infinite alleles mutation 
model with no recombination (Chapter 1), there is a relationship between 
the expected number of unique haplotypes at a locus, K, and the population 
mutation parameter, θ:
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 (3.24)

where n is again the number of sampled chromosomes (Ewens 1972). It is 
generally necessary to use numerical optimization in order to solve for θ here, 
and I will refer to this estimator of θ as θK. Remember that in this context the 
mutation rate, μ, measures the rate of mutation to new neutral alleles (i.e., 
unique haplotypes) at the locus.
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Other methods for summarizing haplotype variation use an analog of 
Equation 3.21 to calculate the haplotype homozygosity: the only change is that 
here pi represents the frequency of the ith unique haplotype out of K unique 
haplotypes. Once again, this value is often referred to as F, with H = 1 − F used 
to calculate haplotype heterozygosity (also called haplotype diversity; Depaulis 
and Veuille 1998). Haplotype heterozygosity and the number of unique haplo-
types are obviously extremely dependent on the inclusion of singleton nucleo-
tides, as each singleton will create a new haplotype. It is therefore common to 
see both of these statistics calculated without including these mutations.

While it is useful to consider haplotypes as the unit of variation when work-
ing with (largely) non-recombining sequences such as mitochondrial DNA or 
the Y chromosome, many studies of recombining nuclear loci focus on nucleo-
tide site variation. It is important to note that the statistics for summarizing 
nucleotide diversity described above do not depend on accurate phasing of 
haplotypes: the values of π, θW, and all the other nucleotide-based statistics 
will not change even if haplotypes are constructed at random from the same 
set of segregating sites. This being said, there are a number of uses specific-
ally for haplotypes in detecting natural selection that will be discussed later 
(see Chapter 8).
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In the previous chapter we considered multiple ways of describing the 
amount of diversity in a sample of DNA sequences, from summaries 
of the number of segregating sites, to the number of alleles at a micro-
satellite locus, to the number of unique haplotypes. These statistics—
including those based on phased haplotypes—were all intended to 
summarize the effect of mutation in generating diversity. In this  chapter 
I will introduce multiple ways of summarizing the effect of recombina-
tion in generating molecular diversity, both between pairs of sites and 
in a recombining region. While our ability to detect recombination re-
quires the presence of nucleotide variation, the effects of recombination 
in reassorting these variants among haplotypes are quite distinct from 
the effects of mutation. I start by describing methods for examining the 
effect of recombination on two-locus genotypes before moving on to 
regional and genome-wide summaries of recombination.

MEASURING LINKAGE DISEQUILIBRIUM

Linkage and linkage disequilibrium
Collecting two haplotypes from a single individual implies that we are 
observing the two parental gametes that combined to create the indi-
vidual. That is, we have the maternally and paternally derived chromo-
somes that came together in the initial zygote. Of course these sequences 
are not themselves necessarily exactly the haplotypes present in either 
the maternal or paternal genomes, but instead may represent a new re-
combinant haplotype that is a combination of the two haplotypes pres-
ent in the parental genomes and is passed on as a gamete. Linkage is the 
co-inheritance of sites together in gametes because they are physically 
linked on chromosomes.

FIGURE 4.1 gives an example of an individual who is heterozygous at 
two loci (A1/A2 and B1/B2) and who has two haplotypes, A1B1 and A2B2. 
The four possible gametes produced by such an individual are A1B1, 
A2B2, A1B2, and A2B1. If the two loci are closely linked, then almost all 
gametes will be either A1B1 or A2B2. If the two loci are completely un-
linked, then all four gametes are expected to be produced during mei-
osis with equal frequency. We define the frequency of recombination 
between two loci, c, as the fraction of A1B2 and A2B1 gametes produced 

RECOMBINATION 4
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by the individual such that c = 0.5 implies that the 
two loci are unlinked and c < 0.5 implies that they 
are linked.

Just as linkage is defined as the association of 
alleles through meiosis, linkage disequilibrium (LD) 
is defined as the nonrandom association of alleles 
in a population. The term is a bit misleading, as 
linked loci are not necessarily in linkage disequi-
librium, and even unlinked loci can be in linkage 
disequilibrium. But physical linkage is the major 
cause of LD—and many closely linked sites are in 
fact in LD—leading many people to conflate the 
two terms (association disequilibrium might have 
been a better choice for this phenomenon).

If two loci are randomly associated with one 
another in a population, then having an A1 allele 
at the first locus tells us nothing about whether 
the second locus will be B1 or B2. But if they are 
nonrandomly associated (i.e., in linkage disequi-
librium), then individuals with an A1 might also 
be more likely to have a B1. If we define pi to be 

the frequency of allele Ai at the first locus and qj to be the frequency of allele Bj 
at the second locus, and if there is random association between alleles, we can 
simply multiply individual allele frequencies at the two loci to get the ex-
pected haplotype frequencies, gij. These loci are said to be in linkage equilibrium. 
However, if there is an association between alleles, then these expectations 
will be off by some amount, D, which we define as the linkage disequilibrium 
coefficient (Robbins 1918; Lewontin and Kojima 1960). We can see this more 
clearly if we consider the four haplotypic combinations that can be generated 
by two loci that each have two alleles. The haplotypes occur with frequencies: 

 g11 = p1q1 + D

 (4.1)
g12 = p1q2 − D 

g21 = p2q1 − D 

g22 = p2q2 + D 

When there is no linkage disequilibrium (D = 0), then the haplotypic frequen-
cies are exactly equal to the product of the constituent allele frequencies. But 
in the presence of LD, all haplotype frequencies are off by amount D. 

Note that our choice of adding D to the A1B1 and A2B2 haplotypes and sub-
tracting it from A1B2 and A2B1 was arbitrary: D itself can be either positive or 
negative and must be the same for each haplotype in this scenario, so that our 
inference of the magnitude of linkage disequilibrium will not be affected by 
this choice. However, it is standard to add D to the haplotypes in “coupling” 
phase (i.e., A1B1 and A2B2) and to subtract D from the  haplotypes in “repul-
sion” phase (i.e., A1B2 and A2B1). Although the assignment of the coupling 
and repulsion types is also arbitrary in a population sample, Langley, Tobari, 
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FIGURE 4.1 Linkage. The example on the 
left shows two closely linked loci such that 
only the two parental gametes are produced 
(c = 0), while that on the right shows two 
unlinked loci with all four gametes produced 
at equal frequency (c = 0.5).
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and Kojima (1974) suggested that the haplotypes containing the two  more 
common alleles and the two less common alleles be considered coupling, and 
this nomenclature has become relatively standard. Alternative naming sys-
tems, such as the assignment of ancestral-ancestral and derived-derived pairs 
of mutations to be in coupling phase, can also be useful (e.g., Langley and 
Crow 1974; Machado et al. 2002; Takahasi and Innan 2008).

Measures of pairwise linkage disequilibrium
Given the above definitions, it is easy to see that the coefficient of disequilib-
rium, D, can be calculated as:

 D = gij − piqj (4.2)

for any combination of alleles. Because the deviation from the observed hap-
lotype frequency can only be as large as the product of the marginal allele 
frequencies, the range and value of D are dependent on pi and qj. For instance, 
when p1 = 0.5 and q1 = 0.5, D can range between −0.25 and +0.25, and when 
p1 = 0.1 and q1 = 0.7, D is between −0.07 and +0.03. This means that differ-
ences in the magnitude of D among pairs of sites can reflect both differences in 
the strength of the association among alleles and differences in allele frequen-
cies. In order to be able to compare levels of linkage disequilibrium across 
pairs of sites, Lewontin (1964) suggested the following normalized measure:
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where max(x,y) denotes the larger of x and y and min(x,y) the smaller. The 
value of D′ is now constrained between −1 and +1, though usually only the 
absolute value is reported. Note that while the range of D′ is no longer depen-
dent on allele frequencies, the value of this statistic—and in fact all measures 
of linkage disequilibrium—still is (Lewontin 1988). 

A second commonly used measure of linkage disequilibrium is based on 
the squared correlation of alleles at two loci and was first introduced by Hill 
and Robertson (1968):

 =r
D

p p q q
2

2

1 2 1 2
 (4.4)

Here the statistic r2 is used instead of just the correlation of allelic states, 
r (=D/√[p1p2q1q2]), in order to remove the sign associated with calculating D. 
The r2 statistic is therefore bounded by 0 and 1. In addition to the value of 
r2  being slightly less dependent on marginal allele frequencies than is D′, 
it is a useful statistic because it is related to the population recombination 
 parameter, r (see below). 

The two measures of linkage disequilibrium, D′ and r2, also provide very dif-
ferent kinds of information about the association between alleles. Put simply, 
while D′ tells us about recombination between two loci, r2 tells us about our  
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power to predict the identity of alleles at one locus given allelic 
states at another locus. To see this, consider the example given 
in FIGURE 4.2. There are only three unique haplotypes observed 
in this sample (A1B1, A2B1, and A2B2), and D′ will therefore be 
equal to 1 (this is sometimes called complete LD). In fact, D′ will 
always be 1 unless all four haplotypic combinations are observed, 
which is only possible if recombination has occurred between the 
two loci (except in the case of recurrent mutation, when all four 
haplotypes can be present without recombination). These con-
straints are the basis for the four-gamete test for recombination 
(Hudson and Kaplan 1985; also see below). In contrast, the value 
of r2 calculated from the sample in Figure 4.2 is 0.111. The value 
is so low because there is very little power to predict the allele 
at the B locus with knowledge of the allele at the A locus, even 
though no recombination has occurred. Unless there are only two 
haplotypes in a population and they each contain alternative al-
leles at the two loci (often called perfect LD), r2 will always be less 
than 1. This aspect of r2 makes it very useful in association (link-
age disequilibrium) mapping of phenotypic traits, in which the 
questions revolve less around the presence of recombination than 
around the prediction of the genotypes that underlie different 
phenotypic states.

Calculating the significance of any observed linkage dis-
equilibrium is straightforward, regardless of the statistic used. 
One method is to arrange the counts of the four possible  haplotypes 
in a 2 × 2 contingency table, as shown in FIGURE 4.3. Any test for 
independence (e.g., Fisher’s exact test) can then be  applied to these 

counts to ask whether D is significantly different than 0 (P = 1.0 in the  example 
shown). A second method results from the fact that nr2 is  c2-distributed with 
1 degree of freedom (where n represents the number of phased haplotypes 
sampled). In this case the c2 statistic is 10 * 0.111 = 1.11, which is also 
not significant. Because it is difficult to have significant values of r2 when 
minor allele frequencies are low (without very large sample sizes), it  is 
common to ignore calculations involving polymorphisms with minor allele 
frequencies of <0.05.

There are several nuances in calculating linkage disequilibrium that must 
be considered when dealing with genome-scale datasets (see Chapter 2 for 
a discussion of the issues surrounding the experimental and computational 
phasing of haplotypes). One common problem will be missing data: there 
may often be variation among sites in the number of chromosomes with 
 accurate genotype information. Because no haplotype can be defined in an 
individual for a pair of sites where the state of one of the sites is not known, 
the sample size for each pair of sites may differ. Correct calculation of either 
D′ or r2 in the presence of missing data requires that any individual with at 
least one undefined site be removed from both the count of haplotypes and 
the counts of allele frequencies at both sites, with the sample sizes and allele 
frequencies adjusted accordingly. This requirement obviously only applies to 
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FIGURE 4.2 Sample of 
10 chromosomes from 
a population. There are 
three unique haplotypes 
observed.
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FIGURE 4.3 Counts of 
haplotypes in a sample, 
based on the chromosomes 
shown in Figure 4.2.



RECombinATion  63

han39657_ch04_059-078.indd 63 02/26/18  06:45 PM

pairwise comparisons involving the site with missing data; the same sampled 
chromosome can be used in other comparisons for which genotypes at both 
sites are defined. Missing data will occur whether obtained via sequencing 
or a genotyping platform, and linkage disequilibrium can be calculated from 
either data source. However, the ascertainment bias inherent to genotyping 
methods (such as SNP-chips) means that there can also be a bias in overall 
levels of linkage disequilibrium (Akey et al. 2003). To be clear: individual mea-
sures of linkage disequilibrium will not be biased for any pair of sites, but the 
average level of disequilibrium among many pairs will be biased relative to 
the expectation for idealized populations (see below for these expectations). 
Perhaps unsurprisingly, the effects of ascertainment bias are also quite dif-
ferent for D′ and r2 because of the different aspects of the data they are using 
(Nielsen and Signorovitch 2003). The fact that ascertainment bias results in an 
overrepresentation of intermediate-frequency polymorphisms means that D′ 
will tend to be downwardly biased and r2 will tend to be upwardly biased, 
although both of these biases can be corrected if the original ascertainment 
scheme is known (Nielsen and Signorovitch 2003).

Summarizing pairwise linkage disequilibrium
Calculating coefficients of linkage disequilibrium for many pairs of segregat-
ing sites—whether within a region or from across the genome—provides a 
huge amount of data. The question then becomes: How do we make sense of 
all these data? There are a number of approaches to summarizing pairwise 
LD, differing largely in whether the aim is to provide a local or global view 
of linkage disequilibrium. Local views attempt to summarize patterns of LD 
within a single region, while global views may summarize LD across many 
regions, or even across the genome.

There are two straightforward ways to summarize pairwise linkage dis-
equilibrium within a region, one graphical and one simply using the average 
of all the pairwise measures. Kelly (1997) defined the average r2 value among 
S segregating sites in a sample of n sequences as:

 ∑ ∑=
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(The Z was chosen because it is John Kelly’s favorite letter.) Like r2, the value of 
ZnS varies between 0 and 1 and represents the average pairwise LD at a locus. 
Without recombination, the mean value of ZnS at equilibrium is expected to 
be about 0.15 (Kelly 1997). Intra-locus recombination causes the value of ZnS 
to be lower, while certain forms of selection can increase the value of ZnS. 
Rozas et al. (2001) suggested a modification of ZnS that could be used to detect 
whether recombination has occurred by measuring the decline in LD among 
pairs of sites located farther and farther apart. However, ZnS is most often 
used in the context of detecting natural selection (see Chapter 8).

A graphical summary of pairwise linkage disequilibrium in a region is 
shown in FIGURE 4.4 for the su(wa) locus in D. melanogaster (Langley et al. 
2000). Significant pairwise comparisons are denoted by colored boxes, with 
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low P-values indicating evidence for linkage disequilibrium (equivalent to 
the test shown in Figure 4.3). We can see in this example that many (but not 
all) neighboring polymorphisms are significantly associated with one another, 
and that there are also some significant associations between polymorphisms 
almost 2,000 bases apart. Otherwise, there is not a lot of structure to the pat-
terns of linkage disequilibrium in this region, and LD does not extend very 
far, as is typical for D. melanogaster. By contrast, FIGURE 4.5 provides a graphi-
cal summary of pairwise LD in a 500-kb region in humans (International 
HapMap Consortium 2005). In this representation only pairs of polymor-
phisms with D′ = 1 are indicated by colored boxes; many more pairs have 
D′ > 0. A striking feature of regional LD in this figure is due to the punctate 
nature of recombination in humans: because recombination largely occurs at 
a limited number of locations along the chromosome (Jeffreys, Kauppi, and 
Neumann 2001; McVean et al. 2004), there are large blocks of very high LD 
that can be almost independent from neighboring blocks. These so-called 
haplotype blocks can include hundreds of polymorphisms in complete linkage 
disequilibrium with one another, with recombination “hotspots” separating 
individual blocks. Although the criteria used to define a haplotype block can 
differ among studies, such blocks are a common feature of mammalian pop-
ulations studied thus far (e.g., Guryev et al. 2006; Villa-Angulo et al. 2009). 
Simple representations of regional LD such as those shown in Figures 4.4 and 

FIGURE 4.4 Pairwise linkage disequilibrium at the suppressor of white apricot 
(su [w a]) locus in D. melanogaster. Pairwise comparisons with D that are significantly 
different from 0 are indicated by colored boxes (P < 0.01; Fisher’s exact test). only 
those polymorphisms that occurred on at least 2 of the 51 sampled chromosomes are 
compared. The dashed lines connect the position of the segregating sites to their corre-
sponding columns in the matrix. (From Langley et al. 2000.)
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4.5 can be a relatively straightforward way to visualize differences in patterns 
of LD and recombination among loci and species.

In order to gain a more global view of linkage disequilibrium across a 
genome, it is clear that we cannot use the type of graphs shown in Figures 4.4 
and 4.5—we would need a separate graph for each chromosome, and each 
triangular matrix would have to be huge to encompass a whole chromosome. 
Of course we could give a single statistic that averages LD across all pairs of 
sites, but this sort of summary does not provide a lot of information about the 
way in which LD is structured across a genome. One common summary of 
LD across a genome (or across a smaller region) that is intended to reveal the 
scale of LD is the distance over which LD drops below some threshold. Often 
this threshold is an arbitrary value of r2 (say, r2 < 0.2) or the distance at which 
the average r2 falls below 50% of the initial value (i.e., the value between poly-
morphisms at adjacent bases).

FIGURE 4.6 shows just this sort of display of the decay in linkage disequilib-
rium. Pairwise values of r2 are plotted for about 350,000 comparisons between 
polymorphisms less than 20 kb apart in the genome of the model legume 
Medicago trunculata (Branca et al. 2011). The whole genomes of 26 M.  trunculata 
inbred lines (n = 26) have been sequenced, and the distribution of r2 values for 
all comparisons between SNPs separated by less than 20 kb—across all eight 
assembled chromosomes—are shown. (LD can be calculated between indels, 
or indeed between any variants, but was not done so in this case.) We can see 
that there is a huge spread in r2 values, with many pairs having r2 = 0 at very 
short distances and r2 = 1 at distances up to 7 kb. The figure reveals that the 
scale of LD in M. trunculata is approximately 5 kb; that is, mean LD falls below 
r2 = 0.2 for SNPs separated by about 5 kb, and declines to less than half of its 
initial value by 2 to 3 kb. This figure is of course averaging over many different 
regions, each of which possibly has its own recombination rate. The decay in 
observed LD may therefore be different within each region, and the summary 

kb
0 500

FIGURE 4.5 Pairwise linkage disequilibrium in the 2q37.1 region in H. sapiens 
from East Asia. Pairwise comparisons with D ′ = 1 are indicated by colored boxes. 
(From international Hapmap Consortium 2005.)
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presented in Figure 4.6 represents the decline in pairwise LD for the genome-
wide average recombination rate; Equations 4.11 and 4.12 below provide the 
theoretical expectation for this decay given an average recombination rate and 
population size among loci. Although this figure does not show r2 values be-
tween polymorphisms separated by more than 20 kb, we expect the average r2 
to eventually decline to 1/n for unlinked loci.

Extensions to multiple alleles, multiple loci, and genotypes
The measures of linkage disequilibrium discussed so far have considered only 
comparisons between two loci, each with two alleles, or the summary of such 
pairwise measurements. We have also assumed that we know the phase of alleles 
on chromosomes and therefore have also considered only disequilibrium between 
loci that are on the same chromosome. Here I briefly discuss measures of LD that 
relax each of these constraints in turn; more details can be found in Weir (1996).

When there are multiple alleles at one or both loci, separate disequilibrium 
coefficients must be calculated for every pair of alleles:

 Dij = gij − piqj (4.6)

Unlike the two-allele case, the coefficients calculated for more than two alleles 
are not equivalent between all pairs. However, as in the two-allele case, the 
sum of all Dij values must be 0, and the sum of all values of Dij for any particu-
lar i or j must also equal 0 (e.g., if there are three alleles at the second locus, 
then D11 + D12 + D13 = 0).
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FIGURE 4.6 The decay of linkage disequilibrium across the M. trunculata genome. 
The mean value of r 2 between all pairs of polymorphisms up to 20 kb apart is  
shown by the thick red line (individual points are not shown). The 50% range  
of values is shown in darker blue, and the 90% range is in lighter blue. (From  
branca et al. 2011.)
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In addition to pairwise linkage disequilibrium, we can also consider dis-
equilibria between more than two loci. All higher-order measures of LD are 
easily derived from the three-locus case, so I only discuss three-locus disequi-
librium here. Given three loci A, B, and C with allele frequencies pi, qj, and rk, 
we want to know whether there is a nonrandom association among sets of 
alleles at all three loci that is not explained by nonrandom associations among 
pairs of alleles. To answer this question we include the pairwise disequilib-
rium coefficients in our calculation:

 Dijk = gijk − piDjk − qjDik − rkDij − piqjrk (4.7)

Similar calculations are done for disequilibrium among more than three loci, 
always taking into account all lower-order disequilibria. It is important to 
 realize that these measures are not summarizing regional LD, but rather are 
testing for higher-order interactions among more than two loci. 

All of the methods for calculating linkage disequilibrium discussed thus far 
have assumed that all individuals have known phase: that the arrangement of 
alleles on chromosomes are known. For this reason, it is common to refer to the 
previous statistics as measures of gametic linkage disequilibrium. But if phase is not 
known—either because the two sites are far apart on a single chromosome or be-
cause they are located on different chromosomes—we can still ask whether there 
are nonrandom associations between genotypes at two loci (e.g., FIGURE 4.7), a 
state that is referred to as genotypic linkage disequilibrium. Given two loci with 
two alleles each, there are three different possible genotypes at each locus  
(A1/A1, A1/A2, A2/A2, and B1/B1, B1/B2, B2/B2) and nine different combinations 
of genotypes (FIGURE 4.8). If we denote the frequency of A1A1B1B1 individuals as 
g1111, the frequency of A1A1B1B2 individuals as g1112, the frequency of A1A2B1B1 
individuals as g1211, and the frequency of A1A2B1B2 individuals as g1212, then 
the genotypic disequilibrium coefficient can be calculated as (Weir 1979):

	 ∆ = 2g1111 + g1112 + g1211 + 0.5g1212 − 2p1q1  (4.8)

For the sample of nine diploid genotypes shown in Figure 4.7, ∆ = 0.136. 
Assuming that the population is in Hardy-Weinberg equilibrium, 
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FIGURE 4.7 Sample of nine diploid 
genotypes from a population. Linkage 
 relationships (and therefore gametic phase) 
between the A and B locus are unknown.
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significance can again be assessed using a test of inde-
pendence on the 3 × 3 table of genotypes (Figure 4.8). 
This estimate of genotypic disequilibrium is also equiva-
lent to the gametic disequilibrium coefficient, D, if there 
is random mating among known haplotypes. Assuming 
each of the 18  haploid genotypes (e.g., A1 . . . B1) shown 
in Figure 4.7 represents a phased haplotype, D = 0.123 
for this sample, similar to our genotypic disequilibrium 
coefficient.

ESTIMATING RECOMBINATION

Finding the minimum number of recombination 
events in a sample
The statistics discussed thus far have largely been lim-

ited to pairwise comparisons among segregating sites and therefore can 
only tell you about the effects of recombination between a specific pair of 
sites. However, we would like to be able to make more general inferences 
about the effects of recombination in individual regions and across the 
genome. In this and the following section I describe multiple approaches to 
summarizing the effects of recombination. Here we start with methods for 
estimating the minimum number of recombination events that must have 
occurred in a sample of sequences from a single region.

As alluded to earlier in explaining the differences between D′ and r2, defini-
tive evidence for recombination in population genetic datasets can be inferred 
using the four-gamete test (Hudson and Kaplan 1985). The essence of this 
test is that with two loci that each have two alleles, and under an infinite sites 
assumption, the only way to generate all four possible gametes is to have a 
recombination event somewhere between the two loci. The infinite sites as-
sumption is important because recurrent mutation of an allele can create all 
four gametes without recombination. For instance, Figure 4.2 shows a sample 
of sequences in which only three haplotypes are present: A1B1, A2B1, and A2B2. 
However, if there is a recurrence of the B1 → B2 mutation, and it occurs on an 
A1B1 background, then all four gametes will be present in the population, and 
possibly in a sample of chromosomes. 

Of course simply observing all four gametes does not tell us how many 
recombination events have occurred in the history of a sample, only that 
a minimum of one event must have occurred (modulo recurrent mutation). 
Estimating the number of recombination events in a sample, R, is in fact 
quite difficult: unlike the number of segregating sites in a sample, S, R 
is not directly observable. Many recombination events can occur in the 
history of a set of sequences and not be observed, either because they 
did not occur between two sites that were both in a heterozygous state in 
the ancestor or because they generated a recombinant haplotype already 
present in the sample. We can, however, estimate the minimum number 
of recombination events that must have occurred in a sample, a number 
that is typically much smaller than R because most recombination events 

A1/A1

A1/A2

B1/B1 B1/B2 B2/B2

2 0 0

2 2 0

A2/A2 1 1 1

FIGURE 4.8 Counts of two-locus 
genotypes in a sample, based on 
the individuals shown in Figure 4.7.
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will not be detected (Hudson and Kaplan 1985; Stephens 1986; Posada and 
Crandall 2001).

There are two common statistics used to put a bound on the minimum 
number of recombination events in a sample: Rm (Hudson and Kaplan 1985) 
and Rh (Myers and Griffiths 2003). Rm determines the maximum number of 
non-overlapping intervals in a region in which recombination must have oc-
curred based on the four-gamete test. Rh is based on the observation that in 
any region with K unique haplotypes and S polymorphisms, the number of 
recombination events must satisfy R ≥ K − S − 1. Therefore, the minimum 
number of recombination events can be estimated by K − S − 1. This rela-
tionship breaks down for longer sequences, particularly when the number 
of segregating sites becomes greater than the number of distinct haplotypes 
(which is of course limited by the number of chromosomes sampled, n). 
But by combining together minimum recombination estimates from many 
subsets of sites each with K ≥ S + 1, Rh can provide a bound on the global 
minimum number of recombination events across a region. The algo-
rithms used to find Rm and Rh also provide the locations of the inferred 
recombination events. 

In general, Rh will be a more accurate estimate than Rm, such that 
R  ≥  Rh  ≥  Rm (Myers and Griffiths 2003). To see why this is the case, 
consider the example given in FIGURE 4.9. In this example we have four 
sites (1 − 4) and eight sampled chromosomes (a − h), each of which has 
a unique haplotype (K = 8). The algorithm to calculate Rm proceeds as 
follows (with explicit  results for the example in Figure 4.9): 

1. For all pairs of sites i and j, determine if all four gametes are 
present.

• Figure 4.9: (1,2), (1,3), (1,4), (2,4), and (3,4)

2. Remove intervals that completely contain other intervals, includ-
ing intervals with the same start or end points.

• Figure 4.9: remove (1,3), (1,4), and (2,4)

3. If any remaining intervals are overlapping, go to step 4; if not, go 
to step 5.

• Figure 4.9: go to step 5

4. For the first pair of sites—listed according to increasing starting 
points—(i1,j1), remove any interval (m,n) with i1 < m < j1. For the 
next non-overlapping pair (i2,j2), remove any interval (m,n) with 
i2 < m < j2, repeating this procedure until no overlapping inter-
vals remain.

• Figure 4.9: no such intervals

5. The number of remaining intervals indicates the minimum 
number of recombination events, and one event is assigned to 
have occurred in each interval. 

• Figure 4.9: recombination events in the intervals (1,2) and (3,4)
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FIGURE 4.9  
Example of hap-
lotypes from four 
segregating sites in 
eight sampled chro-
mosomes (n = 8). 
Each polymorphism 
has two alleles, 
arbitrarily denoted 
0 or 1. Each four-
locus haplotype is 
unique, so K = 8. 
For this example, 
Rm = 2 and Rh = 3 
(see text for details). 
(After myers and 
Griffiths 2003.)
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In this example, Rm = 2 and the Hudson-Kaplan algorithm says that at least 
one recombination event must have occurred between sites 1 and 2, and at 
least one between sites 3 and 4. In contrast, Rh = 3 (= 8 − 4 − 1), and the 
Myers-Griffiths algorithm (see Myers and Griffiths 2003) says that at least one 
recombination event must have occurred between all pairs of sites. We can 
get an intuitive feeling for why the Hudson-Kaplan algorithm has missed a 
recombination event (between sites 2 and 3) by noting that this pair of sites 
only has three haplotypes. However, the recombination event that did occur 
between these sites generated a new four-locus haplotype that the Myers-
Griffiths algorithm takes into account, and so the inferred minimum number 
of recombination events is larger. Many other algorithms exist for finding 
more accurate bounds on the minimum number of recombination events 
(e.g., Song and Hein 2005), although they become computationally intractable 
for large numbers of samples and polymorphisms.

The population recombination parameter
Many evolutionary processes affect estimated levels of linkage disequi-
librium in a particular region: recombination, natural selection, drift, de-
mographic history, and even mutation (the last because without sufficient 
polymorphism many recombination events will go undetected). However, 
as we saw in Chapter 1, under the standard neutral model the only factors 
that contribute to the amount of recombination in a sample of sequences—
whether detectable or not—are the per site recombination rate, c, and the 
effective population size, Ne, which is proportional to the magnitude of ge-
netic drift. We define the population recombination parameter as r ≡ 4Nec 
for autosomal loci. (r is sometimes referred to as C or R, and c is often called 
r. For consistency in naming parameters with Greek letters, and to avoid 
confusion between r and r2, we will use the symbols given here.) Under 
the assumptions of the standard neutral model, r is positively correlated 
with the number of recombination events in a sample and negatively corre-
lated with the amount of linkage disequilibrium. In particular, the expected 
number of recombination events in a sample of size n is given by (Hudson 
and Kaplan 1985):

 E(R) = ra (4.9)

where

 ∑=
=

−

a
i
1

i

n

1

1
 (4.10)

This expectation for R is of exactly the same form as the expectation for the 
number of segregating sites, S, given in Chapter 3, with q replaced by r. Just as 
q is not equivalent to the mutation rate, r is not equivalent to the recombina-
tion rate but is expected to be highly correlated with it across a chromosome. 
Indeed, estimates of c from pedigree studies in humans are highly correlated 
with estimates of r (e.g., McVean et al. 2004), though localized departures be-
tween these measures may indicate the action of natural selection (O’Reilly, 
Birney, and Balding 2008).
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Multiple relationships between the expected value of r2 and r have been 
derived under slightly different assumptions about whether r is large or 
small, the size of the sample, and whether or not low-frequency alleles are 
removed before calculating r2. The classic relationship given between r2 and r, 
assuming infinite sample size and small values of r, is (Sved 1971): 

 ρ
≈

+
E r( )

1
1

2  (4.11)

This formula does not correct for small sample sizes and incorrectly pre-
dicts a mean value of r2 = 1 when r = 0, that is, between completely linked 
sites (recall that r2 can only equal 1 when the marginal allele frequencies 
are exactly the same at a pair of sites). An alternative relationship (Weir 
and Hill 1986; Hill and Weir 1988) corrects for finite sample sizes and pro-
vides the correct expectation for small r when low-frequency alleles (<10%) 
are excluded:
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This formula is not correct for large values of r—in particular, it does not predict 
a value of 1/n for r2 when r is large enough that sites are effectively unlinked. 
For r = 0 and very large sample sizes it predicts a value of r2 = 5/11, similar to 
other results for infinite sample sizes (Ohta and Kimura 1971; McVean 2002).

The relationships given in Equations 4.11 and 4.12 give us a way to tie to-
gether levels of recombination and linkage disequilibrium. In terms of com-
parisons among populations of different size, these results predict lower 
levels of LD in populations with larger sizes (assuming equivalent per site 
recombination rates). Comparisons between African and non-African human 
populations bear out this prediction, with much less LD in Africans than non-
Africans as a result of the bottleneck that reduced effective population sizes 
as humans migrated out of Africa (International HapMap Consortium 2005). 
In terms of a pair of segregating sites, the appropriate value of c is a multiple 
of the number of nucleotides separating the sites, such that r = 4Nec for poly-
morphisms at neighboring nucleotides and r = 4Nec(L-1) for polymorphisms 
L nucleotides apart. This means that r increases for sites farther and farther 
apart, and, plugging in larger and larger values of r into Equation 4.12, that 
r2 is expected to decay approximately exponentially along a chromosome. 
Figure 4.6 shows just this sort of decreasing relationship between r2 and the 
distance between polymorphisms. In fact, we can use Equation 4.12 and data 
plotted as in Figure 4.6 to find the best-fit value of r for any particular dataset 
(e.g., Brown et al. 2004). While this estimate of r represents an average value 
across all the regions plotted, there are more accurate methods for estimat-
ing r. Next I describe some of these methods.

Estimating the population recombination parameter
There are two important differences between the common summary sta-
tistics used to describe nucleotide variation—all of which are estimators 
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of the parameter q under the appropriate assumptions—and the statistics 
used to estimate the recombination parameter, r. For one thing, the statis-
tics used to describe nucleotide variation (e.g., Equations 3.2, 3.5, 3.8, 3.9, 
and 3.10) are all straightforward descriptions of sequence diversity and are 
easy to interpret even when the assumptions of the equilibrium Wright-
Fisher model do not hold. While summaries of the effects of recombina-
tion such as K, ZnS, Rm, and Rh are more or less easy to interpret, none of 
these are estimators of r, though they can be used indirectly to estimate 
this parameter (see below). Instead, the most accurate, most commonly 
used estimators employ approximate likelihood methods that assume the 
standard neutral model to calculate the likelihoods, and it is not always 
obvious to researchers what these methods are doing. While offering intu-
ition into their function is not a requirement of accurate methods, statistics 
should be interpretable in cases in which the assumptions of the standard 
neutral model are violated. A  second, more important, difference is that 
estimators of r are much less accurate than estimators of q. That is, even 
when we are dealing with a population that matches the assumptions of 
the standard neutral model, these estimators will do a much poorer job at 
correctly estimating the  population recombination parameter than will the 
equivalent estimators of q, especially in cases in which r is low and there 
are few segregating sites (Wall 2000a; Hudson 2001). The dependence on 
levels of polymorphism is especially troubling, as it means that there will be 
biased estimates of r in regions with low mutation rates, or in regions that 
have reduced levels of diversity as a result of selection or recent changes in 
population size. In spite of all these caveats, estimating these statistics has 
proven to be useful in many applications.

As with estimators of q, there are both moment-based and likelihood-based 
estimators of r. Full likelihood methods (e.g., Griffiths and Marjoram 1996; 
Kuhner, Yamato, and Felsenstein 2000; Nielsen 2000; Fearnhead and Donnelly 
2001) are highly computationally intensive, and the increased accuracy—if 
any—that they offer over approximate likelihood methods is likely to be small 
given the limits on the size of the datasets that can be analyzed. I therefore 
focus on describing moment-based estimators and multiple forms of approxi-
mate likelihood estimators.

The moment-based estimators of r are based on the insight that the vari-
ance in pairwise differences among sampled chromosomes (i.e., the vari-
ance in p) goes down with increasing recombination (Hudson 1987; Wakeley 
1997). To see why this is the case, imagine a sample with maximal LD be-
tween all pairs of segregating sites: such a sample would contain only two 
haplotypes, regardless of how many polymorphisms there were. As a result, 
there would be maximal variance—all comparisons between the two differ-
ent haplotypes would entail differences at every polymorphic nucleotide, 
while all comparisons among samples of the same haplotype would have 
no nucleotide differences. The effect of recombination would be to break 
up the sample into many more unique haplotypes, thereby reducing the 
variance in pairwise differences. This description also highlights another 
difference between estimating r and q: unlike the moment-based estimators 
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of q, which all use the first moment of the distribution of the number of 
segregating sites (i.e., the mean), the estimators of r use the second moment 
(i.e., the variance).

Wakeley (1997) slightly improved the estimator first proposed in Hudson 
(1987); this improved estimator, denoted rp, is now the most widely used 
moment- based estimator. We saw earlier (Equation 3.3) that by using the 
number of nucleotide differences (kij) between all pairs of sequences i and j, 
we can calculate p as:

 

∑
π =

−
<

k

n n( 1)/2

ij
i j

 (4.13)

Based on this we can calculate the variance in p as:
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Wakeley (1997) showed that the expectation of S2 in a sample with recombina-
tion depends on both the parameters r and q, in a complex way, but can be 
used to estimate rp.

Unfortunately, rp is a more biased estimator than those based on various 
likelihood methods; the earlier moment-based method of Hudson (1987) is 
even worse (Wall 2000a; Hudson 2001). Fortunately, there are four different 
approaches to finding likelihood-based estimators of r. None of these would 
be recognized as a full-likelihood method, as they all use approximations 
of one kind or another, but in general they offer improvements in accuracy 
over rp and improvements in computational efficiency and speed over full-
likelihood methods. Two of these methods can be summarized briefly: Hey 
and Wakeley (1997) showed that a likelihood estimate of r can be calculated 
 exactly for samples of n = 4 and S = 3. For samples larger than this, their es-
timator, rg (what they referred to as g), takes the average estimate for every 
set of three adjacent polymorphisms across all possible subsets of four se-
quences. In general, rg seems to give a slightly downwardly biased estimate 
of r (Hey and Wakeley 1997; Hudson 2001). Another method, proposed by 
Li and Stephens (2003), takes advantage of the fact that the probability of 
seeing any particular haplotype is conditional on all other haplotypes in 
a sample as well as the value of both r and q. This conditional probability 
is different for each haplotype in the sample, but one can find the value of 
r that maximizes the likelihood (what I will refer to as rLS) by averaging 
over all haplotypes in the entire sample using Markov chain Monte Carlo 
(MCMC) methods. In the program PHASE (Li and Stephens 2003), rLS can 
be estimated at the same time that haplotypes are reconstructed from un-
phased data.

A third method (Wall 2000a) uses what is sometimes called an approximate 
likelihood approach (see Chapter  9 for more details). This method proceeds 
by first calculating several summary statistics for a sample, such as K and 
Rm, and then simulating equivalent datasets in terms of number of samples 
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and number of segregating sites for many values of r. The probability of the 
observed summary statistic given any particular value of r is the proportion 
of trials that have the same value of the statistic. The maximum likelihood 
estimator is defined as the value of r that maximizes this proportion. The 
estimators rK and rKRM—in effect the ones that find the value of r that maxi-
mizes the observed number of haplotypes (K) or both the number of haplo-
types and the minimum number of recombination events (K and Rm)—were 
found to work best (Wall 2000a; note that this paper refers to the number of 
haplotypes as H). 

As an example of an application of Wall’s method, FIGURE 4.10 shows the 
outcome of one such simulation run, for a single value of r. If in a sample 
we observe K = 10, then the results in this figure say that the probability that 
K = 10 given r = 0.03 (per site) is approximately 0.079. That is, out of 1,000 
random simulations with r = 0.03 and the same sample size and number of 
segregating sites, only 79 of them will have produced K = 10. This is clearly not 
the most likely outcome when r = 0.03, so it is likely that a smaller  parameter 
value would maximize the probability of seeing K = 10. Carrying out similar 
simulations for a range of values for r will allow us to find the maximum 
likelihood estimate, rK. When finding the maximum likelihood (ML) estima-
tor for rKRM, we need to find the value of r that maximizes the product of the 
probabilities for the observed values of both K and Rm; we therefore also have 
to record the probability of Rm given specific values of r. 

The approximate likelihood method is straightforward to implement and 
can be used to find maximum likelihood estimators for many different types 
of parameters without the need for a likelihood function (e.g., Andolfatto 
2007). In fact, it is quite easy to see how, given an observed number of seg-
regating sites, one could also simulate many different values of q to find the 
estimate of this parameter that maximizes the likelihood of the observed S. 
However, simple moment-based methods provide equally accurate (and 
much faster) estimates of q, and likelihood methods are therefore generally 
unnecessary in this case. 
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The final estimator of r that I consider here is also now one of the most 
widely used, partly because of its accuracy and partly because of the ease 
of use of software packages that implement it. The original idea for this 
estimator is due to Hudson (2001), who showed that two-locus sampling 
distributions can rapidly be calculated given different values of r, and 
that consequently a “composite” likelihood estimate, rCL, can be made 
(Chapter  9 also discusses composite likelihood methods in more detail). 
A two-locus sampling distribution is in some ways analogous to the allele 
frequency spectrum described in the previous chapter. The expected 
allele  frequency  spectrum represents the probability density function for 
a single polymorphism—that is, the probability that a single variant will 
be found at any particular frequency in a sample. The two-locus sampling 
distribution represents the probability density function for a pair of sites, 
specifically the probability that all four possible two-locus haplotypes—  
A1B1, A2B2, A1B2, and A2B1—will be found in a specific combination of 
 frequencies (such that g11 + g22 + g12 + g21 = 1). The probability of a par-
ticular two-locus sample configuration is dependent on r, and we can 
therefore find the maximum likelihood estimate of r by simulating many 
two-locus samples with different values of r (assuming small q), simi-
lar to the  approach of Wall (2000a) described above. The key insight of 
Hudson (2001) was to show that the individual ML estimates for many 
pairs of linked sites—each of which could be different distances apart and 
therefore could have different recombination rates between them—can be 
combined to generate a single composite likelihood estimate for the entire 
dataset, rCL. Because of the fact that this is a composite likelihood method, 
the mean of this estimate will reflect the true mean, but the confidence 
intervals will be narrower than expected because of the non-independence 
among the individual ML estimates. Bootstrapping of the data has been 
used to generate accurate bounds on the estimated value of rCL, but this can 
be computationally costly. A newer method for accurately estimating confi-
dence intervals in composite likelihood calculations uses the Godambe in-
formation matrix (Coffman et al. 2016), which allows for rapid and efficient 
 calculation of uncertainty.

Improvements to the composite likelihood estimator have been made, in-
cluding allowing the possibility of multiple mutations at the same site (i.e., 
the finite sites model; McVean, Awadalla, and Fearnhead 2002) and allowing 
the value of rCL to vary along a chromosome (McVean et al. 2004). Missing 
data are also easily dealt with in the composite likelihood framework. The 
ability to allow varying values of rCL has been particularly powerful, espe-
cially when working with species that have widely disparate recombina-
tion rates within a region (e.g., FIGURE 4.11). Although the programs LDhat 
(McVean, Awadalla, and Fearnhead 2002) and LDhelmet (Chan, Jenkins, and 
Song 2012) use MCMC methods to estimate variable recombination patterns 
along a chromosome, and such methods are generally more computationally 
intensive, the information gained can often outweigh the slightly longer run 
times required.
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One last comment should be made about all of the estimators of r dis-
cussed here. As with the estimators of q discussed in the previous chapter, 
all of these statistics only estimate the quantity 4Nec under the assump-
tions of a Wright-Fisher population at equilibrium and the appropriate 
 mutational model. If these assumptions do not hold, then our statistics will 
certainly be related to the amount of recombination in a sample, but we 
will not know the exact relationship. This problem is especially acute when 
comparing estimators of q and r. Under the assumptions of the standard 
neutral model, q/r = 4Nem/4Nec = m/c, so the ratio of these parameters 
tells us about the relative importance of mutation and recombination at a 
locus. However, unless all the assumptions hold, then statistics such as qW 
and rCL will not be accurate estimators of q and r, and therefore qW/rCL will 
not equal m/c. Even when violations of our model seem to offer a straight-
forward way to estimate the equivalent equilibrium values—as with a 
population bottleneck—the idiosyncratic behaviors of individual estima-
tors make it hard to ensure that we are estimating m/c. For example, the 
estimators qW and p recover to their equilibrium values at different rates 
after a population bottleneck (see Chapter 9), so the choice of statistics in 
nonequilibrium populations will strongly affect the result. This means that 
the rate at which various estimators of r recover to their expected value can 
also differ widely. In sum, while a comparison of estimators of the popu-
lation recombination and population mutation parameter offers us some 
insight into the relative magnitudes of recombination and mutation, this 
ratio will generally not equal m/c.
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FIGURE 4.11 A comparison of estimates of recombination rates from popula-
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GENE CONVERSION 

In our examination of the effects of recombination thus far we have only con-
sidered the role of crossing over in breaking up associations between sites. As 
we have seen earlier, however, gene conversion is an alternative outcome of 
recombination (Chapter 1). 

The main difference between crossing over and gene conversion in terms 
of patterns of linkage disequilibrium is the scale of each one’s effect. The 
effects of crossing over increase over increased physical distances, with 
LD decaying according to the relationships given in Equations 4.11 and 
4.12. However, because gene conversion tracts (i.e., the stretches of DNA 
converted) are relatively short—on the order of 100 to 1,000 nucleotides 
(Chen, Cooper, et al. 2007)—this process will only have effects on closely 
linked sites and should be independent of distance for markers that are suf-
ficiently far apart (Andolfatto and Nordborg 1998; Wiehe et al. 2000). To see 
why this is the case, consider the example given in FIGURE 4.12, in which 
gene conversion is limited to only a relatively small stretch of sequence, 
affecting only one of the three polymorphisms shown. If we imagine a pop-
ulation where solely A1B1C1 and A2B2C2 haplotypes exist prior to the con-
version event shown, the creation of the A1B2C1 haplotype clearly lessens 
the association between alleles at the A and B loci and between alleles at the 
B and C loci. However, there is no effect on linkage disequilibrium between 
the A and C loci, as the conversion event does not change the relationship 
between loci on either side of the conversion tract. In this way the outcome 
of conversion for loci flanking the tract is similar to that 
of a double crossover, differing only in the length of the 
affected sequence.

Gene conversion is therefore expected to have larger 
effects on closely linked sites relative to more  distant 
sites, with crossing over dominating at large distances. 
Patterns of linkage disequilibrium in natural  populations 
are consistent with an important role for conversion, 
with lower LD between tightly linked variants than 
would be expected if crossing over were the only mech-
anism of recombination (Langley et al. 2000; Ardlie 
et al. 2001; Frisse et al. 2001). In fact, many methods 
for estimating the effects of gene conversion rely on 
the contrast between small-scale and large-scale LD 
(e.g., Padhukasahasram et al. 2006). Hudson’s compos-
ite likelihood estimator rCL and similar methods (Wall 
2004) can easily be altered to additionally estimate both 
the ratio of gene conversion to crossing over (f) and the 
average tract length (q), which is assumed to be geo-
metrically distributed (Hilliker et al. 1994). The main 
problem for all methods used to detect gene conver-
sion is that without a large amount of data many such 
events will be missed (Wiuf and Hein 2000); even with 

Before conversion

After conversion
A2 B2 C2

A1 B2 C1

A2 B2 C2

A1 B1 C1

FIGURE 4.12 The effect of allelic 
gene conversion. The upper panel 
shows a diploid individual hetero-
zygous at three loci, A, B, and C. 
A gene conversion event occurs 
during meiosis (indicated by the 
dashed arrow in the upper panel), 
with allele B2 as the donor and B1 
as the  acceptor. The result is an 
extra B2-carrying gamete.
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large amounts of data, if the average tract length is much smaller than the 
average inter-polymorphism distance, then it will be almost impossible to 
accurately estimate the tract length distribution (but see Miller et al. 2012 
for a possible way to do this). Alternative methods that are based on the 
distribution of polymorphisms along a sequence—and do not attempt to 
estimate  r—provide an explicit test for gene conversion but will also miss 
shorter tracts and will not detect any events if conversion is so rampant that 
the entire sequence is homogenized (Sawyer 1989). 
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POPULATION DIFFERENTIATION
Populations, subpopulations, and demes
As mentioned in Chapter 2, inferences from molecular population 
 genetic datasets can be very sensitive to the precise individuals sam-
pled, especially to whether individuals are all taken from the same 
population. By population I mean a group of freely interbreeding dip-
loid individuals; the term’s definition for selfing or asexual lineages 
is much more contentious. Although they can sometimes be used to 
indicate slightly different things, the terms subpopulation or deme often 
mean the same thing as population, and I will use them interchange-
ably. The more loaded terms races and subspecies are generally avoided, 
except in specific instances. 

Species can be subdivided into any number of populations, whether 
they are wholly separated from one another (i.e., they exchange  no 
 migrants) or only partially separated (i.e., they exchange some mi-
grants). Just as there is not a particular threshold of genetic distance for 
separating different species, there is also not one particular threshold 
for calling two groups of individuals separate populations or not. As 
will be discussed below, the problem of actually identifying popula-
tions from molecular data can be reduced to the problem of identifying 
freely interbreeding groups of individuals—but the theoretical ideal of 
complete panmixia is rarely, if ever, met in real organisms. In addition, 
populations may have been separated for varying amounts of time, 
or there may be some phylogenetic structure to how they are related 
(e.g.,  populations A and B are more closely related to each other than 
either is to C). If subpopulations have not yet reached migration-drift 
equilibrium, many of the assumptions of models used for inference 
may be violated.

If subpopulations are not completely interbreeding, any of the evo-
lutionary forces that change allele frequencies within a population 
(mutation, selection, drift, migration) can lead to differences in these 
frequencies among them (FIGURE 5.1). These populations are then said 
to be differentiated (I will generally reserve the term diverged for dif-
ferences between species). Differentiation leads to population structure 

POPULATION 
STRUCTURE 5
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among groups, which simply means that individuals 
within populations tend to be more closely related than 
individuals between populations. Obviously, popula-
tions that completely ceased to exchange migrants only 
yesterday are not freely interbreeding, but neither will 
they show any structure.

This simple discussion of populations begs two very 
important questions: (1) How do we measure differences 
among populations? (2) How do we define populations 
in practice? Although I will discuss many approaches 
to inferring the demographic history of a population in 
Chapter 9, the importance of the above questions to the 
analysis of population genetic data requires that these 
issues be addressed here. In addition, the study of popu-
lation structure preceded the availability of molecular 
data by many decades and has developed somewhat in-
dependently of other methods for inferring population 

history. It therefore merits a full discussion of its own, especially given the 
many methods that are currently in use for measuring population differences 
and defining populations. We tackle each of these topics in turn; however, the 
answers to both of our questions can be better understood by first understand-
ing the Wahlund effect.

The Wahlund effect
The simple expectations for genotypic frequencies under Hardy-Weinberg 
equilibrium (Chapter 1) provide a strong null hypothesis against which we 
can test for departures from the assumption of random mating. There are 
many reasons why a locus or population may be out of Hardy-Weinberg equi-
librium, not all of which involve nonrandom mating or even natural selec-
tion (Waples 2015). However, population structure can cause departures from 
HWE because it generates strong nonrandom mating among populations. 
Departures from HWE occur when multiple subpopulations are sampled 
without knowledge of the underlying structure: even if all of the individual 
subpopulations are themselves in HWE, the aggregate “population” can be 
far from the HWE expectations. The form of this deviation from expecta-
tions is always the same—there are fewer heterozygous individuals observed 
than are expected under HWE. This deficit of heterozygotes is known as the 
Wahlund effect after the Swedish geneticist Sten Gösta William Wahlund, who 
first described the consequences of this type of sampling (Wahlund 1928). 

To see why there is a deficit of heterozygotes, consider the two populations 
in Figure 5.1. We will denote the frequency of the A allele in population 1 as 
p1 and the frequency of the a allele in population 1 as q1 (we use this nota-
tion here so as not to conflate alleles A1 and A2 with populations 1 and 2). In 
population 1, p1 = 0.8 and q1 = 1 − p1 = 0.2, while in population 2, p2 = 0.2 
and q2 = 1 − p2 = 0.8 (note that p1 + p2 does not have to equal 1, as these are 
the frequencies of the same allele from two different populations). If we have 
sampled an equal number of individuals from each population, the average 
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aA a

A
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a
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a
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Population 1 Population 2

FIGURE 5.1 Example of two popu-
lations, each polymorphic for alleles 
A and a. The frequency of the A 
allele in population 1 is p1 = 0.8 
and in population 2 is p2 = 0.2 
(note that p1 and p2 do not have to 
sum to 1).
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allele frequency across both populations, p, is 0.5, and therefore 50% (=2pq ) 
of all individuals are expected to be heterozygous under HWE. However, the 
observed proportion of heterozygotes in the sample will be approximately 
32% (=2p1q1 or 2p2q2), which is much lower than the expected value. 

What you will notice by doing a few more such calculations is that the 
magnitude of the deviation from the Hardy-Weinberg expectations is propor-
tional to the difference in allele frequencies: populations with similar allele 
frequencies will show very small deviations from HWE when grouped to-
gether relative to populations with very different allele frequencies. Because 
we will often be dealing with more than two subpopulations, a useful mea-
sure of allele frequency differences among populations will be the variance in 
frequencies, s2. In general, then, the magnitude of the Wahlund effect on the 
expected frequency of each genotype can be denoted as:

 

σ

σ

σ

= +

= −

= +

E p p

E p pq

E p q

( )

( ) 2 2

( )

2 2

2

2 2
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 (5.1)

where again p and q  represent the average allele frequencies across popu-
lations, and pAA, pAa, and paa represent the frequencies of the three different 
diploid genotypes at a locus. A larger variance in allele frequencies leads to 
more homozygotes and fewer heterozygotes, to the limit at which the maxi-
mum variance (=0.25), obtained when populations are fixed for alternative 
alleles, results in no observed heterozygotes. These relationships suggest that 
the variance in allele frequencies among populations might be a good way 
to quantify deviations from HWE, and therefore a good way to measure the 
amount of differentiation among populations. We will see that a slight modi-
fication of the variance is an ideal way to measure population differentiation, 
one that connects theoretical predictions to data.

MEASURING POPULATION DIFFERENTIATION

Measuring population differentiation using FST
Given samples of multiple individuals from multiple populations within a spe-
cies, we would like to be able to say how different the populations are. Putting 
aside for a moment the exact way in which we calculate these  differences, there 
are actually a number of alternative ways to summarize differentiation. We can 
ask about the average amount of subdivision among multiple  populations, or 
about pairwise relationships between all populations. We may also have very 
different kinds of data, from allele frequencies at single polymorphic sites (or 
multiple unlinked sites) to full haplotypic sequences in coding or noncoding 
regions. Methods for dealing with two or more than two subpopulations are 
largely the same, but the many different ways of measuring differentiation at 
single sites versus whole sequences are often distinct; we therefore first discuss 
differentiation at single polymorphic sites.

In the above discussion of the Wahlund effect we saw that the variance 
in allele frequencies among populations was a natural way to measure 
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differentiation, and that it connected nicely with theoretical expectations of 
genotype frequencies. However, the variance in allele frequencies is not itself 
a very useful statistic owing to the fact that its value is highly dependent on 
the average allele frequency. Given binomial sampling of alleles every gen-
eration, a locus with an average allele frequency of p = 0.5 will show a much 
higher variance among populations than a locus sampled from exactly the 
same individuals but with p = 0.01. This means that it is hard to compare vari-
ances between different loci or between different sets of populations. In order 
to standardize the variance by the maximal variance possible, we can define a 
new statistic of differentiation as:

 
σ

=F
pqST

2

 (5.2)

where s2 is the observed sample variance in the frequency of allele A among 
populations, p is the average frequency of allele A among populations, and q  
is the average frequency of allele a among populations (=1 − p). The value 
of FST from the populations shown in Figure 5.1 is 0.09/0.25 = 0.36. This mea-
sure was first introduced by Wright (1931, 1943, 1951), who defined it as the 
amount of differentiation among subpopulations and showed that it had the 
same expected value for neutral alleles at any frequency. For our purposes the 
subscript “ST” is not really necessary, but it differentiates this measure from 
similar measures of deviation from HWE not covered here (specifically, FIS 
and FIT, where the “I” stands for “individual,” the “S” for “subpopulation,” 
and the “T” for “total population” in Wright’s original notation).

FST has some very nice properties as a measure of population differentiation. 
It ranges between 0 and 1, with 0 indicating no differentiation and 1  indicating 
complete fixation of alternative alleles in different subpopulations. There are 
many different ways to understand what FST represents exactly, but we can 
relate it back to the Wahlund effect via simple algebra:
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This equation says that when there is no differentiation (FST = 0) there is no 
deficit of heterozygotes, but when there is complete differentiation (FST = 1) 
there is a complete lack of heterozygotes. So FST can be thought of as a mea-
sure of the magnitude of the Wahlund effect. Alternatively, one can consider 
FST to be a measure of the amount of total variation in a set of populations 
explained by among-population variance as opposed to within-population 
variance, or as the correlations between alleles within subpopulations relative 
to the total population (Holsinger and Weir 2009).

FST has become a very popular way to quantify population differentiation 
using molecular data. However, many different ways of calculating “FST” are 
used. As with the many different statistics that estimate the nucleotide diver-
sity parameter q (Chapter 3), there are also many different ways of calculating 
FST-like statistics. Another similarity with measures of nucleotide diversity is 
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that FST is commonly, and confusingly, used to denote both a parameter and a 
statistic—that is, both a theoretical construct related to models of populations 
and a precise way of estimating this parameter from data. Even more confus-
ing is the fact that a common FST-like statistic is denoted q (Cockerham 1969; 
Weir and Cockerham 1984)! This conflation of parameters and statistics dates 
back to Wright’s original definition of FST, and I will not attempt to sort out 
the notations or to introduce new notations of my own to distinguish among 
the competing usages (I have also had to use the term in both ways in this 
chapter). However, one should be aware that many different statistics and pa-
rameters for quantifying the relative amount of variation within and among 
populations are all called FST.

If the number of sampled chromosomes is the same across subpopulations, 
Equation 5.2 is an unbiased way to estimate FST under a “fixed”-effect model 
(explained further below). If sample sizes are unequal, then a better method 
to calculate this statistic is:

 
∑
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where for all K subpopulations, each subpopulation i has a sample size ni and 
a sample allele frequency pi, and there is an average sample size n and aver-
age sample allele frequency p for the entire dataset (Weir 1996). Note that if all 
subpopulations have the same sample size (i.e., all nis are equal), this equation 
reduces to Equation 5.2.

There is considerable variance associated with FST values calculated from 
segregating sites among the same set of populations. This is because the evo-
lutionary processes that generate population structure (see below) have a 
large stochastic component, resulting in a wide range of realized values of FST. 
Under seemingly restrictive assumptions about the underlying population 
structure, Lewontin and Krakauer (1973) showed that transformed values of 
FST should be c2-distributed with K − 1 degrees of freedom (where K is again 
the number of subpopulations). Although more complicated—though not nec-
essarily more realistic—expectations for the variance in FST have been derived 
(e.g., Nei and Chakravarti 1977; Weir et al. 2005), the c2  approximation seems 
to fit data collected from natural populations quite well. FIGURE  5.2 shows 
the distribution of FST calculated from across the genome among four human 
populations. Notice both that there is a large variance in FST and that it closely 
resembles a c2 distribution with three degrees of freedom (Weir et al. 2005).

Cockerham (1969) pointed out that the method given above for calculat-
ing FST only accounts for the sampling of individuals within populations. If 
a fixed set of populations is the target of study, then this “fixed”-effect model 
is completely appropriate. A fixed-effect model is also more appropriate for 
cases in which there are a limited number of populations—such as in humans. 
However, if we are instead attempting to relate the value of FST taken from a 
small set of populations to a much larger set, then we must also account for the 
stochasticity associated with the sampling of not just individuals within pop-
ulations, but also populations within a species. Weir and Cockerham (1984) 
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consequently showed how an FST-like param-
eter, which they called q, can be estimated 
under this “random”- effect model to better 
incorporate the multiple levels of  sampling 
using an analysis of variance (ANOVA) ap-
proach. Of course the conditions under which 
the  random-effect model is more appropriate 
are also extremely idealized: all subpopula-
tions must be equally related to one another 
and have the same population size, and mi-
gration rates must be the same among all of 
them (equivalent to the infinite island model; 
see Chapter  1). There are likely few species 
that meet these  conditions. In  addition,  the 
 random-effect  model converges on the fixed- 
effect model when a large number of  samples are 
taken from each of a large number of subpopu-
lations (Weir 1996). Therefore, the fixed- effect 

estimator (Equation 5.2 or 5.4) is likely to be appropriate for many studies.
One of the first modifications to Wright’s original formulation was made 

by Nei (1973), who introduced a method for calculating FST when there are 
more than two alleles at a locus. Nei called his statistic GST (which is equiva-
lent to the statistic FST when there are only two alleles) and defined it as:

 =
−
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where HT is the expected heterozygosity in the total sampled population (of 
size nT individuals) calculated from the frequency of all i alleles using all indi-
viduals in all subpopulations:
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and HS is the average of the expected heterozygosities calculated from each 
sampled subpopulation (each with its own sample size nS) separately: 
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Note that the quantity HT − HS is sometimes referred to as DST (Nei 1973). 
These definitions of heterozygosities are highly similar to the ones given in 
Equation 3.1, but they are now defined with respect to a hierarchical level of 
population structure. The value of GST calculated from the populations shown 
in Figure 5.1 is (0.526 − 0.356)/0.526 = 0.323, which is similar to the value 
obtained using Equation 5.2. 

One issue that arises when measuring population differentiation at a locus 
with more than two alleles is that GST does not take into account the identity 
of the alleles. As a consequence, two populations may not share any alleles but 
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FIGURE 5.2 Distribution of FST across 
the human genome. The data come from 
599,356 SnPs genotyped on human chro-
mosome 1 in four human populations. (After 
Weir et al. 2005.)
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will not have GST = 1. To see why this is, note that when HS is not 0, GST is con-
strained to be less than 1 even though differentiation may be complete (i.e., no 
alleles are shared). This dependence of measures of population differentiation 
on within-population variation is common to many of the statistics described 
here and will be discussed further in the next section. To overcome the reliance 
of GST on its maximum possible value, Hedrick (2005) proposed a normalized 
statistic, G′ST, similar to the normalized linkage disequilibrium coefficient D′ 
introduced in Chapter 4. However, G′ST has many issues of its own and cannot 
be related to the parametric expectations of FST (Whitlock 2011).

For loci with many alleles—such as microsatellites—we can overcome the 
limitations of GST by explicitly taking into account the mutational process, and 
therefore the mutational distance, among alleles. For microsatellite loci under 
a stepwise mutational model and assuming an island model, Slatkin (1995) 
showed that a statistic he referred to as RST could be used as an estimator of 
the parameter FST. This statistic is calculated as:

 R
V V

VST
T S

T
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−
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where VT is the variance in repeat number (or allele size when exact repeat 
numbers are not known) among alleles observed at a single locus across 
all samples in all subpopulations, and VS is the average variance in repeat 
number within each subpopulation. We have previously seen a statistic using 
the variance in allele size at a microsatellite, qV (Equation 3.23); for consistency 
we will continue to use the notation introduced there, though note that “S” is 
often used to denote the variances in Equation 5.8 (Slatkin 1995). We can also 
see a pleasing symmetry between the measurements of population differen-
tiation using allele frequencies (Equations 5.2, 5.4, and 5.5) and those using 
allele sizes (Equation 5.8): both are based on differences in the variance within 
and between populations. RST will generally lead to more accurate inferences 
for microsatellites than GST, at least when the stepwise mutation model holds. 
When it does not, RST can also be biased (Balloux et al. 2000).

For calculating FST from full sequence data, we can use the sum of site het-
erozygosities across a locus (Nei 1982):

 ST
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T
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where pT is calculated according to Equation 3.2, using all samples combined 
across subpopulations, and pS is the average of the same calculation for each 
subpopulation separately (the quantity pT − pS is also sometimes referred 
to as dST). The statistic gST is therefore analogous to a multisite version of 
GST, such that, as stated in Nei (1982, p. 172), “obviously, pT, pS, dST, and gST, 
 correspond to HT, HS, DST, and GST” in single-site analyses (obviously). Slatkin 
(1991) showed that gST is an estimator of Wright’s parameter FST under the 
 assumptions of the island model.

Similar statistics measuring population differentiation from full sequence 
data (usually haplotypes) have been proposed, including corrections for mul-
tiple mutations at a single site. One measure was proposed by Lynch and 
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Crease (1990), who called their statistic NST. An important distinction  between 
gST and NST is that while the former includes comparisons between sequences 
from the same subpopulation in calculating the value of pT, the latter does not 
(see below for similar measures). This means that NST is not an estimator of FST, 
although NST and gST will converge for large numbers of sampled populations 
(Lynch and Crease 1990). A further wrinkle was added by Excoffier, Smouse, 
and Quattro (1992), who introduced an extension of Weir and Cockerham’s 
(1984) ANOVA framework based on haplotypic differences between se-
quences; their statistic is denoted fST. Excoffier, Smouse, and Quattro’s anal-
ysis of molecular variance (AMOVA) approach differs from other methods 
using full sequence data in that it does not use the sum of site heterozygosi-
ties, instead requiring full haplotypes. This is because it takes into account 
the number of nucleotide differences between all pairs of haplotypes in the 
dataset and then converts the resulting distance matrix into the hierarchical 
variance components. For this reason fST is often applied to  mitochondrial 
DNA (mtDNA) data, though in fact a similar distance matrix can be generated 
for microsatellite alleles, and fST can be used with this kind of data as well 
(Michalakis and Excoffier 1996). Unlike standard analyses of variance, in both 
Weir and Cockerham’s (1984) ANOVA approach and Excoffier, Smouse, and 
Quattro’s (1992) AMOVA approach, the variance components (and therefore 
q and fST) can be negative and do not all have to sum to 1; it is standard in all 
analyses to set negative values to 0. A discussion of the differences and simi-
larities between these measures of population differentiation can be found in 
Excoffier (2007).

Alternative measures of population differentiation
FST and its related statistics are just one way to summarize population dif-
ferentiation. Alternative methods have been proposed—and are sometimes 
used—based on private alleles (those alleles only occurring in one popula-
tion; Slatkin 1985), shared alleles (Bowcock et al. 1994), absolute differences in 
allele frequency (or their square-root transformed values; Cavalli-Sforza and 
Edwards 1967), the topology of gene trees when there is no  recombination at 
a locus (Slatkin and Maddison 1989; Hudson, Slatkin, and Maddison 1992), 
and differences in homozygosity between populations (Nei 1972). This last 
measure—known as Nei’s D—has been an especially popular measure of 
 genetic distance for allozyme and microsatellite data, for which there can be 
many alleles at a locus. Nei (1972) defined the statistic at a locus for a pair of 
 populations as:
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and xi and yi are the frequencies of the ith allele at a locus in populations X and 
Y, respectively. In these calculations, JX represents the total expected homozy-
gosity (assuming random mating) over all alleles in population X, JY repre-
sents the total expected homozygosity over all alleles in population Y, and JXY 
represents the total expected homozygosity over all alleles if populations X 
and Y have exactly the same allele frequencies. If the two populations have the 
same alleles at the same sample frequencies, then D = 0. Increasing  differences 
in allele frequencies between populations lead to larger values of D. Unlike 
FST-like statistics, Nei’s D is dependent on the mutation rate at a locus. While 
the independence from mutation rates would appear to make FST and related 
statistics more reliable, there are still important caveats in interpreting differ-
ences in these measures across loci. 

One very important aspect of all the FST-like statistics described above is 
that they are strongly influenced by within-subpopulation levels of variation 
(Charlesworth 1998; Jakobsson, Edge, and Rosenberg 2013). Because of this, 
we refer to them as relative measures of differentiation. In contrast, absolute 
measures of population differentiation are mostly independent of levels of 
within-population diversity; absolute measures are also known as genetic dis-
tances. The reliance on within-population levels of variation means that values 
of FST-like statistics will differ between types of markers (SNPs, microsatel-
lites, etc.), simply because of differences in the average heterozygosity among 
markers (e.g., Moyle 2006). The reliance on within-population diversity also 
means that the same type of markers sampled from parts of the genome with 
more or less diversity will provide very different views on levels of differ-
entiation. For instance, FST from regions of reduced recombination—which 
often have reduced diversity as a result of linked selection—will be higher 
than FST from regions of normal recombination for no other reason than that 
total levels of nucleotide diversity are different (Charlesworth, Nordborg, and 
Charlesworth 1997; Charlesworth 1998; Noor and Bennett 2009; Cruickshank 
and Hahn 2014).

To get around this problem, Nei (1973) proposed calculating the average 
number of pairwise differences between sequences from two populations, ex-
cluding all comparisons between sequences within populations. I will refer to 
this statistic as dXY, although it is also referred to in the literature as pXY (Nei 
and Li 1979), DXY (Nei 1987), and pB (Charlesworth 1998). This absolute mea-
sure of differentiation is independent of the levels of diversity within the two 
populations being compared (but it is dependent on the mutation rate). It is 
calculated as (Nei and Li 1979; Nei 1987, eq. 10.20):

 ∑=d x y kXY i j ijij
 (5.12)

where xi and yj are the frequencies of the ith haplotype from population X 
and the jth haplotype from population Y, respectively, and kij is the number 
of nucleotide differences between pairs of haplotypes from each population. 
This equation is similar to the way in which we calculated the average number 
of differences among haplotypes within a population (Equation 3.3), although 
here we are only counting differences between populations. The variance in 
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dXY is given in Nei (1987, eq. 10.24). Note that dXY can be calculated from un-
phased data as well, with xi and yj representing allele frequencies and kij being 
either 1 or 0 depending on whether or not the alleles differ at a single site. The 
values are then summed across sites to obtain a locus-wide measure. dXY can 
also be calculated using a single sequence from each population, as it has the 
same expectation as the divergence statistic, d (see Chapter 7).

There are a number of relative measures of differentiation based on dXY 
that are in wide usage. In two populations, X and Y, we refer to the within- 
population levels of diversity as dX and dY, which are calculated as p in sample X 
and p in sample Y, respectively. Nei and Li (1979) defined a measure of the “net” 
nucleotide differences between two populations, da (which they called d), as:

 d d d d( )/2a XY X Y= − +  (5.13)

This statistic (also commonly called Da) is intended to capture only the dif-
ferences that have accumulated between populations since they split. It does 
so by subtracting out the differences that had accumulated before this split 
(see Figure 7.1), assuming that the level of ancestral variation is equal to the 
average of the variation found in the two current populations. da is therefore 
a relative measure because its value can be strongly affected by the amount of 
within-population variation. (Confusingly, Nei [1987] refers to this statistic in 
different places as da, d, and Dm.) We can also represent the number of fixed 
differences between populations or species as df (e.g., Ellegren et al. 2012). The 
number of fixed differences is also a relative measure because of its reliance on 
within-population variation.

To see how these absolute and relative measures can give dissimilar results, 
consider the example given in FIGURE 5.3. Figure 5.3A shows one hypothetical 
genealogical history of two populations for a locus in a region with an average 
recombination rate (see Chapter 6 for a detailed discussion of gene genealo-
gies). Levels of within-population diversity are proportional to the time to the 
most recent common ancestor of each population sample and are therefore 
high relative to the between-population portion of their history. In this case 
dX and dY are high, and da and df are commensurately low because they are 
dependent on within-population variation. Figure  5.3B, on the other hand, 
shows a hypothetical genealogical history for a locus from a region of low 
recombination, sampled from exactly the same populations and individuals 
from which Figure 5.3A is drawn. The time to the most recent common ances-
tor within populations in this scenario is extremely recent because of linked 
selection. This means that dX and dY are low, and that da and df are commen-
surately high; dXY is exactly the same in the two panels. In this way, da, df, and 
dXY can give very different results for loci from the same populations because 
two are dependent on within-population variation and one is not. As a conse-
quence, Charlesworth (1998, p.538) advised that relative measures of differen-
tiation “are not necessarily appropriate if we wish to compare loci with very 
different levels of within-population variation.” 

One final implication of the reliance of many measures of population dif-
ferentiation on relative levels of diversity is that they may be affected by ascer-
tainment bias. To understand why, recall that a major reason an ascertainment 
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bias exists is that intermediate-frequency polymorphisms are more likely to 
be observed in the small “discovery” sample of individuals. This means that 
segregating sites with population frequencies closer to 0.5 will be overrep-
resented in the ascertained set of markers. The result of this ascertainment 
bias on summary statistics is complex (Rosenblum and Novembre 2007; 
Albrechtsen, Nielsen, and Nielsen 2010) but can affect many inferences about 
population structure, including the value of FST (Clark et al. 2005),  inferred 
rates of migration between populations (Wakeley et al. 2001), and the  structure 
of the  populations themselves (Foll, Beaumont, and Gaggiotti 2008; Guillot 
and Foll 2009).

Is there evidence for population differentiation at a locus?
All of the statistics for measuring population differentiation described above 
provide some quantitative assessment of the degree to which populations 
differ in allele frequencies. Once these measures are in hand, we can use them 
to infer something about the structure of the sampled populations and the 
evolutionary forces that may have contributed to any differences observed. 

Population X

A B C

(A) (B)

D

Population Y

df

df
da

da

 dX, dY

 dX, dY

dXY dXY

Population X

A B C D

Population Y

FIGURE 5.3 Demonstrating the differences between dX, dY, da, df, and dXY. (A) and 
(B) both show  example genealogies relating four sampled chromosomes (A, B, C, 
and D) from two populations (X and Y   ). The statistics dX and dY measure the average 
number of nucleotide differences among  samples in populations X and Y, respec-
tively. dXY measures the average number of nucleotide differences  between each 
sample in population X and each sample in population Y, with no comparisons made 
within a population. da represents the difference between dXY and (dX + dY)/2 (see 
Equations 5.12 and 5.13), and df represents the total number of fixed differences. 
The important distinction  between (A) and (B) is that there is a difference in dX, dY, 
da, and df between the two panels, but no  difference in dXY. For simplicity, the ge-
nealogies in the two panels have the same height, as do the times to  coalescence 
within populations X and Y in each figure. This does not have to be the case, but 
it makes it easier to distinguish among the various measures described here.
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The simplest question we can ask is whether there 
is any evidence for population structure—that is, 
whether or not the samples come from one panmic-
tic population. There are multiple ways to test for 
evidence of population structure, including testing 
for deviations from Hardy-Weinberg equilibrium if 
genotypic data have been collected from individuals 
(see the earlier discussion of the Wahlund effect). If ge-
notypic data have not been collected, we can still test 
for structure by comparing allele frequencies between 
proposed subpopulations. The simplest way to carry 
out this test is to use a c2 test or other test of indepen-
dence on allele counts (see Goudet et al. 1996). Using 
the allele counts from Figure 5.1, we can apply such a 
test by arranging the data as shown in FIGURE 5.4. By 
applying a c2 test, we find the probability that these 
allele counts were drawn from one single population 

to be P = 0.025, and it is therefore likely that the two subpopulations are 
differentiated.

We can also frame our question in terms of statistics based on these allele 
counts, such as FST and its related measures. Testing for population structure 
is equivalent to testing the null hypothesis that FST = 0. A straightforward way 
to obtain P-values for such a test is to permute the samples among popula-
tions many times, generating a null distribution of values (Hudson, Boos, and 
Kaplan 1992). The P-value is then based on the position of the observed value 
of FST in the simulated distribution; a P-value of 0.01 would therefore require 
that the observed value be higher than all but 1% of permuted values. For 
single polymorphic sites there does not appear to be much of an advantage 
to conducting tests using FST over allele counts (Hudson, Boos, and Kaplan 
1992), but for longer sequences that encompass multiple segregating sites a 
permutation approach must be used because of the non-independence among 
sites. Such an approach would calculate gST or other sequence-based statis-
tics of differentiation (e.g., Hudson 2000) for the observed data and would 
then permute the individual haplotypes among subpopulations many times 
to generate the null distribution.

As I have described them, both the method using allele counts and  methods 
using summary statistics of differentiation are testing the null  hypothesis of 
no structure. It should be obvious then that there is a tight relationship be-
tween sample size and effect size, with even very small levels of differentia-
tion detectable when large numbers of chromosomes are sampled. In other 
words, values as low as FST = 0.001 can be significant given enough data, and 
simply indicate that there is some low level of population structure. Deciding 
whether subpopulations should be combined or split therefore depends both 
on sample size and on the particular questions being addressed (cf. Waples 
and Gaggiotti 2006). There is no single rule for when to say that two popula-
tions are differentiated, and it is likely that most studies will be unaffected 
by combining subpopulations with a level of differentiation on the order of 

8 2

2 8

Allele A

Population 2Population 1

Allele a

FIGURE 5.4 Allele counts from 
Figure 5.1. Counts show number of A 
and a alleles in populations 1 and 2, 
respectively. A χ2 test on these data 
(using a continuity correction because 
of the small counts in each cell) gives 
P = 0.025.
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FST = 0.001. Conversely, recent studies using hundreds of thousands of mark-
ers can detect important patterns of geographic structure, even with an aver-
age FST of 0.004 (Novembre et al. 2008). Later in this chapter I will  address 
several methods for determining population structure with multiple loci 
using information-theoretic approaches, which allow us to make likelihood 
statements about the increased fit of the data when more subpopulations 
are proposed.

Once we have determined that there is significant population structure, 
how do we interpret our summaries of differentiation? How much is “a lot” 
or “a little” differentiation? Wright (1978, p. 85) gave the following guide-
lines: “We will take FST = 0.25 as an arbitrary value above which there is 
very great differentiation, the range 0.15 to 0.25 as indicating moderately 
great differentiation. Differentiation is, however, by no means negligible if 
FST is as small as 0.05 or even less.” Whether these interpretations should 
be used in all cases—or simply as a rule of thumb—is impossible to know, 
especially when results depend on the markers being used. Furthermore, 
the most interesting inferences arising from data on population differen-
tiation will not be limited to the magnitude or meaning of any particular 
value of FST, but rather will relate to the evolutionary forces that drive such 
differentiation.

THE EFFECT OF EVOLUTIONARY PROCESSES 
ON DIFFERENTIATION 

The effects of natural selection on population differentiation
Differences in allele frequencies between populations are driven by the 
same processes that change allele frequencies within populations: mutation, 
natural selection, genetic drift, and migration. The effect of mutation will 
always be quite small and will principally be limited to the introduction of 
new alleles into individual populations. Recurrent mutation will sometimes 
introduce  alleles identical-by-state into different subpopulations, but the 
probability of such events is low, depending on q (Clark 1997). However, 
selection, drift, and migration—and the interactions among these forces—
can have very large  effects on population differentiation. Much of the recent 
work in this field has been focused on teasing apart the patterns generated 
by these forces.

I will first focus on the overall effects of natural selection on differences 
between populations, coming back to methods used to identify specific loci 
under selection in Chapter 10. The effects of natural selection on population 
differentiation are, as expected, very different for different forms of selection: 
weak negative selection, balancing selection, and positive selection can pro-
duce highly distinctive patterns of differentiation. This means that we can to 
some degree distinguish among these effects, although it may still be difficult 
to distinguish each of them from a neutral scenario.

Strong negative selection will of course prevent any variants from reaching 
appreciable population frequency and will therefore have little effect on the 
differentiation among segregating polymorphisms. Weak negative selection, 
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however, allows variants to segregate at low frequencies but constrains the 
range of allele frequencies that are possible. This constraint means that on 
average FST will be lower for a weakly deleterious variant than for a  typical 
neutral one that is able to drift to any frequency (FIGURE  5.5). In addition, 
while balancing selection also acts to lower FST (see the next paragraph), 
only weak negative selection will cause variants to be at lower frequencies 
within each population; polymorphisms under balancing selection may be at 
any frequency.

We expect balanced polymorphisms that are subject to the same (or very 
similar) selective pressure across sampled populations to be at similar fre-
quencies across populations. As alluded to earlier, in this case selection is 
again constraining the range of possible allele frequencies, which means 
that there will be smaller changes in allele frequencies between populations 
as compared to neutral polymorphisms. All of this means that balancing 
selection will act to lower FST. A classic example of such selection is the ABO 
blood-group locus in humans: the A, B, and O alleles are present in almost 
every human population in a narrow range of allele frequencies (Brues 1954; 
Chung and Morton 1961). Although the exact form of balancing selection 
acting on this gene remains unclear, the ABO locus shows multiple molec-
ular signatures of balancing selection in addition to very low FST values 
(Stajich and Hahn 2005; Calafell et al. 2008). 
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FIGURE 5.5 Effect of negative selection on FST. The results of simulating neutral and 
selected  polymorphisms shared between two populations are shown, with average FST 
set to 0.11 (equivalent to the average differentiation between human populations). 
With increasing selection against  deleterious  mutations, (A) mean FST decreases, and 
(B) the proportion of all polymorphisms with FST < 0.05  increases. (After Barreiro 
et al. 2008.)
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Any positive selection that acts similarly across 
all subpopulations within a species is not expected 
to cause differentiation between subpopulations, 
except transiently when a new advantageous 
allele sweeps through each population in suc-
cession (but see Bierne 2010). However, positive 
selection restricted to a subset of populations— 
referred to as local adaptation—can result in very 
large differences in allele frequencies. (This 
form of spatially varying selection is  sometimes 
called balancing selection because the polymor-
phism is maintained at the species level. In the 
context of studying population differentiation 
I will only refer to processes that maintain poly-
morphisms within subpopulations as balancing.) 
In the  extreme,  alleles that are highly deleterious 
in one environment may be highly advantageous 
in another: in such cases allele frequencies may 
range from 0 to 1 between closely related popu-
lations. Selected polymorphisms in this scenario 
can show FST = 1, even if there is no differentia-
tion across most of the genome (e.g., Turner et al. 
2010). In less extreme cases the effects of  positive 
selection will be seen as an excess of selected 
polymorphisms in the upper tail of the distri-
bution of FST values. FIGURE 5.6 shows the large 
excess of nonsynonymous SNPs with FST > 0.65 
in the human genome; a similar excess is also seen 
for nonsynonymous SNPs with FST < 0.05, that is, 
for deleterious polymorphisms in the lower tail of 
the distribution (Barreiro et al. 2008). This excess 
is measured relative to polymorphisms presumed 
to be under little direct selection (in this example, 
nongenic SNPs). But because FST and allele fre-
quency are not completely independent, a proper 
statistical comparison must compare polymor-
phisms of similar frequency from both the selected and unselected classes 
of sites in order to examine the effect of  selection on population differentia-
tion (e.g., Barreiro et al. 2008; Langley et al. 2012). 

The effects of migration and drift on population differentiation
For neutral polymorphisms, patterns of population differentiation will 
be determined by migration, drift, and linked selection. Linked selection 
clearly has an effect on neutral polymorphisms in close proximity to selected 
ones—see, for instance, patterns of FST on synonymous polymorphisms 
in Figure  5.6—and the patterns it generates will be key to finding specific 
regions that are the targets of spatially varying selection (see Chapter 10). 
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FIGURE 5.6 Effect of positive selection 
on FST in the human genome. A total of 
851,856 SnPs were genotyped in four 
human populations, and FST was calcu-
lated according to the method of Excoffier, 
Smouse, and Quattro (1992). The large 
excess of nonsynonymous polymorphisms 
in the upper tail of the FST distribution 
is consistent with the action of positive 
selection (P-values indicate excess com-
pared to nongenic SnPs). it is likely that 
linked  selection in coding regions has 
increased the proportion of synonymous 
polymorphisms in this tail. (After Barreiro 
et al. 2008.)
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Linked selection can also have effects on estimates of FST across large swaths 
of the genome loosely linked to targets of selection, such that differentiation 
across the genome will be a mix of loci showing varying effects of this process 
(Nosil, Funk, and Ortiz-Barrientos 2009). As the outcome of linked selection 
is largely to reduce or increase local Ne, in the rest of this chapter I will simply 
consider this mechanism as part of the drift term in determining levels of 
population differentiation. 

Population differentiation is largely determined by the opposing forces of 
migration and drift. In order to understand the differing effects of migration 
and drift on population differentiation, it is instructive to explain two oppos-
ing models for the history of subpopulations: the aptly named migration and 
isolation models (Wakeley 1996a). Consider two questions that are often asked 
about subpopulations (and sometimes, species): (1) How long ago did they 
split? (2) How much migration is there between them? It turns out that the 
model of population history chosen will fundamentally affect the answer to 
each of these questions.

The migration model is essentially Wright’s infinite island model (Chapter 1). 
In this model migration between subpopulations homogenizes allele fre-
quencies, while sampling due to drift results in differences in allele frequen-
cies. In the migration model all subpopulations have reached migration-drift 
equilibrium, such that there is no longer any historical signal of their split 
(FIGURE 5.7A–C). Under a large number of assumptions that are enumerated 
below, Wright (1931) showed that the expected value of the statistic FST for an 
autosomal locus is:

 E F
N m

( )
1

1 4ST
e

=
+

 (5.14)

where Ne is the size of each subpopulation (which are presumed to be equal) 
and m is the rate of migration per individual per generation (sometimes the 
compound parameter 4Nem, or just Nem by itself, is denoted as M ). If there is 
no migration (m = 0), then FST will equal 1 at equilibrium (Figure 5.7C); with 
increasing migration, FST will decline toward 0 (Figure 5.7A). 

Equation 5.14 appears to offer an easy way to estimate the effective 
number of migrants moving between populations per generation, Nem: all 
one has to do is calculate FST (or FST-like) statistics from the data. However, a 
large number of assumptions must hold for this relationship to be true, and 
violations of any of these assumptions will lead to highly misleading infer-
ences of total migration. The most important of these assumptions—and 
the most likely to be untrue—are that (1) populations are truly at migration-
drift equilibrium and (2) there is no spatial structure among populations 
(this latter assumption is only relevant when there are more than two popu-
lations being considered). The first assumption is violated any time popula-
tions share  alleles as a result of ancestral polymorphism and not migration; 
these cases are exactly those to which the isolation model is relevant and 
are discussed further below. The second assumption is violated when there 
are not an infinite number of populations each exchanging equal numbers 
of migrants with one another. For instance, in the stepping-stone model 
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(Chapter 1) there is spatial structure, as populations exchange more mi-
grants with their neighboring populations. In this case nearby populations 
will have more similar allele frequencies and there will be “isolation by 
distance” (Wright 1943; see Chapter 9). If either of these assumptions—or 
a number of other assumptions, including that selection has no effect (see 
Whitlock and McCauley 1999)—are violated, Equation 5.14 cannot be used 
to accurately estimate migration rates. Several methods have been devel-
oped that are able to relax some of these  assumptions by allowing for an-
cestrally shared alleles and asymmetric migration between populations 
(e.g., Beerli and Felsenstein 1999, 2001; Bahlo and Griffiths 2000). However, 
these models still assume that populations are at equilibrium, and they do 
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FIGURE 5.7 Differences between the migration and isolation models. (A–C) illustrate 
the migration model under varying levels of migration between populations. Each 
oval represents a separate population. Migration rates are highest in (A), medium in 
(B), and nonexistent in (C) (i.e., there is no migration). All differentiation is a function 
of migration and effective population size (see Equation 5.14). (D–F)  illustrate the 
isolation model under varying times since population split. Hypothetical genealogi-
cal  relationships for individual chromosomes in two populations are shown, with the 
line at the bottom representing the time at which chromosomes are sampled (i.e., the 
present). The split is most recent in (D), at an intermediate time in the past in (E), and 
far in the past in (F). All differentiation is a function of the time since the split and ef-
fective population size (see Equation 5.15).
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not distinguish between migration and isolation as the processes contribut-
ing to population structure.

The isolation model describes a population-splitting scenario with no fur-
ther migration after the split (FIGURE 5.7D–F). In this case the two resulting 
populations will have similar allele frequencies only because they started out 
with similar allele frequencies: immediately after the split the two popula-
tions should have had approximately equal representation of all alleles in the 
ancestral population (Figure 5.7A). The allele frequencies will diverge over 
time as a result of drift (and selection)—the so-called lineage sorting process—
such that after sufficient time there will be no shared alleles and all chromo-
somes will be most closely related only to other chromosomes within the same 
population— that is, there will be reciprocal monophyly (Figure 5.7F). Lineage 
sorting can take a long time, and the stochastic nature of the process means 
that individual loci will vary in the time it takes to become reciprocally mono-
phyletic. As a general guideline, Hudson and Coyne (2002) calculated that 
95% of sampled autosomal loci will not share any alleles between two lineages 
after 9 to 12Ne generations.

In the isolation model the two most important parameters contributing to 
population differentiation are the time since the populations split, t, and their 
effective population sizes, Ne, which are assumed to be equivalent between 
populations. The expected value of the statistic FST in the isolation model is 
then (Wright 1931): 

 E F e( ) 1 t N
ST

/2 e= − −  (5.15)

where the effects of drift on the variance in allele frequencies at an  autosomal 
locus are simply compounded over t generations. All else being equal, in-
creasing the splitting time increases the amount of drift that has occurred, 
resulting in larger values of FST (Figure  5.7D–F). Likewise, increasing the 
 population size decreases the effect of drift, thereby decreasing FST. Any pro-
cess that decreases Ne in one or all subpopulations—such as a population 
contraction—will increase the effects of drift in that subpopulation and lead 
to increased population differentiation. Likewise, drift will have a greater 
effect on non-autosomal loci, leading to increased differentiation at these loci 
(e.g., Keinan et al. 2009).

If we assume that the isolation model holds, then Equation 5.15 can be used 
to estimate the joint parameter t/2Ne. However, again a number of assump-
tions must be true for this relationship to hold. The main assumption is that 
no migrants have been exchanged between populations. Because migration 
homogenizes allele frequencies, any migration will lower FST, resulting in an 
underestimation of of t/2Ne. This assumption also requires that the popula-
tion split was instantaneous, with all exchange ceasing immediately at time 
t generations in the past. These assumptions may be true sometimes, and in 
these cases parameters of the isolation model—including separate popula-
tion mutation parameters, q, for each of the descendant populations and the 
ancestral population—can be estimated (e.g., Wakeley and Hey 1997; Wang, 
Wakeley, and Hey 1997; Leman et al. 2005). But in many cases the major as-
sumptions of both the isolation and migration models will be violated, or we 
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will not be able to determine a priori which model is a better fit to the data. 
This is why recent work has turned to a model including both processes, the 
isolation-with-migration model.

Distinguishing between migration and drift: The isolation- 
with-migration model
One of the most challenging tasks in molecular population genetics is to dis-
tinguish between the causes of shared polymorphisms among populations 
or species. Because both migration and recent splitting events can result in 
shared polymorphisms (Figure  5.7A–F), both the migration and isolation 
models can explain a wide range of values of differentiation. The aim of recent 
research has therefore been to find distinct signatures of each process and to 
design a statistical framework within which robust inferences can be made 
about either migration rates, splitting times, or the joint effects of migration 
and ancestral polymorphism on levels of differentiation. Here I describe some 
attempts to distinguish between these processes as well as to bring them to-
gether in a single model. 

Several early methods presented tests meant to discriminate between the 
isolation and migration models. Wakeley (1996a) showed that the variance 
in pairwise differences between sequences at a single locus (Equation 4.14) 
is greater under the migration model than under the isolation model, even 
though the expected values of pairwise differences are the same. That is, even 
when the expected value of FST is the same between the two models, the vari-
ances in p will differ. If there is asymmetric migration, the variance in p will 
be larger in the population accepting the larger number of migrants. The ex-
pected difference in variances assumes no recombination within a locus and 
no selection, two very important restrictions. Because migration increases the 
variance in values of both p from each of two populations exchanging genes 
and their total divergence (equivalent to dXY above), a test can be constructed 
to distinguish isolation from migration. In the test proposed by Wakeley 
(1996b), the isolation model is the null hypothesis because there is greater sta-
tistical power to reject a null model that has the smaller variance than one 
that has the larger variance. The test appears to have the most power—that is, 
there is the greatest disparity in variances between the models—when migra-
tion is low or the time since divergence is high. As the migration rate increases 
or time since the split decreases, the variances converge to those expected in a 
single, randomly mating population; this reduced power in high-migration/
recent-split scenarios appears to generally be the case among different meth-
ods (see below). 

In a different approach, Wakeley and Hey (1997) found that the expected 
numbers of shared polymorphisms, exclusive polymorphisms in each popu-
lation (i.e., private alleles), and fixed differences between two populations can 
be calculated for the isolation model. These summary statistics are informa-
tive in comparing migration versus isolation models because individual non-
recombining loci can have shared polymorphisms or fixed differences, but 
not both (they can have neither as well). Gene flow will increase the number 
of shared polymorphisms while simultaneously decreasing both the number 
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of fixed differences and the number of exclusive 
polymorphisms. These four summary statistics 
can then be used as the basis of tests applied 
against either simulated values (Wang, Wakeley, 
and Hey 1997) or expected values (Kliman et al. 
2000). Rejection of the null model in either test 
implies that the pure isolation model can be 
discarded as a viable explanation for the data 
because there is too much variation among loci 
in these summary statistics. All of these tests re-
quire a modest number (>10) of phased haplo-
types from each of two populations.

The two methods just described test the alter-
native model of migration after a population split 
but do not estimate any population parameters. 
In the isolation-with-migration model involv-
ing two populations there are six fundamental 
parameters (FIGURE 5.8): q-values for the two 
descendant populations and the single ancestral 
population, time since divergence, and migra-
tion rates in both directions (which are sometimes 
collapsed to a single migration parameter). To 
estimate models with a large number of param-

eters, Bayesian methods often use MCMC sampling of coalescent genealogies 
to arrive at the most likely parameter values (see Chapter 9). The first method 
to  estimate parameters of the isolation-with-migration model using MCMC 
could only use phased sequence data from a single locus (Nielsen and Wakeley 
2001), but subsequent refinements have allowed multiple loci and more than 
two descendant populations to be studied (implemented in the programs IM 
[Hey and Nielsen 2004], IMa [Hey and Nielsen 2007], and IMa2 [Hey 2010]). 
Analyses using MCMC sampling provide a distribution of posterior probabili-
ties for values of each parameter. While the peak of this distribution is  generally 
taken as the estimate of a parameter, the shape of the curve can be used to 
gauge support for the estimate and to contrast alternative models. Specifically, 
in attempting to distinguish between the isolation and migration models, “the 
difference between the probabilities at [the migration parameter] peak and at a 
migration rate of zero can be used for a likelihood-ratio test of the null hypoth-
esis of zero gene flow” (Pinho and Hey 2010, p.223). A significant result implies 
that some amount of migration is required to better explain the data and rejects 
the pure isolation model.

The inference of parameters in the isolation-with-migration model using 
the IM program and its successors offers a powerful way to infer recent evo-
lutionary processes, but these methods are not without problems. Most dif-
ficulties arise from the assumptions made by the methods, which will be 
violated quite often and affect the inferences made in many cases (Becquet 
and Przeworski 2009; Strasburg and Rieseberg 2010). The main assumptions 
include selective neutrality at all loci (i.e., no positive or balancing selection), 

Population 1 Population 2

t

θA

m1

m2
θ1 θ2

FIGURE 5.8 The isolation-with-migration 
model for two populations. in the most 
basic model there are six parameters to be 
estimated: three population mutation param-
eters (q1, q2, qA), two migration parameters 
(m1, m2), and time since the populations 
split (t). The programs IM, IMa, and IMa2 
scale all parameters by the neutral  mutation 
rate, such that the migration parameter 
being  estimated is m/µ and the time param-
eter is tµ. (After Hey and nielsen 2004.)
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no recombination within genes, no further population structure within 
sampled descendant populations or the ancestral population, independence 
 between genes, conformity to the chosen mutation model, and no migration 
from unsampled populations. Strasburg and Rieseberg (2010) found that the 
IM software package was “relatively robust” to moderate violations of any of 
the above assumptions, although specific violations did result in misleading 
inferences. One of the most commonly violated assumptions is that there is 
no intragenic recombination, the effect of which is to increase estimates of q in 
each descendant population and to increase the estimated time of divergence 
between them. To address this limitation, Hey and Nielsen (2004) suggested 
retaining only non-recombining portions of sampled sequences for analysis, 
though this approach can create other biases. Violations of the assumptions of 
IM that can (and do) result in large estimated values of the ancestral q, includ-
ing unaccounted-for structure in the ancestral population, are also common 
(Becquet and Przeworski 2009). A final caveat is that these methods appear to 
overestimate migration rates for very recent splits (e.g., Naduvilezhath, Rose, 
and Metzler 2011; Hey, Chung, and Sethuraman 2015).

An additional use of the isolation-with-migration model has been to  attempt 
to estimate the timing of migration (e.g., Won and Hey 2004). Especially when 
considering recent splits between species, it is of considerable interest to dis-
tinguish between a model of primary speciation-with-gene-flow and one of 
secondary contact after divergence. Estimating the timing of migration events 
should allow researchers to know which model is more likely given the data. 
However, it has been shown by both simulation (Strasburg and Rieseberg 
2011) and theory (Sousa, Grelaud, and Hey 2011) that one cannot infer the 
timing of any migration events with certainty in this model. There simply 
does not seem to be enough signal in the data used by the IM method to con-
fidently determine when an individual migration event occurred, although it 
may be possible to contrast models that a priori define epochs that have differ-
ent migration rates (Sousa, Grelaud, and Hey 2011).

Other approaches to estimating parameters in the isolation-with-migration 
model have also been used, each with their own limitations. Several methods 
use the same basic approach as IM and related programs but require only a 
very small number of individuals and a very large number of phased (Wang 
and Hey 2010) or unphased loci (Gronau et al. 2011). Similar methods using 
summaries of the data allow for intra-locus recombination and can be imple-
mented either as Bayesian (Becquet and Przeworski 2007) or “approximate” 
Bayesian approaches (see Chapter 9). A quite different approach uses the 
multi-population allele frequency spectrum—that is, a joint site frequency 
spectrum for all descendant populations considered—as the input data from 
which to infer parameters (Wakeley and Hey 1997). Methods using this repre-
sentation of the data can use hundreds or thousands of individuals and data 
from thousands of markers, assuming the polymorphisms are independent 
(see Chapter 9 for more details). 

It should be stressed that although these newer model-based methods 
are being used to distinguish between drift and migration as the causes 
of  population differentiation, for the most part they have not yet been 
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extensively tested. A large body of work has detailed the consequences 
of violating assumptions for IM and its successor programs (e.g., Becquet 
and Przeworski 2009; Hey 2010; Strasburg and Rieseberg 2010), but the lack 
of such studies for newer methods should not imply that they are more 
accurate— only that they have not been tested yet. It is truly difficult to disen-
tangle ancestral polymorphism from migration, even using the most realistic 
theoretical models and the most advanced computational tools. This difficulty 
is in part due to the still-unrealistic assumptions that must be made in each 
model and in part due to the very similar patterns generated by all evolution-
ary processes when using only part of the available genetic data. Future ap-
proaches of this kind may require the use of both improved models and new 
types (or much larger amounts) of data.

Additional methods for detecting migration  
between pairs of populations
In Chapter 9 we will discuss a number of additional methods for inferring 
migration and new models for understanding the patterns generated by mi-
gration. But before moving on in this chapter, I want to introduce several ap-
proaches that make predictions about patterns of variation in the presence 
of gene flow without explicit expressions for expected values of individual 
statistics. These methods use simulations to generate expected values across 
loci and are therefore relatively sensitive to the accuracy of the parameters 
used in the simulations. For instance, consider a case in which we use simple 
summary statistics (e.g., FST or dXY) to assess whether migration has occurred 
between two populations. Simulated datasets generated assuming an ancient 
population split can result in incorrect inferences of migration if the real data 
came from two populations with a more recent split. Such errors will be a con-
sequence of the fact that the observed statistic values will be much lower than 
those from the simulation, and a simple interpretation of such an observation 
would be that migration has occurred. However, in practice most errors will 
be in the opposite direction, making it harder to detect migration. The reason 
for this is that divergence times are estimated from the same data as migra-
tion, leading to circularity in the tests: if migration is occurring, then sequence 
divergence among our samples will be lower than expected given the real 
split time. As a result, simulated data without migration will closely match 
observed data with migration and an older split, leading to conservative tests 
for migration.

One way to attempt to get around these problems with simulations is to 
try to detect individual loci that show signs of migration between popula-
tions, even when introgression across the genome is rare. In this case the hope 
is that simulations will reflect the non-migration history of the majority of 
the genome, making outlier loci with signals of migration more easily de-
tected. If outliers are found, this is prima facie evidence for migration having 
occurred at all. This mode of inference can again be carried out with either 
FST or dXY, though both present difficulties in correctly interpreting outlier 
loci. As mentioned above, FST can be strongly affected by selection, such that 
loci experiencing balancing selection can appear to have much lower values 
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than neutrally evolving regions (or those affected by hitchhiking). Such a pat-
tern could be mistaken for loci that have been introgressed. Using dXY, loci 
with exceptionally low neutral mutation rates will have very low divergence 
levels, again raising the possibility that they will be confused with intro-
gressed loci. In addition, neither FST nor dXY are sensitive to the presence of 
low-frequency migrant alleles (Geneva et al. 2015). This means that analyses 
using these statistics alone may fail to detect recent introgression (e.g., Murray 
and Hare 2006).

In order to detect even rare introgressed lineages, Joly, McLenachan, and 
Lockhart (2009) proposed using the minimum sequence distance between 
any pair of haplotypes from two populations or species. Defining kij as above 
(Equation 5.12), the minimum sequence distance, dmin, is mini∈X, j∈Y {kij}, the 
minimum distance among all pairings of haplotypes in the two populations, 
X and Y (FIGURE 5.9). The logic behind this method is that any two sequences 
that are highly similar to each other—and therefore that represent an ancestor 
more recent than the population divergence time—can only be explained by 
introgression. By comparing the observed dmin to the expected values under a 
model without migration, we can obtain positive evidence for introgression. 
This method has high power when its assumptions are met (Joly, McLenachan, 
and Lockhart 2009), but, like dXY, it assumes that there is no variation in the 
mutation rate among loci. 

Multiple solutions have been proposed to account for mutation rate vari-
ation, especially as the same issue occurs when using dXY. One way to ac-
count for this problem is to explicitly include variation in the mutation rate 
in the simulations, but these rates are rarely known. An alternative that does 
not require estimates of the mutation rate at each locus is to account for this 
variation using the relative node depth (RND) of the two taxa compared to an 

dmin

dXY

dout

Population X Population Y

FIGURE 5.9 Additional sequence 
statistics used to detect migra-
tion. A representative genealogy 
is shown for two populations that 
have exchanged a migrant lin-
eage. Divergence to an unseen 
outgroup (dout) is represented by a 
dotted line. The average distance 
between all sequences in the two 
populations, dXY, is only somewhat 
affected by the migration event. 
However, the minimum distance 
between sequences in the two 
populations, dmin, is much lower 
than expected under a no-migration 
scenario. (Based on Rosenzweig 
et al. 2016.)
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outgroup (Feder et al. 2005). RND is defined as dXY between the two popula-
tions divided by the average distance from each to an outgroup: 

 RND
d

d
XY

out

=  (5.16)

where dout = (dXO + dYO)/2; dXO is the average distance between population 
X and the outgroup, O; and dYO is the average distance between population Y 
and the outgroup (Figure 5.9). Low mutation rates are reflected in shortened 
branch lengths both between X and Y and between each population and the 
outgroup. Therefore, RND is robust to low mutation rates as long as muta-
tion rates have been constant across the tree. This statistic is in fact most often 
used to find  regions that are not introgressing when gene flow is widespread 
(e.g., Nachman and Payseur 2012; Carneiro et al. 2014), which would be mani-
fested as those regions with especially high values of RND. When looking for 
introgressed loci, RND gets around the problem of mutation rate variation in 
a principled way but is still not sensitive to low-frequency migrants.

Two methods have recently been introduced that are sensitive to recent 
migration while still being robust to variation in mutation rates. Geneva et al. 
(2015) introduced a statistic, Gmin, defined as (see Figure 5.9): 

 =G
d

dXY
min

min  (5.17) 

Because a lower mutation rate is expected to affect all lineages at a locus 
equally, the normalization by the average distance between all sequences 
in the two populations will account for variable rates of evolution among 
loci. While Gmin has power to detect low-frequency migrants, it loses power 
when the frequency of migrant alleles is higher. This is likely due to the fact 
that as migrant lineages rise in frequency, dXY gets lower. As a migrant allele 
 approaches fixation, the ratio of dmin to dXY moves toward 1, approaching the 
value expected when there is no migration. 

A statistic that is sensitive to both low- and high-frequency migrants—
while still being robust to mutation rate variation—combines the best as-
pects of dmin, Gmin, and RND. Rosenzweig et al. (2016) defined their statistic, 
RNDmin, as (see Figure 5.9): 

 RND
d

dmin
min

out

=  (5.18)

Low mutation rates are reflected in shortened branch lengths to the outgroup, 
so RNDmin (like RND) is robust to variable mutation rates. Similarly, like both 
dmin and Gmin, RNDmin is sensitive to even rare migrant haplotypes. The major 
advantage of this statistic is that it is powerful even when migrants are at high 
frequency (Rosenzweig et al. 2016). Arguments similar to those made above 
can also be used to find individual haplotypes that are more distant to all other 
haplotypes in a single population than expected, as these can represent re-
cently introgressed sequences (e.g., Brandvain et al. 2014).

In addition to the “minimum-distance” methods just described, we can 
consider the different signals left by recent introgression on patterns of 
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linkage disequilibrium. Machado et al. (2002) pointed out that patterns of 
LD among shared polymorphisms are expected to differ under the isolation 
and migration models (FIGURE  5.10). In the isolation model shared poly-
morphisms are presumed to have existed in the ancestral population and 
therefore are thought to have undergone many rounds of recombination 
and are not expected to be in strong LD with each other or with  exclusive 
polymorphisms in each descendant population. Conversely, in the migra-
tion model shared polymorphisms are thought to be the result of introgres-
sion from one population to another and are therefore expected to be in 
strong LD with one another, at least in the population that receives the mi-
grants. Additionally, this model provides specific predictions about the sign 
of LD: with migration, the derived alleles at two shared polymorphisms 
introgressed together will be positively associated, while the derived alleles 
at a shared polymorphism and an exclusive polymorphism will be nega-
tively associated (Figure  5.10). No particular directionality to the sign of 
LD is expected under the isolation model. Machado and colleagues (2002) 
proposed a statistic that takes the difference between two measures of av-
erage LD—the first between all pairs of shared polymorphisms and the 
second between all pairs of sites at which one is a shared and one an ex-
clusive polymorphism— and generated P-values using simulations of the 
inferred population history under an isolation model. As with many of the 
other methods described here, this method has the greatest power to detect 
significant deviations from the isolation model when migration is recent 

C c
D dB b

A a

Ancestral population

Migration

A B C D

A B C D

A b C D

a B C D

a b C D

A B c  d

A B C D

A B c D

A B C d

A B c  d

Population 1 Population 2

FIGURE 5.10 The effect of migra-
tion on patterns of linkage disequi-
librium within a recombining locus. 
Each row of letters represents a 
haplotype, with the ancestral popu-
lation monomorphic at all four sites 
considered. After separation, popu-
lation 1 has mutations from A→a 
and B→b, and population 2 has 
mutations from C→c and D→d. 
The migration event introduces 
haplotype ABcd into population 1. 
Defining the sign of lD based on 
ancestral and derived states, the 
result of this introgression is positive 
lD in population 1 between the sites 
with shared polymorphisms (C/c 
and D/d) and negative lD between 
these shared polymorphisms and 
the polymorphisms exclusive to 
population 1 (A/a and B/b). (After 
Machado et al. 2002.)
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(because LD in the introgressed region has not yet been broken down) and 
when the population split is further in the past (because there will be less 
“background” LD between shared polymorphisms that have in fact per-
sisted since before the split). The results of this test are also completely de-
pendent on the particular isolation scenario simulated, so that simulations 
using unrealistic parameters could cause rejection of the null model even 
when there is no migration.

Although Machado et al. (2002) studied patterns of LD contained within 
single loci sampled in multiple populations, similar ideas have been used to 
detect ancient introgression with LD data from only a single population (Wall 
2000b; Plagnol and Wall 2006) as well as so-called migrant tracts (or admix-
ture chunks) among closely related populations using genome-wide datasets 
(e.g., Falush, Stephens, and Pritchard 2003). The length of such tracts can be 
used to estimate the timing of inferred migration events or changes in mi-
gration rates (e.g., Koopman et al. 2007; Pool and Nielsen 2009; Moorjani 
et al. 2011), or as an explicit test of the migration and isolation models be-
tween  populations (Loh et al. 2013). Patterns of LD and the proportion of 
each genome that is the result of migration between multiple populations 
have been immensely useful in defining populations in the first place, and 
in assigning each individual’s membership in a population. In the next sec-
tion  I address these basic problems and proposed solutions.

DEFINING POPULATIONS

Identifying populations and the individuals within them
All of the analyses discussed to this point have assumed that we know 
something about population structure in our species of interest. Specifically, 
we have assumed that we know how many populations exist and that we 
can assign samples to these populations. Without having done this, there is 
no way for us to measure differences in allele frequencies between popula-
tions or to ask whether there is evidence for significant population struc-
ture, migration, and so on. Such questions all require us first to identify 
populations and to assign our samples to these populations. However, in 
many cases these assignments may not be known beforehand or may be 
inferred based only on the geographic location in which the sample was 
collected. Furthermore, there may be cryptic population structure that ob-
scures the fact that samples collected from the same location actually belong 
to distinct populations. In both of these cases we can use statistical tools to 
help us make probabilistic inferences about the composition of subpopula-
tions within a species.

An important distinction must be made between those cases in which 
populations are known ahead of time and those in which they are not 
known. In the former, the problem to be solved is the assignment of individ-
uals to populations—the methods used are therefore called assignment tests. 
All such methods (e.g., Paetkau et al. 1995; Rannala and Mountain 1997; 
Cornuet et al. 1999) require multilocus genotypes from the individuals to 
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be assigned, as well as population allele frequencies for each of the possible 
source populations; they also assume HWE at every locus and linkage equi-
librium among loci. The optimal assignment of an individual to a source 
population is then based on the match between an individual’s genotype 
and the allele frequencies in each population, and can be accompanied by 
a measure of uncertainty in the assignment. The accuracy of assignments 
is largely determined by the magnitude of the allele frequency differences 
among populations, the accuracy of population allele frequency estimates, 
and the inclusion of the correct source populations (Cornuet et al. 1999). 
Especially when estimates of source population allele frequencies are based 
on a small number of individuals, having a measure of uncertainty in assign-
ments that takes into account small sample sizes is important. Populations 
can also be excluded as possible sources of  individuals because of a mismatch 
between genotype and population allele frequencies. If the correct source 
population is unintentionally left out of a study, its absence may be indi-
cated by high exclusion probabilities (or low assignment probabilities) for 
all sampled populations. 

In the case in which populations are not predefined, we must use alternative 
tools to simultaneously assign individuals to populations and to  estimate the 
number of populations and their allele frequencies at each locus. Furthermore, 
some individuals in our sample may have mixed ancestry—that is, they may 
have genetic contributions from multiple populations. We refer to such in-
dividuals as admixed. We would like to identify these individuals and to es-
timate the fraction of their ancestry contributed by each source population. 
Fortunately, there are multiple methods available that can perform all of these 
calculations, and more. Although each method differs in the details, many 
use the same underlying principles: namely, minimizing Hardy-Weinberg dis-
equilibrium and linkage disequilibrium. Below I describe the basic approach 
used by the program structure (Pritchard, Stephens, and Donnelly 2000), the 
most widely used method for inferring the presence of population structure 
when neither the number of populations nor each individual’s membership in 
these populations are known.

Using the Wahlund effect to identify population structure
We have already seen how the Wahlund effect can explain cases of Hardy-
Weinberg disequilibrium when individuals from multiple  subpopulations 
are mistakenly considered to be from the same population. By  similar  logic, 
 mis-assigning individuals to subpopulations can also cause them to be in 
 Hardy-Weinberg disequilibrium by introducing unlikely genotypes. 
Consequently, one way to find the best assignment of individuals to 
populations—  or to find the most likely number of populations—is to attempt to 
minimize the amount of Hardy-Weinberg disequilibrium. Most software pack-
ages do this by trying a very large number of different assignments of individu-
als to populations, often by using MCMC methods. The optimal assignment 
is then the configuration that results in the least amount of Hardy-Weinberg 
disequilibrium in each population. These methods all therefore assume that 
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there is Hardy-Weinberg equilibrium within each population, with the only ex-
ception being cases in which inbreeding is allowed (e.g., Gao, Williamson, and 
Bustamante 2007).

There is also a second kind of disequilibrium generated by mis- 
assignment of individuals to populations: linkage disequilibrium. To see 
why this is, consider two populations fixed for alternative alleles at two 
loci (FIGURE 5.11). Population 1 has only AB individuals, while population 
2 has only ab individuals. Within each population there is no LD, but con-
sidered as a single population there is a perfect association between the two 
sets of alleles (i.e., perfect LD). Wahlund (1928) was actually the first person 
to point out this problem, but it was later rediscovered by multiple other 
groups (Cavalli-Sforza and Bodmer 1971; Sinnock and Sing 1972; Nei and 
Li 1973; Prout 1973). This effect is sometimes called the multilocus Wahlund 
effect (Feldman and Christiansen 1974) or mixture LD (Falush, Stephens, and 
Pritchard 2003).

Fixed differences between populations are not necessary to generate this 
effect: any differences in allele frequencies can generate LD if individuals are 
incorrectly grouped into populations. In fact, the magnitude of disequilibrium 
generated is proportional to the differences in allele frequencies between pop-
ulations. Consider two loci, each with two alleles: A/a and B/b. If we denote 
the frequency of the A allele in population 1 as p1A and in population 2 as p2A, 
and the frequency of the B allele in population 1 as p1B and in population 2 as 
p2B, then the amount of LD is given by:

 = − − −A A B BD y y p p p p(1 )( )( )1 2 1 2  (5.19)

where y denotes the fraction of individuals from the total sample that are 
from population 1, and 1 – y  denotes the fraction from population 2. One 
can easily see that this form of sampling will generate linkage disequilibrium 
even between loci on different chromosomes. As with single-locus disequilib-
ria, the optimal assignment of individuals to populations will be the one that 
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FIGURE 5.11 Generating linkage disequilib-
rium by sampling multiple populations. Two 
populations (within yellow ovals) are treated as 
a single population (white oval). Population 1 is 
fixed for the AB haplotype, while population 2 
is fixed for the ab haplotype. The two loci are in 
linkage equilibrium within each of population 1 
and 2, but when treated as a single population 
there is perfect lD between them.
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minimizes LD among sites. In practice, minimizing both kinds of disequilib-
ria is computationally challenging, especially when one is also attempting to 
find the most likely number of populations and the possible contributions 
of each population to the ancestry of each individual. But software packages 
such as structure can do exactly these tasks, as well as identifying the ancestry 
of individual loci. 

Evolutionary inference from the determination  
of population structure
One of the most important uses of the methods described here is to find the 
“optimal” number of populations contained within a sample. Because both 
Hardy-Weinberg disequilibrium and linkage disequilibrium will be further 
minimized by increasing the number of populations (denoted K), the likeli-
hood of the data will also increase with larger K. As with many statistical 
problems, we would like to avoid overfitting a model with a large number 
of parameters, instead choosing the minimum number of parameters that 
are sufficient to explain the data (cf. Burnham and Anderson 2002). While 
there are a number of different approaches to inferring the optimal value 
of K ( described below), it should also be remembered that populations 
can be subjective entities, and the exact partitioning of populations may 
change based on the questions being asked (Waples and Gaggiotti 2006). 
Indeed, when population structure is hierarchical, the global “best” K for 
a dataset may be useful for some questions, while further subdivision of 
 individual populations may be useful for others (e.g., Rosenberg et al. 2002). 
In the case of populations made up almost entirely of admixed individuals 
(e.g., African Americans), it is not even clear what the value of K should rep-
resent: the number of source populations or the current single population? 
In a similar simulated example, Pritchard, Stephens, and Donnelly (2000) 
inferred K = 2 for a single hybrid population. As an alternative to choosing 
a single, optimal value of K, downstream analyses can also be conducted for 
multiple values of K, with results reported for each value. FIGURE 5.12 shows 
the outcome of increasing K for the worldwide sample of humans analyzed 
in Rosenberg et al. (2002).

There are two main approaches to inferring the optimal number of popu-
lations. The first uses the output of programs such as structure to conduct a 
post hoc analysis of the likelihood of datasets under each value of K (see Janes 
et al. 2017 for caveats to this approach). Because structure calculates the opti-
mal assignments of individuals for a fixed value of K, independent runs with 
K = 1, 2, 3 . . . n must be run up to some maximum number of populations, n. 
The optimal value of K can then be inferred based on the rate of increase in 
the likelihood of the data with increasing K (Evanno, Regnaut, and Goudet 
2005) or more statistically rigorous model selection methods (e.g., Gao, Bryc, 
and Bustamante 2011). In the second approach, the number of populations 
is estimated simultaneously with the assignment process. Software can 
either assign an upper limit to the number of populations considered within 
a single run, using the MCMC process to split or merge these populations 
(e.g., Corander, Waldmann, and Sillanpaa 2003; Corander et al. 2004), or it 
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can treat K as a random variable to be estimated given some prior distribu-
tion (Dawson and Belkhir 2001; Huelsenbeck and Andolfatto 2007). Some 
methods can also use the spatial sampling locations of individuals to provide 
priors on the number of populations and the assignment of individuals to 
populations (Guillot et al. 2005; François, Ancelet, and Guillot 2006; Hubisz 
et al. 2009).

In an alternative approach, principal component analysis (PCA) can be 
used to find hidden structure within a sample (see Chapter 9). While PCA 
methods do have an underlying relationship to the admixture models de-
scribed thus far (Engelhardt and Stephens 2010; Lawson et al. 2012), they 
do not assign individuals to populations. However, Patterson, Price, and 
Reich (2006) showed that the number of significant eigenvalues in a PCA 
study is equal to K − 1. Therefore, PCA can be used to independently 
(and much more rapidly) calculate the optimal number of populations in 
a dataset.

One important issue in inferring the number and identity of populations 
is the effect of sampling. As with assignment tests that have predefined pop-
ulations, the accuracy of population identification depends on the number 
of individuals included, the number of loci used, and the allele frequency 
differences among populations (Pritchard, Stephens, and Donnelly 2000; 
Rosenberg et al. 2005). In addition, population identification can be strongly 
affected by the amount of admixture within individuals and the proportion of 
admixed individuals in the dataset (Pritchard, Stephens, and Donnelly 2000), 
as well as by the number of individuals sampled from each “pure” popula-
tion (Fogelqvist et al. 2010). It is even the case that for a limited range of low 
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FIGURE 5.12 The structure of human populations. Each individual is represented by 
a thin vertical line that represents the admixture proportions from each of the K popu-
lations. Black lines separate individuals in different predefined populations (named 
at the bottom), and continental locations of populations are given above. in each 
row there are K colors used to distinguish admixture proportions for each individual. 
(From Rosenberg et al. 2002.)
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FST values, significant structure may be identified even when there is none 
(Orozco-terWengel, Corander, and Schlötterer 2011).

Once an optimal choice of populations has been made and individuals 
have been assigned to populations, further analyses can identify migrant  
or admixed individuals. Very recent migrants will have statistically 
 significant assignments to source populations that do not match the 
 populations that overlap their sampling location (Rannala and Mountain 
1997). Most such methods will only be able to identify migrants or  estimate 
 migration rates in the last few generations (e.g., Wilson and Rannala 2003), 
as repeated backcrossing will erase the genetic signal of the original source 
population. However, many individuals identified as very recent  migrants 
may instead be mislabeled or contaminated samples (Rosenberg et al. 2002). 
The  admixture proportion reported by structure—and similar methods such 
as FRAPPE (Tang et al. 2005) and ADMIXTURE (Alexander, Novembre, and 
Lange 2009)—reveals the ancestry of individual samples.  Identification 
of admixed individuals is important for many applications, serving  as 
a correction for the confounding effect of population  stratification on 
association studies (e.g., Hoggart et al. 2003; Price et al. 2006), help-
ing to  determine the status of endangered populations (e.g., Beaumont 
et al. 2001), and providing key information in studies of hybrid zones  
(e.g., Nielsen et al. 2003).

It can be useful to estimate not only a single genome-wide admixture pro-
portion for each individual, but also the ancestry of individual loci (referred 
to as global and local ancestry, respectively; Alexander, Novembre, and Lange 
2009). Any individual’s genome may be divided up into separate chromo-
somal “chunks” or haplotypes, each with its own ancestral origin, physical 
length, and population frequency. Although the original version of structure 
required unlinked markers so that “mixture” LD was the only source of dis-
equilibrium (see above), newer versions can take into account the LD gen-
erated by the introgression of chunks of linked markers (admixture LD) as 
well as background levels of LD (Falush, Stephens, and Pritchard 2003; see 
also Patterson et al. 2004; Tang et al. 2006; Sankararaman et al. 2008). As men-
tioned earlier in the chapter, identification of these admixture chunks can 
be used to infer features of the migration process (e.g., Koopman et al. 2007; 
Pool and Nielsen 2009; Loh et al. 2013), as well as to correct for stratification 
in association studies (e.g., Hoggart et al. 2004), and even to infer recombina-
tion rates (Wegmann et al. 2011). Further use of haplotype-specific ancestry, 
using the methods implemented in the fineSTRUCTURE program (Lawson 
et al. 2012), can reveal fine-scale population structure that is not apparent 
using unlinked markers.

Finally, one very important caveat to inferences of population structure and 
admixture must be made. Despite the fact that ancestry assignments in pro-
grams like structure and ADMIXTURE are referred to as admixture proportions 
(a term I have also used here), they do not in fact indicate whether admix-
ture has occurred, and are therefore perhaps misleadingly named. Consider 
the case in which there is a single large population containing much of the 



110  CHAPTER 5

han39657_ch05_079-110.indd 110 02/26/18  06:45 PM

ancestral polymorphism, coupled with several smaller populations that have 
split off from the larger one and have each individually gone through a bottle-
neck. In many scenarios, the smaller populations will be identified by soft-
ware as separate populations, with the single larger population represented 
as a mixture of ancestry from all the others. In this case the admixture propor-
tions should not be taken as evidence for any history of admixture; instead, 
they should be understood as simply indicating the assignment of shared 
 ancestry with many of the smaller populations. Therefore, structure plots (and 
similar plots) cannot by themselves be used to infer a history of admixture 
(see Chapter 9 for more discussion).
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SIMULATING SAMPLES OF DNA SEQUENCES
In order to make accurate inferences about the evolutionary forces af-
fecting molecular variation, we must be able to accurately simulate 
DNA sequences. Ideally, we would like to be able to simulate popula-
tions under a wide variety of models, varying demographic histories, 
forms and strengths of selection, and any other parameter of interest. 
The result of such simulations should be a sample of DNA sequences 
equivalent to one we might have collected from a natural population. 
This procedure, repeated thousands of times, can then be used either to 
find the model that best fits our observed data or as a null distribution 
against which we can test specific hypotheses.

How might we simulate such a population? Naïvely, the most 
straightforward approach would be to start with a very large number 
of diploid individuals (equivalent to the size of the population we want 
to simulate) that are evolving according to our population model of 
choice. We would apply mutation and recombination to a sequence of 
appropriate length (possibly equal to the length of the DNA sequence 
to which we wish to compare the simulations), with mating and any 
possible natural selection occurring as well. This system would then 
have to run for many generations, at least until the population reached 
equilibrium, and finally a small number of chromosomes would need 
to be sampled from the population to create one simulated dataset. In 
order to generate thousands of independently simulated samples, this 
process would have to be run thousands of times. This procedure is 
often referred to as a forward simulation, as it proceeds forward in time 
from an initially identical population. 

It should be obvious from the above description that this approach is 
very inefficient: we only want to know the properties of a sample, but 
we are keeping track of the whole population. To get around this ineffi-
ciency several mathematical geneticists independently proposed what 
has come to be known as the coalescent process (Kingman 1982a, 1982b, 
1982c; Hudson 1983a; Tajima 1983). At its core, the coalescent process 
gives us a way to generate a sample of DNA sequences according to 
simple rules for generating a set of relationships among lineages—a ge-
nealogy. These rules enable us to produce a sample with almost any de-
mographic history, without the need to simulate an entire population. 

THE 
COALESCENT 6
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Because the process starts from the present and runs backward in time, it is 
referred to as a backward simulation. Today there are a number of software 
packages available for carrying out coalescent simulations (Table 6.1).

Because the coalescent process considers only a sample and not the whole 
population, it can be a very efficient way to generate a large number of simu-
lated datasets, but it is not without its own limitations, both biological and 
computational. Biologically, the coalescent is a model of a model: that is, it 
is an approximation of a Wright-Fisher or Moran population (albeit a very 
good one), which is itself an approximation of natural populations. A key as-
sumption of the coalescent is that the sample size, n, is much smaller than the 
effective population size, Ne. Violations of this assumption can result in mis-
leading inferences about population processes (e.g., Wakeley and Takahashi 

■ TABLE 6.1  Programs for simulating population samples of 
DNA sequences

PROGRAM SOURCE
COALESCENT (“BACKWARD”) SIMULATION SOFTWARE
ms Hudson 1990; Hudson 2002
GENOME Liang et al. 2007
SIMCOAL/SIMCOAL 2.0 Excoffier et al. 2000; Laval and Excoffier 2004
CoaSim Mailund et al. 2005
Recodon Arenas and Posada 2007
discoal Kern and Schrider 2016
msprime Kelleher et al. 2016

WRIGHT-FISHER (“FORWARD”) SIMULATION SOFTWARE:
EASYPOP Balloux 2001
simuPop Peng and Kimmel 2005
Nemo Guillaume and Rougemont 2006
FREGENE Hoggart et al. 2007; Chadeau-Hyam et al. 2008
ForSim Lambert et al. 2008
FORWSIM Padhukasahasram et al. 2008
GENOMEPOP Carvajal-Rodriguez 2008
SFS_CODE Hernandez 2008
FFPopSim Zanini and Neher 2012
fwdpp Thornton 2014
SLiM/SLiM 2 Messer 2013; Haller and Messer 2017

ARGON Palamara 2016

APPROXIMATE COALESCENT (“SIDEWAYS”) SIMULATION SOFTWARE
FastCoal McVean and Cardin 2005; Marjoram and Wall 

2006
MaCS Chen et al. 2009
fastsimcoal/fastsimcoal2 (Excoffier and Foll 2011; Excoffier et al. 2013)
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2003). While the standard coalescent can be modified to both more exactly 
match the Wright-Fisher model and to relax the n << Ne assumption, this 
modification results in the loss of speed of the algorithm (Fu 2006). More im-
portantly from a biological perspective, the coalescent only generates a small, 
random sample of chromosomes from a population without natural selection. 
It is not a simulation of a full population and therefore cannot provide results 
on anything but the properties of a sample. Although methods for simulating 
the coalescent with selection have been improving (e.g., Spencer and Coop 
2004; Teshima and Innan 2009; Ewing and Hermisson 2010; Kern and Schrider 
2016), the forms of selection that can be modeled are still limited.

Computationally, the advantages provided by the coalescent were much 
more important when computer processor speed and memory resources 
were limited, which has become less and less of an issue. Technological de-
velopments have made the efficiencies of the coalescent much less import-
ant, except in applications that use Bayesian sampling methodologies (see 
Chapter 9). Most importantly, however, when simulating very large regions of 
the genome or regions with very high recombination rates, the coalescent can 
become very inefficient, to the point that datasets currently being collected 
cannot be modeled using it. One solution to this problem has been the in-
vention of approximate coalescent methods, which are based on generating 
related genealogies as one moves along a stretch of DNA rather than one large 
genealogy for the whole region (Wiuf and Hein 1999); they are therefore side-
ways simulations. These methods are more formally referred to as sequentially 
Markovian coalescent (SMC) models (McVean and Cardin 2005; Marjoram and 
Wall 2006), and there are multiple programs for carrying them out (Table 6.1). 
SMC models have become quite useful, but they are even more removed from 
natural populations: they are a model of a model of a model! 

In the future, it may be that forward simulations will be the most widely 
used of such methods. There are a growing number of fast and flexible forward 
simulators that can model very large genomic regions under many different 
forms of natural selection and with many different demographic histories 
(Table 6.1). Computational advances have made these methods more feasible, 
and technological advances in DNA sequencing may make them necessary. 

While I have thus far only presented the coalescent as an algorithm for 
generating samples, there are many important uses for this approach (see 
Hein, Schierup, and Wiuf 2005, and Wakeley 2009 for good overviews). The 
 coalescent provides us with a way to probabilistically model genealogies 
and therefore provides expectations for a wide array of results in molecular 
population genetics. Many of these expectations are used in the later chap-
ters of this book. The coalescent also gives us a framework for thinking in 
terms of genealogies and therefore can give us insight into the underlying 
relationships  between our sampled DNA sequences. This framework can be 
extremely helpful in gaining an intuitive understanding of population genetic 
processes, so in the rest of the chapter I will discuss the basics of neutral co-
alescent genealogies and explain some of the most important aspects of the 
coalescent. In later chapters we will examine the effects of natural selection 
and nonequilibrium demographic histories on the genealogy at a locus.
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SIMULATING THE COALESCENT
Coalescent genealogies
Any sample of homologous chromo-
somes from a population is related in 
some way: that is, they all share ances-
tors in the recent past. Some sequences 
may be more closely related than others, 
but moving back in time all ultimately 
share a common ancestor. If we imagine 
the forward-in-time simulation described 
above as a model of a Wright-Fisher pop-
ulation, any collection of chromosomes 
sampled in the most recent generation 
will have a particular set of relation-
ships at a locus, which we call a genealogy 
(FIGURE 6.1; sometimes these are referred 
to as gene genealogies, even when the locus 
is not a gene). Going backward in time, 
two sequences that share a common an-
cestor in a specific generation are said to 
coalesce into a single lineage; going for-
ward in time, this coalescent event repre-
sents an individual chromosome giving 
rise to two daughter chromosomes. For 
the moment we consider only haploid 
individuals in a single population with 
no recombination and no selection, what 
Hudson (1990) called a “typical garden-
variety haploid species.” N diploid in-
dividuals can be formed by randomly 
joining 2N pairs of haploids. Eventually, 

FIGURE 6.1 The connection between Wright-
Fisher populations and coalescent genealogies. 
(A) The ancestor-descendant relationships among 
10 haploid chromosomes in a Wright-Fisher 
population. (B) The genealogy among five of 
these chromosomes across generations, until 
the most recent common ancestor of the sample 
is reached. (C) The resulting genealogy of the 
sample. (Adapted from Jobling, Hurles, and 
 Tyler-Smith 2004.)

T
im

e

Present
generation

Genealogy of the whole population

1 2 3 4 5 6 7 8 9 10

Embedded genealogy of a sample

2 4 5 7 9

Genealogy of the sample

2 4 5 7 9



THE COALESCENT  115

han39657_ch06_111-130.indd 115 02/26/18  06:46 PM

all lineages coalesce to a single sequence—the chromosome that is the most 
recent common ancestor of our sample.

The coalescent is a method for generating the genealogy relating our 
sampled chromosomes. The genealogies formed by running the forward-in-
time Wright-Fisher simulation over and over can be approximated by a very 
simple set of rules that put probabilities on the length of time between coales-
cent events, which can then be turned into a set of relationships represented 
by a genealogy. We can place mutations on the resulting genealogical tree at 
random and read off the equivalent of DNA sequences at the bottom. These 
two steps—generate tree, add mutations—are effectively all that is needed 
to provide us with a set of sequences approximating one sampled from a 
Wright-Fisher population. Next I describe these steps in more detail.

A straightforward way to generate coalescent genealogies is based on 
one simple approximation. If we replace the discrete generations used in 
the Wright-Fisher model with a continuous approximation, then the time 
until the next coalescent event is a random variable drawn from an expo-
nential distribution. This exponential distribution is parameterized only by 
the number of lineages left that can possibly coalesce, which means that 
times between coalescent events are smaller when there are larger numbers 
of lineages (for instance, toward the tips of the tree) and largest when only 
the last two lineages remain. Using the exponential distribution, we can 
now write down five easy steps for generating genealogies for a sample of 
size n:

1. Start with i = n chromosomes.

2. Choose a time until the next coalescence 
from an exponential distribution with par-
ameter x = i(i − 1)/2.

3. Choose two chromosomes at random to 
coalesce.

4. Merge the two lineages that were chosen 
and set i → i − 1.

5. If i > 1, go to step 2; if not, stop.

As an example, FIGURE 6.2 shows one pos-
sible genealogy generated by following the above 
steps for n = 5. Starting with i = n = 5, the process 
proceeds by choosing two lineages to coalesce, at 
which point i = 4, another coalescent event occurs, 
i = 3, and so on. Each time this process runs a 
slightly different genealogy will be created, as 
shown in FIGURE 6.3. To generate trees with a non-
equilibrium population history we need to adjust 
the times between coalescent events, but these 
transformations are relatively straightforward 
(see Chapter 9), and the resulting trees can be 

T2

T3

T4

T5

FIGURE 6.2 Example of a coalescent 
genealogy for a sample size of n = 5. The 
times between coalescent events, Ti, are 
equivalent to the amount of time that there 
are i lineages in the genealogy.
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interpreted in the same way. Time in this tree is measured in N generations for 
haploid models, 2N generations for diploid models, and sometimes even 4N 
generations for convenience.

The construction of a coalescent genealogy is completely independent of 
the presence or absence of mutations. There is a set of relationships among 
chromosomes regardless of whether or not there are mutations distinguish-
ing them. This means that we can apply mutations to our genealogy in a 
second step that is not dependent on the details of how our genealogy was 
constructed, although the number and placement of mutations can depend on 
the tree. This independence also allows us to use any kind of mutation (SNP, 
indel, transposable element, etc.) under any mutation model (infinite sites, 
infinite alleles, etc.). 

There are two methods used for putting mutations on genealogies. The first 
is referred to as the fixed-S method (Hudson 1993) and proceeds by putting a 
prespecified number of mutations, S, on the tree. This method is useful for 
making direct comparisons between a sample with a certain number of seg-
regating sites and simulated genealogies with the same number of variants. 
These sorts of comparisons are most common when some aspect of variation 
other than just the level of polymorphism, such as the allele frequency spec-
trum, is being investigated. Since the number of segregating sites is prespeci-
fied, we only have to place the S mutations on branches of the tree at random, 
with probability proportional to branch length. A second method is used 
when S is not specified initially: in this case we need to generate the number 
of mutations to place on the tree using the population mutation parameter 
q (=4Nm for autosomal loci in diploids). Using t to represent the time on any 
particular branch of the genealogy, the number of mutations per branch is 
Poisson-distributed with mean t * q/2. Here we have combined the generation 

FIGURE 6.3 Variation in the height and topology of coalescent genealogies of size 
n = 5. Each tree is a genealogy independently generated from exactly the same 
population. Simulations were carried out in discoal (Kern and Schrider 2016).
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of mutations with their placement on the tree: longer branches will again have 
more mutations using this method because more of them will appear over 
longer periods of time. For computational simplicity we can also sum all of 
the times in the tree, Ttotal, to first draw mutations from a Poisson distribution 
with mean Ttotal * q/2 and then “throw” all of them on the tree at random, as 
was done in the fixed-S method. 

FIGURE 6.4 shows a coalescent genealogy with four chromosomes and six 
mutations. As stated earlier, these mutations can represent any kind of event 
under any mutational model; in order to simplify the discussion, however, let 
us treat them as single nucleotide polymorphisms generated under the infinite 
sites model. In order to turn these mutations into something that resembles a 
DNA sequence, we start with a sequence of length L = 6 for each of the four 
chromosomes, setting each position to 0 initially (the ancestral state). Then 
we propagate each mutation down the tree, such that all descendant lineages 
receive a 1 if they inherited the mutated version of the allele. The string below 
each sample in Figure 6.4 shows the resulting sequence, with the position 
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0

0

0
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0

1

0

0

0
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Sample 1

Sample 2
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FIGURE 6.4 Putting mutations on coalescent genealogies. Six mutations have been 
randomly placed on the coalescent genealogy on the left. Starting from an ancestor 
represented by the sequence [0, 0, 0, 0, 0, 0], derived alleles are represented by a 
change from 0 → 1. The sequences at the bottom represent the resulting haplotypes, 
which are also shown in the alignment to the right. There is no significance to the 
ordering of mutations in the alignment.
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in the string corresponding to the mutations in the tree numbered from left 
to right and top to bottom. Bearing in mind that we are still dealing with a  
non-recombining locus, note that nothing is implied by the order of mutations 
in the  alignment, although later in the chapter we will consider the effect of 
recombination, when order will matter. One can see that mutations that occur 
on an external branch of the genealogy result in singleton mutations, and that 
those closer to the root generally occur in a greater number of individuals in 
the sample. The resulting “sequences” of this process can then be treated like 
any DNA or protein sequence, with each 0/1 site representing the ancestral/
derived alleles.

Genealogies and phylogenies
While coalescent genealogies resemble typical phylogenetic trees in many ways, 
there are very important differences between the two types of trees. The samples 
taken from a population are related to one another by some unknown geneal-
ogy. In fact, the tree describing the relationships among our samples is generally 
both unknown and nearly unknowable: there is still a genealogical tree even if 
there are no mutations distinguishing our samples. We are in no way trying to 
infer the tree from the identity of alleles, as is done in phylogenetics, or when 
building “gene trees” for mtDNA or Y-chromosome haplotypes within species. 
Furthermore, as will be discussed in more detail below, in the presence of recom-
bination there can actually be a different genealogy for every nucleotide position 
in the locus, precluding even the possibility of inferring a single tree. 

Instead, the coalescent algorithm presented above generates one possible set 
of relationships between these chromosomes, which may or may not exactly 
match that of our sample. One of the explicit purposes of the coalescent is to 
generate many different genealogies, effectively treating the tree as a nuisance 
parameter that has to be averaged over. The idea that the set of relationships 
among chromosomes is itself a cause of variance in our dataset highlights the 
two sources of stochasticity in the coalescent process and, by extension, in any 
molecular dataset: the variance introduced by sampling sets of relationships 
(i.e., genealogies) and the variance introduced by sampling mutations from a 
group of chromosomes with any given set of relationships. These sources of 
variation are obvious in retrospect when considering the two steps we used 
to carry out coalescent simulations—generate trees, add mutations—each of 
which had an important element of stochasticity. Often these two sources of 
randomness are referred to as the evolutionary variance and the sampling vari-
ance, respectively. When using explicit hypothesis tests it will be very impor-
tant to know which sources of variation we must take into account and which 
can be ignored (see Chapters 7 and 8).

UNDERSTANDING THE COALESCENT

Important genealogical quantities
Thus far the discussion has not touched on the mathematical basis for the co-
alescent, nor on how exactly different aspects of the coalescent genealogy affect 
measures of molecular diversity. While a deep theoretical understanding of the 
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coalescent is beyond the purview of this book, below I discuss four mathemati-
cal descriptions of genealogies that should at least shed light on the connection 
between the coalescent and population genetic processes.

PROBABILITY OF A COALESCENT EVENT In any given generation, it is an evident 
requirement that every chromosome had an ancestor in the previous genera-
tion (Figure 6.1). If there is no natural selection, each chromosome in the cur-
rent generation can pick an ancestor at random; alternatively, we can say that 
each chromosome in the previous generation has an equal probability of being 
a parent to a given chromosome in the current generation. In a Wright-Fisher 
population of constant size 2N this means that there are 2N possible ancestors 
from which to choose, each with probability 1/2N of being chosen. Recall that 
a coalescent event occurs when two individuals choose the same ancestor, 
which for any particular pair of chromosomes has a probability of 1/2N: that 
is, conditional on one of the pair picking an ancestral sequence, the second 
has a 1/2N probability of picking the same sequence. If we have a sample of 
size n, then there are n(n − 1)/2 possible pairs of sequences that can choose 
the same ancestor in the preceding generation. In general, in any generation 
in the past, for i lineages there are i(i − 1)/2 possible pairs that could choose 
the same ancestor with probability 1/2N. So the probability of any coalescent 
event occurring in a generation—that is, the probability of going from i to i − 1 
lineages—is the product of these two terms:

 → − =
−

P i i
i i

N
( 1)

( 1)
4

 (6.1)

This probability assumes that at most two chromosomes can choose the same 
ancestor in any generation, an assumption closely tied to the requirement that 
n << N. We will see how the probability of a single coalescent event leads to 
further insight in the next section, but for now note that Equation 6.1 implies 
that larger numbers of sample lineages are more likely to have a coalescent 
event in a given generation.

TIME BETWEEN COALESCENT EVENTS The probability of a coalescent event 
among i lineages can directly tell us about the expected time for which 
i lineages remain. With probability 1 – P(i → i − 1) there are no coalescent 
events  in  any particular generation with i lineages remaining. If no coales-
cent  event  occurred then there is again a probability of P(i → i − 1) of a 
 coalescent event and 1 − P(i → i − 1) of no coalescent events in the generation 
prior, and so on. The expected mean waiting time until a coalescence occurs 
(i.e., the time it takes to go from i to i − 1 lineages)—referred to here as Ti 
(Figure 6.2)—is therefore approximated by an exponential distribution with a 
mean that is the inverse of Equation 6.1: 

 =
−

E T
N

i i
( )

4
( 1)i  (6.2)

Just as the probability of a coalescent event was higher for larger numbers 
of lineages, Equation 6.2 shows that the time between coalescent events is 
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smaller. This means that, for instance, the time to go from 10 to 9 lineages will 
be much smaller than the time to go from 5 to 4 lineages (e.g., Figure 6.3). On 
average, times between coalescent events will be smallest toward the tips of 
the tree and longest while waiting for the last two lineages to coalesce to the 
most recent common ancestor (MRCA) of the entire sample.

HEIGHT OF THE COALESCENT GENEALOGY We may be interested in the ex-
pected amount of time before every lineage in our sample coalesces to a single 
lineage, the MRCA. Since we know that the expected waiting times to go from 
i → i − 1, i − 1 → i − 2, i − 2 → i − 3, … , 2 → 1, are Ti, Ti−1, Ti−2, … , T2, we can 
determine the average tree height by summing these times: 

 = −






E T N

n
( ) 4 1

1
MRCA  (6.3)

For a sample of two chromosomes, Equation 6.3 says that the tree height—the 
time to the most recent common ancestor—is on average 2N generations. As 
the sample size gets larger, the height of the tree approaches 4N.

TOTAL TREE LENGTH The total length of the tree is the sum of all branches in 
the tree, and this value will therefore determine how many mutations are ob-
served in the sample. We can derive the expected total tree length, Ttotal, by 
noting that Equation 6.2 gives the expected amount of time that there were 
i lineages, such that the total branch length among all lineages during this 
period is i * E(Ti) (see Figure 6.2). Summing the total amount of time there 
were i lineages, i – 1 lineages, i – 2 lineages, and so on, gives us: 
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For n = 2, the expected total tree length is 4N (twice the value of TMRCA be-
cause there are only two branches), and the tree gets larger as the sample size 
gets larger. But note that each new chromosome added to the sample adds 
less and less length to the tree on average: for n = 5 the expected length is 
4N * 2.08, while for n = 10 it is 4N * 2.83, and for n = 20 it is only 4N * 3.55. Most 
of the tree length (and height) is contributed by only two chromosomes, and 
adding more individuals is likely to only add more coalescences that occur 
toward the tips of the tree. 

The coalescent and measures of polymorphism
We can now relate the above genealogical measures to actual quantities col-
lected from samples of chromosomes. We can also informally prove that sev-
eral of the statistics for measuring diversity in a sample (Chapter 3) are in 
fact estimators of the population mutation parameter q under a Wright-Fisher 
population at equilibrium.

Recall that we earlier defined the statistic p as the average number of 
nucleotide differences between any two sequences. From Equation 6.3 we 
can see that the average time to the MRCA of any two randomly sampled 
sequences is 2N generations. Assuming mutations occur with probability m 
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per generation and that populations are measured in effective sizes (Ne), we 
expect there to be 2 * 2Ne * m = 4Nem differences between two sequences. This 
demonstrates that p is expected to be an estimator of q under our neutral-
equilibrium assumptions.

While the statistic p is based on the average number of pairwise differences 
between sequences, we define the statistic qW based on the number of segre-
gating sites, S, so that: 

 θ =
S
aW  (6.5)

where a is equal to: 

 ∑=
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−
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n

1

1

 (6.6)

The term in Equation 6.6 should be familiar—it is used in defining the total 
length of the coalescent tree, Ttotal (Equation 6.4). It is obvious that collecting 
more sequences will allow us to find more segregating sites, but the qW statis-
tic penalizes us less and less for each additional sample. As seen above, each 
additional sequence also adds less and less to the total length of the coalescent 
tree, which of course results in fewer new polymorphisms added. We can see 
this pattern explicitly by rearranging Equation 6.5 to give S = qWa. Again as-
suming (1) that mutations occur with probability m per generation and uni-
formly randomly across the tree and (2) an infinite sites model, the expected 
number of segregating sites in a sample is then:

 ∑µ µ θ= = =
=

−

E S N
i

N a a( ) * 4
1

4 *
i

n

1

1

 (6.7)

using the relationships given in Equations 6.4 and 6.6. This helps us to see 
that qW is expected to be an estimator of q under our neutral-equilibrium 
assumptions.

The structure of coalescent genealogies gives us a way to graphically repre-
sent the frequency of alleles and the allele frequency spectrum. We previously 
defined the number of segregating sites with the derived allele present in i 
chromosomes, and the ancestral allele present in n − i chromosomes, as Si. 
We can see from the structure of the tree that for any particular derived allele 
present on i sequences, the mutation must have occurred on a branch with 
exactly i descendants (Figure 6.4). For instance, an allele found three times 
in a sample must have arisen on a branch with exactly three descendants. 
Here we are assuming an infinite sites model, since under a finite sites model 
the same site may have either reverted to the ancestral state on a descendant 
lineage or mutated to the same state on a completely different branch of the 
tree. Such events will complicate the correspondence between single muta-
tions and their frequency. 

Singleton mutations—those present on only a single chromosome—occur 
on the branches leading directly to the present-day samples. These are some-
times referred to as external branches, in contrast to all branches leading to two 
or more descendants, which are called internal branches (Fu and Li 1993a). Not 
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all allele frequencies will be possible with every genealogy, as there are not ne-
cessarily internal branches with 2, 3, ... n − 1 descendants in every tree (there 
are always n branches with one descendant). The exact topology of the gene-
alogy will determine what allele frequencies are possible and therefore the 
possible allele frequency spectra. However, averaging over all genealogies, 
we can predict the expected number of segregating sites at any frequency (i.e., 
the allele frequency spectrum) with: 

 
θ

=E S
i

( )i  (6.8)

where i goes from 1 to n – 1 (Fu 1995; Griffiths and Tavaré 1998). This implies 
that there are q singletons, q/2 doubletons, q/3 tripletons, and so on, and that 
singletons will be the most common type of site. Equation 6.8 also shows why 
the statistic qe (=S1; Chapter 3) is an estimator of q in a Wright-Fisher popula-
tion at equilibrium, and in general that iSi is an estimator of q for all i between 
1 and n – 1. 

Using qW as an estimator of q, for any sample we can write the expected 
number of neutral alleles at every frequency as: 

 =E S
S

i a
( )

*i  (6.9)

where S represents the total number of segregating sites in the sample and a 
is defined as in Equation 6.6. FIGURE 6.5A shows an example of the expected 
neutral allele frequency spectrum at a locus with S = 28 and n = 11.

All of the above discussion has referred to what we called the unfolded fre-
quency spectrum, for which we were able to assign ancestral and derived al-
leles (Chapter 3). For the folded allele frequency spectrum we do not know 
whether an allele present on i chromosomes is due to a new mutation that 
occurred on a branch with i descendants or an ancestral allele that remains 
after a mutation occurred on a branch with n − i descendants. Regardless, we 
can also write down the expected number of segregating sites at frequencies 1 
to n/2 (rounding down for odd-sized samples): 

 
θ

=
−

E S
n

i n i
( )

*
( )i  (6.10)

and we can again substitute qW as an estimator of q to give:

 =
−

E S
n S

i n i a
( )

*
( )i  (6.11)

FIGURE 6.5B shows the expected folded allele frequency spectrum at a locus 
with S = 28 and n = 11, the same as in Figure 6.5A, but with no assignment of 
derived and ancestral alleles.

The effects of ascertainment bias on the allele frequency spectrum
The shape of the allele frequency spectrum is an important measure in mo-
lecular population genetics. Knowing its expected shape in an equilibrium 
population when there is no effect of selection means that we are able to detect 
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deviations from this expectation, whether they are due to nonequilibrium 
demographic histories (see Chapter 9) or linked selection (see Chapter  8). 
However, as mentioned in Chapter 2, if we genotype a set of variants in a 
large sample that was previously ascertained from a smaller sample, we intro-
duce a bias into our allele frequency spectrum. An important consequence 
of the small size of the initial discovery sample is that we are more likely 
to discover intermediate-frequency variants and less likely to discover any 
particular low-frequency variants (i.e., those whose minor allele frequency is 
low). This tendency means that the allele frequency spectrum inferred from 
pre-ascertained polymorphisms can be highly biased compared to the theor-
etical expectation (FIGURE 6.6).

As was discussed with regard to pre-ascertained polymorphisms and meas-
ures of both linkage disequilibrium (Chapter 4) and FST (Chapter 5), there is 
nothing inaccurate about the sample frequencies of the individual segregat-
ing sites. These estimates are expected to be the correct frequencies and may 
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even be the same between the discovery sample and the second, often larger, 
sample if they are drawn from the same population. However, the expected 
proportion of polymorphisms at each frequency in the genotyped sample will 
not match the expected values if there was no pre-ascertainment. In fact, a 
slight bias will be introduced even if the discovery sample is larger than the 
genotyped sample, largely because low-frequency alleles unique to the second 
sample will not be represented. If the ascertainment scheme is known, we can 
correct for it to recover the underlying (unbiased) allele frequency spectrum 
(e.g., Nielsen and Signorovitch 2003; Nielsen, Hubisz, and Clark 2004; Clark 
et al. 2005). However, no correction is perfect, and caution must be used when 
interpreting even these updated spectra (Clark et al. 2005).

EXTENDING THE COALESCENT

The coalescent with recombination
The above discussion has focused on the properties of a locus large enough 
(or with a low enough mutation rate) to meet the assumptions of the infinite 
sites model, but small enough that it will have no intra-locus recombination. 
These assumptions are clearly unrealistic for most datasets, so we must now 
consider the effect of recombination on coalescent genealogies.

As stated earlier, each individual nucleotide in a sequence has its own gene-
alogy describing the relationships among chromosomes in the sample. If there 
is no recombination between a nucleotide and the nucleotide immediately ad-
jacent to it, then they both have the same genealogy (FIGURE 6.7A). If there is 
free recombination—as between two nucleotides on different chromosomes— 
then the two sites will have completely independent genealogies. The more 
interesting cases occur when sites are partially linked: when there are a limited 
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number of recombination events separating them. In terms of the coalescent 
genealogy, each recombination event between two sites causes a rearrange-
ment in the tree, resulting in a change in location of the coalescent event pre-
dating the recombination event (Figure 6.7A). Note that both trees still retain 
all of the properties described above for single trees—recombination does 
not change the average topology of a tree (Kaplan and Hudson 1985). The 
two neighboring genealogies that result from a single recombination event 
will no longer be identical, but will be highly similar; many properties, such 
as their heights and total lengths, will be highly correlated (Griffiths 1981; 
Hudson 1983b; Kaplan and Hudson 1985). This means that many measures of 
variation, such as p and qW, will also be correlated among linked loci. More 
and more recombination events will lead to more and more changes to the 

Recombination

Recombination

Position 1 Position 240 Position 241 Position 328Position 327

Ancestral recombination graph

(A)

(B)

FIGURE 6.7 The effect of recombination on coalescent genealogies. (A) 
Genealogies across a  hypothetical locus. From positions 1 to 240 there are no 
recombination events, and therefore there is only a single genealogy. A recombina-
tion event occurs between positions 240 and 241, resulting in a new tree. Again, 
there is no recombination between positions 241 and 327. A second recombi-
nation event occurs between positions 327 and 328, and a new tree is created 
moving to the right. (B) The ancestral recombination graph summarizing the three 
unique genealogies represented in (A). Relative to the tree at position 1, new co-
alescent events introduced by recombination are indicated with dashed lines.
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genealogy, until eventually two genealogies separated by many recombina-
tion events will look nothing alike and will in fact be completely independent.

Considering a single locus with a limited number of recombination events, 
R, we can now imagine it as a set of R + 1 non-recombining segments, each 
with its own genealogy (as in Figure 6.7A). We refer to the individual genealo-
gies for each segment as the marginal genealogies for the locus. Given all of the 
marginal genealogies, we can construct an ancestral recombination graph (ARG) 
that represents the combined history of all the individually non-recombining 
segments (FIGURE 6.7B). Coalescent events are again represented in the ARG 
as lineages that bifurcate, while recombination events cause lineages to join 
together (looking forward in time). Although this description of ARGs makes 
them seem limited to simple graphical representations of a collection of mar-
ginal trees, these graphs have many important applications in population ge-
netics (e.g., Song and Hein 2005). This discussion of ARGs should also make 
it clear that for an autosomal locus with recombination, there is no single tree 
that describes the relationships among the samples. Instead, there is a series 
of trees, one for each segment with no recombination events in its history. 
This implies that it is not possible to infer a single, bifurcating gene tree for 
a recombining region, although such an inference will still be possible using 
Y-chromosome or mtDNA loci.

As was the case with the relationship between coalescent genealogies and 
summaries of nucleotide variation presented in the previous section, consider-
ation of the effect of recombination on a genealogy can lead to a deeper under-
standing of statistics that summarize the history of recombination events in 
a sample, as well as of the variances associated with multiple measures of 
nucleotide polymorphism. In Chapter 4 we considered two measures of ga-
metic linkage disequlibrium, D′ and r2. Recalling that “complete” LD means 
that D′ = 1 and “perfect” LD means that r2 = 1, a coalescent genealogy gives 
us an intuitive graphical understanding of what both of these values mean. 
Because two polymorphisms can have D′ = 1 as long as there is no (detectable) 
recombination between them, in the coalescent context this value just means 
that the two segregating sites share the same genealogy. The mutations do not 
necessarily have to have occurred on the same branch of the genealogy, and 
as a result there can be three haplotypes in the sample. In contrast, two poly-
morphisms have r2 = 1 only when they are perfectly correlated, and there are 
therefore only two haplotypes in the sample. This means that the sites must 
share the same topology and that the mutations must have occurred on the 
same branch or on either side of the root node. 

We have also seen the population recombination parameter, r = 4Nec and 
several estimators of it in Chapter 4. Just as the population mutation param-
eter, q, is proportional to the number of polymorphic sites in a sample, r is 
proportional to the number of recombination events in a sample, R. As dis-
cussed in Chapter 4, estimating the true number of recombination events in a 
sample can be difficult because most such events are not detectable. However, 
the structure of the coalescent genealogy still allows us to see the relation-
ship between r and R. Using c to represent the recombination rate per nucleo-
tide per generation, we can again imagine that recombination events occur 
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uniformly randomly across space and time—that is, recombination can occur 
anywhere within a locus with equal probability, and we can “throw” recom-
bination events on our coalescent genealogy in the same manner we did with 
mutations (though recombination changes the underlying shape of the ge-
nealogy). Given the expectation for total tree length in Equation 6.4, the ex-
pected number of recombination events in our sample is thus (Hudson and 
Kaplan 1985):

 ∑ ρ= = =
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which is exactly analogous to the expectation for the number of segregating 
sites given in Equation 6.7, with q replaced by r. There are three important 
differences between the relationships given in Equations 6.7 and 6.12, how-
ever. First, as mentioned a number of times, most recombination events are 
not detectable, and therefore using the number of detectable events, such as 
Rm, will not yield a good estimator of r. Because most mutation events are 
detectable under the infinite sites model—and adjustments can be made for 
finite-site scenarios (Chapter 3)—S is a good estimator of q, at least under 
the equilibrium assumptions of the Wright-Fisher model. Second, unlike the 
case of simulating mutations alone, we must now explicitly choose a location 
along the sequence at which individual recombination events and mutations 
occur. The ordering of recombination events is key to generating the marginal 
genealogies at a locus. Third, the exact tree onto which we are throwing re-
combination events may not be clear, as putting a recombination event on a 
tree necessarily changes the topology. One way to think about this situation 
is to consider the fixed genealogy at the first nucleotide to the left of a region 
being studied. We can then imagine each recombination event in our sample 
being put on this fixed tree, with new genealogies being generated to the right 
of this site, within our region of interest. This method is not the way in which 
standard backward coalescent algorithms simulate recombination events (see 
Hudson 1983b, 1990), but it may help to give a more intuitive understanding 
of the process. 

Finally, recall that the variance in estimators of the population mutation 
parameter, such as p and qW, go down as recombination rates go up (Equations 
3.4 and 3.7). The coalescent provides a genealogical perspective on this asso-
ciation. Within a locus with no recombination, there is a single genealogy de-
scribing the relationships among chromosomes. The height and total length of 
this genealogy are themselves drawn from distributions with large variances, 
and the fact that we have a single tree means that there is effectively a single 
draw from these distributions. Within a locus with recombination, higher re-
combination means that there are more and more marginal genealogies and 
these individual genealogies are increasingly independent from one another. 
In effect, this means that we have drawn a large number of independent sam-
ples from the distributions that indirectly determine levels of polymorphism 
(tree height and length); the variance is therefore much reduced. In the ex-
treme case of free recombination among a very large number of sites, there is 
essentially no effect of evolutionary variance because we are averaging over 
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a very large number of independent trees. The only variance is introduced 
by sampling mutations on the tree, and for qW it is therefore equivalent to the 
variance of the Poisson process by which we chose the number of mutations 
(the mean is equal to the variance for Poisson distributions). The take-home 
message from these results is that accurate estimates of recombination are key 
to producing accurate confidence intervals around statistics of interest.

The coalescent and reference genomes
The reference genome for a species generally comes from sequencing a single 
individual, whether inbred or outbred (Chapter 2). Because there is nothing 
necessarily special about this individual—it does not represent the ancestral 
state for the species, nor is it a “consensus” individual—the reference genome 
will contain both ancestral and derived states for independently segregating 
polymorphisms, just as any chromosome sampled from nature would. In the 
context of short-read sequencing, the reference genome is used as the back-
bone upon which all reads are mapped and therefore often takes a more pre-
eminent role in population samples than perhaps it deserves. For instance, 
conservative methods for calling polymorphisms from short-read datasets 
sometimes default to the reference base when there is not high confidence in 
alternative alleles. This can have important consequences for estimating the 
derived allele frequency spectrum (note that defaulting to an N is therefore 
better). One interesting (and helpful) use of coalescent genealogies can thus 
be to ask: What proportion of segregating sites in a sample will have the derived allele 
in the reference genome? 

If the sample is of size n = 2, the answer should be obvious: there are ex-
pected to be on average q differences between any two chromosomes, with 
the mutations occurring equally along the lineages leading to each chromo-
some from the ancestor. Therefore, the proportion of derived alleles on either 
of the two branches (arbitrarily assigning one to be the reference) will be 1/2. 
For samples larger than 2, slightly more sophisticated arguments are needed. 
There are actually two ways of answering this question, each of which is just 
a restatement of the central problem. To find the proportion of segregating 
sites with the derived allele on any arbitrarily chosen chromosome, we can 
find either (1) the expected average frequency of derived alleles in a sample, 
or (2) the expected proportion of mutations that have occurred in the history 
of a single chromosome relative to the entire sample. 

The average frequency of derived alleles in a sample gives the expected 
proportion of derived alleles on any chromosome, averaging across all seg-
regating sites. To see this, imagine choosing a single chromosome at random 
from nature. For any given polymorphism with derived allele frequency p, 
the probability of choosing a chromosome that contains the derived allele will 
also be p, so the probability of sampling a derived allele at frequency p = 0.8 
will be 0.8, the probability of sampling an allele at frequency p = 0.01 will be 
0.01, and so on. Therefore, averaging across many segregating sites, the prob-
ability of sampling the derived allele will simply be the average derived allele 
frequency; this measure will be equivalent to the fraction of sites at which the 
derived allele has been sampled. From Equation 6.9, we have the expected 
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number of segregating sites with derived alleles found on i chromosomes, Si. 
We now want to know—across all segregating sites—the average number of 
chromosomes in a sample of size n that contain the derived allele at each site, 
which we denote as m. Letting q(m) be the distribution of m in a sample (i.e., 
the derived allele frequency spectrum), Griffiths and Tavaré (1998) showed 
that the expected value of m in a Wright-Fisher population at equilibrium is:

 ∑
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such that the average frequency of derived alleles in the sample is m/n. For 
the case of n = 2, Equation 6.13 again gives m = 1, for an average derived allele 
frequency of 1/2. For a sample of size n = 11 (as in Figure 6.5), m = 3.59 and 
the average derived allele frequency is 0.326.

To get a more genealogical intuition for this result, consider the alterna-
tive way of phrasing the question: What is the expected proportion of muta-
tions that have occurred in the history of a single chromosome, out of the 
whole sample? Because we are conditioning on seeing segregating sites, we 
only need to trace the history of the chromosome back to the MRCA of the 
sample; all mutations that occurred before this point are by definition fixed. 
Recognizing that derived mutations on any single chromosome must have 
occurred since the MRCA, we need to know the time back to this ancestor. 
Fortunately, Equation 6.3 gives the expected time back to the MRCA from any 
of the tips of the genealogy. To get the fraction of all mutations that occurred 
on only this branch, we divide Equation 6.3 by Equation 6.4, the total time in 
the tree (FIGURE 6.8). If mutations are again thrown down at random across 
branches and we assume the infinite sites mutation model, this relationship 
gives the expected proportion of sites that have the derived allele on any 
single chromosome, b:
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which is equivalent to m/n, the average frequency of derived alleles, as de-
fined above for Equation 6.13.

These relationships show that the average derived allele will be low in fre-
quency, with a range of frequencies of approximately 0.20 to 0.50 for low- to 
moderate-sized samples. As could be guessed from a glance at the expected 
derived allele frequency distribution (Figure 6.5), the minor allele at a segre-
gating site is most often the derived allele. In fact, Watterson and Guess (1977) 
have shown that the probability that an allele represents the ancestral state is 
simply equal to its population frequency, p; the same holds for the frequency 
of alleles in a sample (Griffiths and Tavaré 1998). 

With respect to a reference genome, the above results show that a substan-
tial fraction of polymorphic sites in a sample (0.20–0.50) will have the derived 
allele in the reference genome. As mentioned above and in Chapter 2, this 
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finding implies that base-calling in a sample of individuals may often default 
to both derived and ancestral reference alleles. If base-calling is too conserv-
ative, this process will result in a skewed derived allele frequency spectrum, 
as polymorphisms with the derived state in the reference will be pushed to 
higher apparent sample frequencies. Therefore, when base-calling defaults to 
the reference allele conservative criteria for identifying variant sites may be 
worse. Fortunately, we can correct for such biases, either by lowering the qual-
ity thresholds used to call polymorphic sites, taking the sampling bias inher-
ent in the reference genome into account, assigning low-quality bases to be 
Ns rather than the reference allele, or iteratively identifying varying sites and 
re-calling genotypes based on the updated probability that a site differs from 
the reference (e.g., DePristo et al. 2011).

*

FIGURE 6.8 The proportion of all mutations 
in the sample that have occurred in the his-
tory of a single chromosome. If mutations 
occur uniformly randomly across the tree, 
this proportion is equivalent to the amount 
of time since the MRCA for a single chromo-
some, divided by the total time in the tree. 
For an arbitrary sampled chromosome de-
noted with a *, the thicker black line traces 
its ancestral lineages. The proportion of total 
time in the tree represented by this lineage is 
given by Equation 6.14.
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The consequences of natural selection for molecular variation can be 
usefully divided by separately considering the effects of selection on 
mutations that are themselves advantageous, deleterious, or neutral 
(direct selection) and the effects on mutations closely linked to those 
under selection (linked selection). The expectations for patterns of poly-
morphism are often different in these two cases, and therefore different 
methods will be best at detecting one type of selection or the other. A 
deeper understanding of these methods will require at least a passing 
familiarity with the theory and assumptions underlying them; in this 
chapter I therefore consider these assumptions and their implications 
for inferring the effects of direct selection. The methods discussed here 
have been used successfully in a large number of studies to examine 
the effects of natural selection and are a key tool in understanding DNA 
sequence evolution. 

THE ACCUMULATION OF SEQUENCE DIVERGENCE

The rate of nucleotide substitution
John Maynard Smith called k = m one of the most important equations 
in all of evolutionary genetics (Maynard Smith 2002). I could not agree 
more: it is both an amazingly elegant result (first applied to molecular 
data by Kimura 1968, but also found in Wright 1938) and the apotheo-
sis of the neutral theory (discussed in Chapter 1). But it is not only an 
elegant result—it is also one of the building blocks of many of the tests 
of natural selection covered in the rest of this book. Below we begin to 
explore its role in molecular evolution. 

The variable k is defined as the substitution rate of new alleles—that 
is, the rate at which alleles are fixed over long periods of time (also 
sometimes denoted as r). The substitution rate is commonly measured 
per generation or per million years. The value of k determines how 
quickly two sequences are expected to diverge over time. Defining d as 
the genetic distance between two orthologous sequences, the contribu-
tion of the rate of substitution to the expected amount of divergence 
can be seen in the following equation:

 E(d) = k2t + qAnc (7.1) 

DIRECT 
SELECTION 7



132  CHAPTER 7

han39657_ch07_131-164.indd 132 02/26/18  06:46 PM

where t is the time since the species split (Gillespie and Langley 1979; also 
see Li 1977). For simplicity, assume that we are calculating all values per site 
so that we can ignore the length of the sequence. Within a locus, k therefore 
represents the average substitution rate across sites. Recall that we use 2t 
because substitutions can occur on both branches of the phylogenetic tree 
and we are considering only the pairwise divergence between sequences. 
We add the average amount of nucleotide variation expected between two 
sequences in the ancestor (qAnc) because at the time of speciation these dif-
ferences have already accumulated along the two lineages (FIGURE 7.1). This 
expected distance is the same as that used for the statistic dXY (Chapter 5); 
however, we only have to sample a single sequence from each species to 
calculate d. 

In cases in which divergence levels are much greater than the expected 
levels of polymorphism in the ancestral species, we may simply write:

 E(d) ≈ k2t (7.2) 

This equation demonstrates an obvious relationship: species differ because 
new alleles arise and are fixed, and the rate at which this process happens and 
the time elapsed since the lineages split both contribute to the total amount of 
divergence. Nevertheless, this equation does not tell us what affects the rate 
of substitution.

There are two quantities that determine the rate of substitution. The 
first is the probability of fixation of any mutation, which we denote u. This 
probability is a function of the frequency at which mutations are found, 
p, but for now we are only interested in the probability of fixation of new 

Time of species split
(t)

Time of genic split

Today
A B

FIGURE 7.1 Distinction between the time since the species split and the time since 
the genes being compared split. The history of a single ancestral species splitting into 
two descendant species is circumscribed by the darker lines. The history of a single 
orthologous sequence sampled in each of the two descendant species (A and B) is 
denoted by the thinner, blue line. Prior to the species’ split, two sequences within the 
ancestral population are expected to have on average qAnc differences. If the ances-
tral population met the assumptions of the Wright-Fisher model, the time of genic split 
is expected to have been 2Ne generations prior to the time of the species split, t.
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mutations, which always begin at frequency 1/2N for autosomal loci. The 
probability of a mutation fixing when it has no effect on fitness—when it 
is neutral with respect to alternative alleles—is simply equal to its current 
frequency. So for a mutation at p = 0.4, u = 0.4, and there is a 40% chance 
it will eventually go to frequency 1 (and conversely a 60% chance it will 
be lost). For a new, neutral mutation of frequency 1/2N, its probability of 
fixing is therefore simply u0 = 1/2N. 

For new, advantageous mutations (s > 0) and large effective population 
sizes, the probability of fixation is (Haldane 1927; Fisher 1930; Wright 1931):

 ua ≈ 2sa (7.3)

(In order to indicate the selective advantage in these papers, Haldane used 
the symbol k, Fisher used the symbol a, and Wright used the now-standard s.) 
Here sa is the selective advantage of the new allele in a heterozygote and 2sa is 
the advantage in a homozygote. For new, deleterious mutations (s < 0) that do 
not have large effects, the probability of fixation is (Kimura 1957):

 ≈
− ( )−

u
s

e

2

1 Nsd
d
4 d

 (7.4)

Here sd is the selective disadvantage of the new allele in a heterozygote and 
2sd is the disadvantage in a homozygote. FIGURE 7.2 shows the probability of 
a new selected mutation fixing relative to a neutral mutation such that these 
probabilities are equal at Ns = 0 (i.e., their ratio is 1). It can be seen that slightly 
advantageous mutations are not that much more likely to fix than neutral mu-
tations, and also that even slightly deleterious mutations have some prob-
ability of fixing. Even though these slightly 
deleterious mutations—often referred to as 
nearly neutral—must have extremely small 
selective effects for Ns to be close to 0, they 
are expected to make a contribution to se-
quence divergence in smaller populations 
(see below).

The second quantity contributing to the 
rate of substitution is the total number of 
mutations that arise and can possibly be 
fixed. If the probability of a mutation at a 
nucleotide in each generation is n, then in 
a population of N diploid individuals there 
will be 2Nn new mutations per generation 
(at a single site) in the total population at 
autosomal loci. Of these mutations, 2Nnf0 
(=2Nm) will be neutral, with f0 representing 
the fraction of mutations that are neutral.  
The remaining mutations are composed  
of the fraction that are advantageous, fa, and 
the fraction that are deleterious, fd (such that 

Ns
−1.0 −0.5 0.0 0.5 1.0

1

2

3

4

FIGURE 7.2 Probability of fixation, relative to 
a neutral allele, of new, selected mutations. The 
probability of fixation of neutral mutations is 
1/2N, with advantageous (Ns > 0) and deleteri-
ous (Ns < 0) mutations having increased and 
decreased probabilities of fixation, respectively. 
Values are calculated from Equation 7.4, which 
can be used for positive or negative selection 
coefficients.
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f0 + fa + fd = 1). There are therefore also 2Nnfa new advantageous mutations 
and 2Nnfd new deleterious mutations every generation.

We can now consider the two determinants of the substitution rate to-
gether. If there are no advantageous mutations, and if deleterious mutations 
do not fix at appreciable levels, then the substitution rate is a function of only 
the total number of neutral mutations that arise and the probability that each 
of them fixes. We can write this relationship as:

 ν ν( )=






 =k N f

N
f2

1
20 0 (7.5)

or, substituting the symbol m for the total rate at which neutral mutations 
arise, nf0, the rate of substitution of neutral mutations is:

 k = m (7.6)

In words, this relationship says that when considering only neutral mutations, 
the substitution rate is equal to the mutation rate, regardless of population size. This 
independence from population size may at first seem unintuitive, but it can be 
understood by considering the fact that while more mutations arise in large 
populations, each of them has a smaller chance of eventually going to fixation. 
Likewise, it is more likely that any single new mutation will fix in a small pop-
ulation, but there are fewer mutations overall. Thus population size exactly 
cancels out when considering neutral mutations. This result will be used again 
and again in our quest to uncover cases in which natural selection is acting.

Let us finally consider the rate of substitution for alleles that are not 
neutral. Of the total mutation rate, n, we have already defined fa and fd as 
the fractions of all mutations that are advantageous and deleterious, re-
spectively, and ua and ud as the probabilities of fixation for new mutations 
of each type. We can now write the rate of substitution for advantageous 
mutations as:

 k = (2Nn fa)(2sa) = 4Nn fasa (7.7)

To obtain the rate of substitution for deleterious mutations we use Equation 
7.4 to find:
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From Equations 7.7 and 7.8 we can see a key difference between neutral muta-
tions and selected mutations: N, the population size, plays an important role 
in the rate of substitution of selected mutations. All things being equal, more 
advantageous mutations will fix in larger populations than in smaller popula-
tions, while more deleterious mutations will fix in smaller populations relative 
to larger populations. We next consider how to determine the contribution of 
each of these types of mutation to divergence between species.

Estimating sequence divergence
One of the most straightforward methods for quantifying the effects of 
natural selection does not use population-level data at all. While this 
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characteristic might seem to make it inappropriate in a text about popula-
tion genetics, it is a standard test in every population geneticist’s toolbox. 
And because substitutions between species are a long-term consequence of 
polymorphism within species (Kimura and Ohta 1971), these methods are a 
good starting point for understanding more powerful methods that do use 
polymorphism data.

Earlier we defined d as the genetic distance between two orthologous 
 sequences. To be specific, we generally calculate d by taking a single se-
quence from each species and counting the number of positions that differ 
between them, divided by the total number of aligned nucleotides. As with 
calculating p between individuals in the same species (Chapter 3), we only 
count the number of nucleotide differences at positions without a gap. If 
we are considering a multiple-sequence alignment, this process often re-
sults in a position in the alignment with a gap in any sequence being ig-
nored in all species. For this reason, pairwise divergence values calculated 
from alignments generated for each pair of species can differ slightly from 
divergence values calculated from a single multiple-sequence alignment 
including all species. As an example, FIGURE 7.3 shows an alignment of se-
quences from different species that is 15 nucleotides long. Using the entire 
multiple-species alignment we would calculate the divergence between se-
quences 1 and 2 as 0.273 (3 differences/11 sites without gaps); however, if 
we were to realign only sequences 1 and 2 and recalculate divergence, we 
would get d = 0.23. Clearly, this difference can lead to biased estimates of 
divergence if both closely and distantly related sequences are included in 
the same alignments, as only those regions less prone to insertions and 
deletions will be included in analyses.

There are two other important issues to be considered when calculating d. 
First, because it is being calculated from only a single sequence per species 
(or per locus, because d can also be calculated between paralogs), this statis-
tic by itself does not represent only fixed differences. That is, any derived,  
polymorphic allele present in the sequence chosen to calculate d will be counted 
toward interspecific divergence. Earlier we also considered the contribution 
of ancestrally polymorphic alleles, but these are in fact fixed between  current 
species and therefore do not conflate polymorphism and divergence. This 
measure of divergence includes polymorphic sites because any chromosome 
sampled from nature is expected to contain on average q derived alleles that  
are still polymorphic in the population. You can see where 
this expectation comes from by considering that the time 
to the most recent common ancestor of a  population 
is expected to be 4N generations (Equation 6.3).  
This implies that there are 4Nm mutations that have 
occurred—and are still polymorphic—on the lin-
eage leading to any sequence (FIGURE 7.4). Assuming 
levels of diversity are the same in the two species 
being compared, this means that approximately 2p 
differences between orthologous  sequences are not 
actually fixed differences between the species. These 
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FIGURE 7.3 Example alignment of 
four sequences, each from a different 
species.
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calculations imply that we can correctly count the amount of fixed diver-
gence between two species as d* = d − 2p. This approach is similar to the 
logic used to calculate the statistic da seen in Chapter 5, but in this case we  
are attempting to remove current polymorphism rather than ancestral  
polymorphism. If there are not equal levels of diversity we can subtract dif-
ferent values of p, one from each species, such that d* = d − (p1) − (p2). In 
most cases this correction is ignored because the level of divergence is much 
larger than levels of polymorphism (i.e., d >> p). 

A second issue arises in cases in which the species being compared are 
too distant. It was recognized by early practitioners of molecular evolution 
that simply counting the proportion of sites differing between two species 
would undercount the true number of differences when multiple mutations 
have arisen and fixed at the same site. In the most extreme case, when every 
site has changed multiple times, we would still have 25% of the bases match-
ing at random (assuming no gaps) and d = 0.75. The simplest way to account 
for the effect of multiple substitutions is to carry out a Jukes-Cantor correction 
(Jukes and Cantor 1969). Defining a as the observed proportion of sites that 

Time of genic split
within species

Time of genic split
between species

Today
A B C D

Time of species split
(t)

FIGURE 7.4 Comparisons of single sequences from two different species include 
both fixed and polymorphic differences. The history of a single ancestral species 
splitting into two descendant species is circumscribed by the darker lines. The history 
of a single orthologous sequence sampled in each of the two descendant species is 
denoted by the thinner, blue line; assume sequence A is sampled from species 1 and 
sequence C is sampled from species 2. For clarity, the genealogies of two maximally 
diverged samples from each species (A and B in species 1; C and D in species 2) 
are shown. The time to the most recent common ancestor is not necessarily the same 
for the samples within each species but is assumed to be the same for simplicity. All 
changes that arose from the time of genic split between species to the time of genic 
split within species are fixed differences. Mutations that have arisen on the single 
branch leading to A and C since the genic split within species are polymorphic. 
The number of such differences in a single sequence is expected to be p for both A 
and C, such that the total number of differences, d, between A and C includes 2p 
(= p1 + p2) total polymorphic sites.
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differ between two sequences (also referred to as p or the p-distance), the Jukes-
Cantor corrected value of d is:

 = − −






d a

3
4

ln 1
4
3

 (7.9)

Kimura (1980) made an adjustment to account for the fact that transition 
mutations (between purines or between pyrimidines) occur more often than 
transversion mutations (between purines and pyrimidines). The Kimura two-
parameter correction is:

 ( ) ( )= − − − − −d a b b
1
2

ln 1 2
1
4

ln 1 2  (7.10)

where a is now the proportion of sites that differ by a transition and b is the 
proportion that differ by a transversion. There are a number of further elabo-
rations that can be made, such as allowing different parameters for transitions 
involving purines versus pyrimidines (e.g., Hasegawa, Kishino, and Yano 
1985; Tamura and Nei 1993). 

None of these methods ensures accurate measures of divergence when dis-
tances are very large, because in this case even the corrected estimates have 
large variances associated with them. Values of a greater than 0.75 are unde-
fined in both Equations 7.9 and 7.10, and, in general, values of d larger than 
0.50 will be less accurate than is ideal. Values of d much greater than 1 will 
essentially be guesses as to the true level of divergence.

DETECTING SELECTION USING DIVERGENCE

dN, dS, and dN/dS
In addition to measuring the overall divergence between two sequences, 
in coding regions we can also separately measure divergence that is due to 
nonsynonymous and synonymous changes. In particular, we define dN as 
the number of nonsynonymous differences per nonsynonymous site (also re-
ferred to as dR, KA, or KN) and dS as the number of synonymous differences per 
synonymous site (also referred to as KS). Methods for calculating the number 
of nonsynonymous and synonymous differences between two sequences are 
described in detail in BOX 7.1 and BOX 7.2. Here we focus on how the quanti-
ties dN and dS are used to make inferences about natural selection.

The simplest methods for calculating dn and dS 
first find the number of nonsynonymous and  
synonymous differences between sequences in an 
alignment (denoted Nd and Sd, respectively) and 

■ BOX 7.1

Calculating dN and dS: Counting Methods
then count the number of nonsynonymous and 
synonymous sites in each sequence (denoted 
Nc and Sc, respectively). In the end we will take 
the number of nonsynonymous differences per 

(Continued)
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nonsynonymous site to be dn = Nd /Nc, and the 
number of synonymous differences per synony-
mous site to be dS = Sd /Sc. Because values for 
Nc and Sc will differ slightly for each sequence 
in the alignment, we usually use their average 
when calculating dn and dS.

There are a number of different ways of 
counting nonsynonymous and synonymous sites, 
and the use of different methods can often give 
different answers. one simple method assumes 
that the rate of transitions and transversions is 
equal, and that there is no codon usage bias 
(nei and Gojobori 1986). For example, the 
codon TTA codes for the amino acid leucine. If 
we consider only mutations at the third position, 
we see:

TTG leucine

TTA leucine → TTC Phenylalanine

TTT Phenylalanine

Using the nei and Gojobori method for 
counting sites, the third position would be 1/3 
synonymous and 2/3 nonsynonymous, as only 
one of the three possible mutations is to a  
synonymous codon and two are to nonsynony-
mous codons; we refer to such codons as two-
fold degenerate. The first two positions in the 
codon would both be 3/3 nonsynonymous and 
0/3 synonymous, because all mutations at both 
of these positions are nonsynonymous. The total 
counts for this codon would therefore be  
Nc = 8/3 and Sc = 1/3.

other methods take into account transition/
transversion bias when calculating the effective 
number of sites (li 1993; Pamilo and Bianchi 
1993; Comeron 1995; Ina 1995). This bias can 
have important consequences for counting sites. 
For example, strong transition/transversion bias 
will cause two-fold degenerate codons to be 
more than 1/3 synonymous at the third position, 
as the genetic code allows all transitions in the 
third position of two-fold degenerate codons to 
be synonymous. You can see from the above 
example that if mutations from A → G occur much 
more often than either A → C or A → T mutations, 
then in a sense the third position is more than 
1/3 synonymous. Weighting these sites  

appropriately—using the known or estimated ratio 
of transitions to transversions—corrects for this 
bias. Still other methods take into account unequal 
codon usage within a sequence, effectively cor-
recting for the fact that some synonymous codons 
are rarely used (Yang and nielsen 2000).

There are also a number of different ap-
proaches to counting nonsynonymous and 
synonymous differences between sequences. 
All of these methods give the same result when 
codons differ at only one nucleotide. For in-
stance, in the following alignment of a single 
codon between two species:

GTT

GTA

there is only one difference, and it is  
synonymous; hence Nd = 0 and Sd = 1. 
Complications only arise when there is more 
than one difference in a single codon between 
the two sequences; we refer to such cases as 
complex codons. The reason these cases are 
more complicated is that there are now two  
possible pathways that evolution might have 
taken, depending on which of the two mutations 
came first. In some instances a nucleotide  
difference might be either synonymous or  
nonsynonymous, as seen in the following 
example: 

TTT

GTA

The two possible pathways are:

Pathway 1  TTT (Phe) ↔ GTT (Val) ↔ GTA (Val)

Pathway 2  TTT (Phe) ↔ TTA (leu) ↔ GTA (Val) 

In pathway 1 the change from T → A in the third 
position is a synonymous change, and there is a 
total of one nonsynonymous and one synonymous 
difference (Nd = 1, Sd = 1). In pathway 2 the 
T → A change is nonsynonymous and there is a 
total of two nonsynonymous substitutions (Nd = 
2, Sd = 0). The nei and Gojobori (1986) method 
simply averages the different evolutionary paths, 
giving each equivalent weight; doing this gives 
Nd = 1.5 and Sd = 0.5. other methods give more 
weight to pathways that include synonymous 

■ BOX 7.1 (continued )
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As an alternative to the “counting” methods  
for calculating dn and dS outlined in Box 7.1,  
several likelihood methods have been 
 proposed—and are commonly used—for this 
purpose (Goldman and Yang 1994; Muse 
and Gaut 1994). These methods are based on 
Markov chain models of substitutions between 

■ BOX 7.2

Calculating dN and dS: Likelihood Methods 
codons, specifying an instantaneous rate 
matrix, Q, for independent transitions between 
the 61 non-termination codons. For one of the 
most popular likelihood models (Yang 1998), 
the rate matrix consists of separate transition 
rates, qij, between each pair of codons i and j 
(i ≠ j), where: 

Here the equilibrium frequency of codon j is 
denoted pj, the transition/transversion bias is 
denoted k, and the relative probability of ob-
serving nonsynonymous substitutions relative to 
synonymous substitutions is denoted by w. In this 
context, we can think of w as the ratio of nonsyn-
onymous to synonymous substitutions, or dn  /dS; 
this method is explicitly not separately estimating 
dn and dS. In fact, while methods implementing 
this model can allow w to vary among codons, 
they assume that the synonymous substitution 
rate is constant across a gene—therefore, differ-
ences among codons are inferred to be due only 
to differences in selection on nonsynonymous 

changes. However, many of the assumptions of 
the simple model can be relaxed: more than one 
change between codons can be allowed  
(e.g., Whelan and Goldman 2004), correlated 
rates of change among codons can be allowed 
(e.g., Siepel and Haussler 2004a), and synony-
mous substitution rate variation among codons 
can be allowed (e.g., Pond and Muse 2005). 

When used with a multiple-sequence align-
ment and a prespecified phylogenetic topology, 
parameters of the model described above can 
be estimated via maximum likelihood methods. 
The most commonly used software packages for 
doing this are PAML (Yang 2007) and HyPhy 
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substitutions (li, Wu, and luo 1985) or to path-
ways that include common nonsynonymous 
changes (Miyata and Yasunaga 1980) and then 
take the weighted average among pathways to 
find Nd and Sd. Unless sequences are highly di-
verged, all of these methods for counting nonsyn-
onymous and synonymous differences should give 
similar results.

Finally, after summing Nc, Sc, Nd, and Sd 
across all codons in the alignment, it is recom-
mended to correct both dn and dS for multiple 
possible nucleotide substitutions at a single site. 
Equations 7.9 and 7.10 describe two common 
methods for carrying out such corrections. More 
details on all of these methods can be found in 
nei and Kumar (2000) and Yang (2006).

(Continued )
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(Pond, Frost, and Muse 2005); here I describe 
the methods available in PAML. To calculate the 
average strength of natural selection, w, across 
all codons, the simplest model is denoted M0. 
This model places no restrictions on the values 
taken by w, and separate w parameters can 
be estimated for every branch of the tree if this 
is needed. However, unless positive selection 
acts on many sites across the whole gene, M0 
is very unlikely to have w > 1. Instead, models 
that allow w to vary among codons (referred to 
as site models) are most powerful for detecting 
positive selection. 

The most straightforward way to test whether 
there are any codons in the alignment that have 
evidence for positive selection is to conduct a 
likelihood ratio test between two nested site 
models, one with and one without a parameter 
allowing w > 1. Model M1a has two w pa-
rameters: one for codons with w < 1 (w0) and 
one for codons with w = 1 (w1; there are also 
parameters for the proportion of sites assigned 
to each w parameter, p0 and p1). Model M2a 
has three w parameters: one for codons with w 
< 1 (w0), one for codons with w = 1 (w1), and 
one for codons with w > 1 (w2), along with their 
corresponding parameters for the proportion 
of sites assigned to each w (p0, p1, and p2). 

Because model M1a has two free parameters 
and model M2a has four free parameters—and 
model M1a is nested within M2a—a likelihood 
ratio test with two degrees of freedom can be 
used to test whether the model allowing sites to 
evolve under positive selection (M2a) provides 
a significantly better fit to the data. This test 
can be used with only two taxa (i.e., two se-
quences), although power improves when more 
taxa are added (Anisimova, Bielawski, and 
Yang 2001). note, however, that this method 
assumes that the underlying phylogenetic tree 
comes from sequences of different species, and 
not within species; PAML requires that there be 
a single tree for all sites in the alignment, and 
sampling sequences from within a species that 
recombine would violate this assumption and 
could lead to erroneous inferences of positive 
selection (Anisimova, nielsen, and Yang 2003). 
Further refinements to site models allow for tests 
of positive selection on a subset of codons on 
specific branches of the phylogenetic tree  
(referred to as branch-site models), which in turn 
allow for the identification of specific lineages 
undergoing adaptive evolution at a subset of 
sites (Zhang, nielsen, and Yang 2005). More 
details on these methods and their uses can be 
found in Yang (2006; 2007).

It should be obvious from the discussion of substitution rates that natu-
ral selection has a profound effect on the number of nonsynonymous muta-
tions that are fixed. If we use the expectations for the rate of substitution of 
neutral, advantageous, and deleterious mutations—presented in Equations 
7.6, 7.7, and 7.8, respectively—and multiply all rates by 2t to convert them to 
distances, then we can write down the total expected nonsynonymous diver-
gence as:
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which reduces to:
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Because the total nonsynonymous divergence in a region is due to all three 
types of mutations, our expression for dN includes all three terms. This equation  

■ BOX 7.2 (continued )
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says that a higher underlying mutation rate, n, and longer divergence times, t, 
will increase the amount of divergence; that the proportion of advantageous 
mutations fixed will be a function of the frequency at which they arise and 
their average selective effect; and that deleterious mutations can also contrib-
ute to divergence if selection is weak enough.

Although it is not true that all synonymous mutations are selectively 
equivalent, we will make this assumption for now, coming back to the effect of 
selection on synonymous mutations later. Assuming all synonymous changes 
are neutral, that is, f0 = 1 and fa = fd = 0 for these sites, then the total expected 
amount of synonymous divergence between two sequences is:

 ν( ) =E d t2S  (7.13)

This expression mirrors Equation 7.2 because, for neutral mutations, the sub-
stitution rate is simply equal to the mutation rate.

In order to ask about the effects of natural selection on sequence evolution, 
we cannot just compare values of dN among genes, even if they are all from 
the same pair of species. This is because the underlying mutation rate varies 
throughout the genome and along chromosomes, leading to different values 
of dN at loci where selection may be acting in exactly the same way. Kimura 
(1977) informally suggested comparing the ratio of nonsynonymous to  
synonymous divergence at a gene, dN/dS, in order to control for differences in 
mutation rates among loci (see also Miyata and Yasunaga 1980). Because both 
n and t will be approximately the same for nonsynonymous and synonymous 
sites in the same gene, dividing Equation 7.12 by 7.13 gives:
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This expression shows us that, relative to synonymous divergence, the level of 
nonsynonymous divergence is again due to the fractions of mutations that are 
neutral, advantageous, and deleterious. Note that to avoid sub-subscripting,  
I am not using different notations for the fraction of neutral mutations at  
synonymous versus nonsynonymous sites; the f0 in Equation 7.14 represents 
only the nonsynonymous mutations. 

Interpreting dN /dS
Although dN/dS is determined by the combined effects of neutral, advan-
tageous, and deleterious mutations, it can tell us a lot about the general 
impact of natural selection on sequence evolution. An example of the range 
of dN/dS values observed in nature is given in FIGURE 7.5, which shows values 
from 11,492 orthologs between Arabidopsis thaliana and A. lyrata (Yang and 
Gaut 2011). As a general observation across many taxa, the mean value of 
dN/dS calculated between species is 0.15 to 0.25, though values for individ-
ual genes vary from 0 to >2 (Rat Genome Sequencing Project Consortium 
2004; Mikkelsen et al. 2005; Drosophila 12 Genomes Consortium 2007; Yang 
and Gaut 2011). This range indicates that at least 75 to 85% of nonsynony-
mous mutations are deleterious and do not fix. The reason this represents a 
minimum estimate of the fraction of strongly deleterious mutations is that 
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even a small number of advantageous mutations will contribute dispropor-
tionately to divergence (see Equation 7.14). Even if the fraction of advanta-
geous mutations, fa, is as low as 1% and there were no neutral mutations, 
sufficiently strong selection and large population sizes could push dN/dS 
far above 0.01. For example, if 99% of nonsynonymous mutations were 
strongly deleterious and 1% were advantageous with an average Ns = 10,  
dN/dS would equal 0.4. A simple estimate of the fraction of deleterious  
mutations, 1 − dN/dS, would underestimate this fraction by about 50% (0.6 
vs. 0.99). Only if there are no advantageous mutations and deleterious mu-
tations do not fix at appreciable rates does dN/dS = f0 (and therefore 1 − dN/
dS = fd). While estimates of selective constraint based on this assumption 
are commonly used, they are almost certainly underestimating the fraction 
of all mutations that are deleterious. 

The value of dN/dS at a single gene does not tell us what fraction of the 
nonsynonymous mutations that do fix are neutral, advantageous, or slightly 
deleterious. Multiple combinations of values for the frequencies of each type 
of mutation, their average selective effect, and population size can give the 
same value of this statistic. One method that has been used to estimate the 
fraction of mutations that are slightly deleterious is to compare the average 
value of dN/dS between pairs of taxa that are known to differ in population 
size: the prediction is that dN/dS will increase in the species with smaller pop-
ulation sizes, in proportion to the fraction of slightly deleterious mutations. 
Comparisons of multiple species suggest that 15 to 30% of all mutations are 
slightly deleterious (Eyre-Walker et al. 2002). For instance, the average value 
of dN/dS between mouse and rat is 0.14 and between human and chimpanzee 
is 0.20 (Mikkelsen et al. 2005). While there are no a priori reasons to believe that 
there are overall more and/or stronger advantageous mutations in primates, 
it is known that population sizes are much smaller in this clade, which would 
lead to higher values of dN/dS.
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FIGURE 7.5 Distribution of values of dn/dS from 11,492 orthologs between 
Arabidopsis thaliana and A. lyrata. (After Yang and Gaut 2011.)
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There is only one generally accepted method for demonstrating—using 
dN/dS—that there have been advantageous mutations (i.e., positive selec-
tion) in the history of a gene: the value of this statistic must be greater than 
1 (Hill and Hastie 1987; Hughes and Nei 1988). To see why this is, consider 
a gene with no advantageous mutations. The maximum value of dN/dS in 
this case is 1, which will only occur if all possible nonsynonymous mutations 
are  selectively equivalent. The only way to obtain dN/dS > 1 (with statisti-
cal significance) is for there to be some fraction of advantageous mutations 
(Equation 7.14). We can also see that this is a very stringent requirement, as 
more and more advantageous mutations are needed to get dN/dS > 1 when 
the fraction of deleterious mutations grows. Indeed, only those genes in 
which there are repeated adaptive fixations of amino acid substitutions will 
ever have the chance to raise the value of dN/dS over 1. These genes are usu-
ally proteins associated with immune and reproductive functions, as they are  
often involved in “arms race” dynamics between hosts and pathogens or 
 between males and females.

Significance testing for dN/dS > 1 has been accomplished in a number of 
different ways. The likelihood method outlined in Box 7.2 allows for a like-
lihood ratio test between models with and without positive selection. The 
simpler counting methods outlined in Box 7.1 are not based on any model 
and therefore do not allow for such a straightforward testing procedure. 
These latter methods, however, have given rise to a number of different ap-
proaches. Comparing only pairs of sequences, Hughes and Nei (1988) cal-
culated the standard error on dN and dS, testing the hypothesis that dN − dS 
> 0 using a t-test for significance. Messier and Stewart (1997) carried out a 
similar analysis on individual branches of the primate tree for the lysozyme 
gene, reconstructing ancestral states at each node and calculating the number 
of nonsynonymous and synonymous differences and nonsynonymous and 
synonymous sites between parent and daughter nodes; again, testing pro-
ceeded via a t-test. Both of these methods present problems. First, the t-test 
assumes that dN and dS are approximately normally distributed, and unless 
there are a large number of both types of substitutions this is unlikely to be 
the case. Second, the approaches using reconstructed ancestral states fail to 
take into account uncertainty in these reconstructions, leading to uncertainty 
in dN and dS. One solution to the first problem is to use a small-sample test to 
compare counts of nonsynonymous and synonymous substitutions. Zhang,  
Kumar, and Nei (1997) arrived at this solution by using a 2 × 2 test of  
independence on the counts of nonsynonymous and synonymous substitu-
tions versus the number of nonsynonymous and synonymous sites (i.e., Nd, 
Sd, Nc, and Sc from Box 7.1); testing proceeded via Fisher’s exact test. This 
method is preferred to the large-sample approximations, although the choice 
of method for counting nonsynonymous and synonymous sites can have a 
large effect on the outcome (see Box 7.1). Likelihood methods (Box 7.2) can be 
used to average across reconstructed ancestral states, effectively taking uncer-
tainty into account.

One further complexity is that different parts of proteins are likely to be 
under different selective forces—some may be under strong positive selection 
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and some under strong negative selection. While the average of all regions 
may have dN/dS < 1, subsets of functional domains may have dN/dS > 1 (as 
in the original papers of Hill and Hastie [1987] and Hughes and Nei [1988]). It 
can therefore be useful to examine this statistic in different domains if such 
domains are identified ahead of time; post hoc sliding window analyses may 
be highly misleading (Schmid and Yang 2008). Likelihood methods can also 
be used to find individual codons with dN/dS > 1 in a statistically sound way 
as long as the assumptions of the test are met (Box 7.2).

It is very possible that many or most proteins with dN/dS < 1 have some 
history of positive selection, but this statistic does not allow us to determine 
whether this is true. Any amount of amino acid change could be due to ad-
vantageous mutation, and therefore any gene with 0 < dN/dS ≤ 1 could have 
contributions from neutral, advantageous, and slightly deleterious muta-
tions. Because of the unknown contributions of each type of mutation, our 
inferences about selection must be commensurately cautious. Here are some 
 general guidelines for interpreting dN/dS:

• dN/dS << 1 The vast majority of nonsynonymous mutations are del-
eterious, and negative (purifying) selection is predominant.

• dN/dS < 1 The majority of nonsynonymous mutations are deleterious, 
but there may be some unknown fraction of advantageous mutations.

• dN/dS = 1 This situation can occur in two cases: First, there is no selec-
tion and all nonsynonymous mutations are neutral. Second, there is 
simply a large number of neutral and advantageous mutations (as well 
as deleterious mutations).

• dN/dS > 1 There are many advantageous nonsynonymous mutations 
and positive selection is predominant, but there are still many deleteri-
ous mutations.

Although this distinction has already been made in Chapter 1, it should 
be repeated here that observing dN/dS = 1 for a gene does not indicate that it 
is evolving “neutrally.” As detailed above, there are multiple combinations of 
selective forces that will result in dN/dS = 1, only one of which is the absence 
of selection. Even more importantly, the absence of selective constraint is not 
the same as neutral evolution. Many genes with dN/dS < 1 may be evolving 
neutrally—that is, they may have not fixed any adaptive substitutions. 

Several caveats with regard to interpreting dN/dS must also be mentioned. 
First, small values of dS can bias the estimate of dN/dS upwards. While such 
biases should never lead to values of dN/dS that are significantly greater than 
1, comparisons between species pairs that have very different divergence 
times can be misleading because of differences in dS (Wolf et al. 2009). Second, 
we have assumed that all synonymous mutations are neutral. This is clearly 
not the case in every species: while there are many reasons for the nonran-
dom usage of synonymous codons, natural selection is an important factor 
(Ikemura 1981; Akashi 1994; Chamary, Parmley, and Hurst 2006; Lawrie et al. 
2013). If the fraction of all synonymous mutations that are neutral is not equal 
to 1, then the value of dS should be determined by an expression such as the 
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one presented in Equation 7.12 rather than 7.13. Exactly how this will affect 
dN/dS is not clear: if negative selection predominates, then dS will be smaller 
than is expected under the case of no constraint, and consequently dN/dS  
will be higher. Whether this will lead to cases with dN/dS > 1 in the ab-
sence of advantageous mutations—which would effectively require no con-
straint on nonsynonymous mutations but strong constraint on synonymous  
mutations—is not known (but is unlikely). On the other hand, if there are 
many advantageous synonymous substitutions (e.g., Resch et al. 2007), then 
the value of dN/dS will be lower than expected, and therefore the strength of 
negative selection will be inferred to be greater than it truly is. 

In general, dN/dS is a relatively robust statistic with few assumptions about 
how samples were collected, the demographic history of populations, or any 
of the other problems introduced by truly population genetic methods. On the 
other hand, only repeated bouts of positive selection will provide evidence of 
advantageous mutation, and therefore only more powerful methods will be 
highly informative about adaptive evolution.

DETECTING SELECTION USING POLYMORPHISM

The effect of selection on the frequency of polymorphism
In the previous section we considered how selection opposes or favors the 
eventual fixation of selected alleles and how we can make inferences about 
evolutionary processes from data on divergence between species. We will 
now discuss the effects of selection on the frequency of polymorphisms within 
populations, initially without considering fixed differences. A number of dif-
ferent methods can take advantage of just this sort of data, although they 
are generally less powerful than those methods that combine both polymor-
phism and divergence. Later in the chapter we will see one such method, the 
McDonald-Kreitman test.

On timescales shorter than those required for mutations to fix, selec-
tion will change the mean frequency of alleles in a population. As would 
be expected from the different probabilities of fixation discussed above,  
advantageous alleles will be at higher mean frequency relative to neutral  
alleles, and deleterious alleles will be at relatively lower frequencies. For new 
mutations, the density of polymorphisms found at frequency q is given by 
(Wright 1969, p. 381):
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where n is again the total rate of mutation. Advantageous mutations have 
s > 0, while deleterious mutations have s < 0.

Examples of frequency spectra for advantageous, neutral, and deleterious 
alleles are shown in FIGURE 7.6. As can be seen from the distribution, advanta-
geous alleles are shifted toward higher frequencies, while deleterious alleles 
are shifted toward lower frequencies. Balancing selection will maintain alleles 
at intermediate frequencies, with the exact form of balancing selection greatly 
affecting the particular probability density of allele frequencies. Distributions 
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for variants with relatively strong selection—for example, |Ns| > 1—will be 
highly skewed for both deleterious and advantageous alleles. Most strongly 
deleterious mutations are immediately removed from the population, and 
most strongly advantageous mutations fix very rapidly (or suffer rapid sto-
chastic loss); both spend little time in a polymorphic state. These tendencies 
imply that, at a locus with only very deleterious mutations and neutral muta-
tions, the allele frequency spectrum observed in a moderately sized sample 

will much more closely resemble a neutral one.
A simple test of the neutrality of nonsynony-

mous polymorphisms was proposed by Sawyer, 
Dykhuizen, and Hartl (1987) and is based on 
the differences in allele frequency spectra be-
tween slightly deleterious and neutral variants. 
Sawyer and colleagues counted the number 
of nonsynonymous polymorphisms that were 
singletons—those that are present only on one 
chromosome—and the number that were pres-
ent on multiple chromosomes (“multitons”). 
All 12 of the nonsynonymous polymorphisms 
in their sample (of the gene gnd in Escherichia 
coli) were singletons. They then compared 
these two numbers (12 singletons vs. 0 mul-
titons) to the configuration of synonymous 
polymorphisms: 34 synonymous polymor-
phisms were singletons and 32 were multitons 
(FIGURE 7.7). Comparison of these values in a 
2 × 2 contingency table was highly significant 
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FIGURE 7.6 Allele frequency spectra for advantageous (Ns > 0), neutral (Ns = 0), 
and deleterious (Ns < 0) mutations. (After Fay, Wyckoff, and Wu 2001.)

FIGURE 7.7 A test for the presence of weakly 
deleterious nonsynonymous polymorphisms 
(P = 0.001; Fisher’s exact test). Multitons are 
polymorphisms present more than once in the 
sample; singletons are polymorphisms present 
only once. Data come from the gnd gene in 
Escherichia coli. (After Sawyer, Dykhuizen, 
and Hartl 1987).
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and indicated an excess of singleton nonsynonymous variants. This finding is 
exactly what one would expect if nonsynonymous polymorphisms were on 
average slightly deleterious. 

In addition to simply showing that allele frequencies differ as a result of 
selection acting on polymorphisms, one can use Equation 7.15 with only a 
few assumptions (such as free recombination among sites) to find the average 
selection coefficient associated with a set of polymorphisms (e.g., Sawyer and 
Hartl 1992). That is, we can take the observed allele frequency spectrum for a 
large set of polymorphisms to estimate the selection parameters of Equation 
7.15 (or analogous equations). It can also be useful to treat the selection pa-
rameter as a distribution itself, in order to estimate not just the mean effect 
of selection but also the relative contributions of advantageous and deleteri-
ous mutations. The expectations for the allele frequency spectrum with direct 
selection assume an equilibrium population, such that any nonequilibrium 
population demography or even linked selection will confound inferences be-
cause both can affect the frequency spectrum (see Chapters 8 and 10). Because 
of these confounding factors, commonly used methods for inferring selection 
parameters at nonsynonymous sites also use synonymous sites or intronic 
sites to simultaneously control for nonequilibrium processes (e.g., Loewe et al. 
2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008). FIGURE 7.8 shows 
the unfolded allele frequency spectra for nonsynonymous, synonymous, and 
noncoding polymorphisms sampled from 40 human chromosomes across 301 

FIGURE 7.8 Allele frequency spectra for noncoding, synonymous, and nonsynony-
mous polymorphisms in 301 human genes from 40 chromosomes. There is a large 
excess of low-frequency nonsynonymous polymorphisms. The slight excess of high-
frequency polymorphisms of all types is ascribed to ancestral state mis-specification. 
(After Williamson et al. 2005; copyright 2005, national Academy of Sciences USA.)
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genes (Williamson et al. 2005). In this case all three classes of mutations differ 
from the neutral-equilibrium expectations, but the excess of deleterious non-
synonymous polymorphisms can be inferred by a comparison among classes.

Accurate inference of selection parameters using these methods requires 
data from a large number of sites and from a more modest number of chromo-
somes, approximately n = 10 (Keightley and Eyre-Walker 2010). Some methods 
make use of fixed differences (i.e., the frequency class with p = 1.0) and some do 
not, though not all methods using fixed differences take advantage of the full 
frequency spectrum of polymorphism (e.g., Bustamante et al. 2002). The use 
of fixed differences increases the power to detect highly advantageous alleles 
that would otherwise not be detected as polymorphisms. However, some of the 
methods using fixed differences are prone to giving highly skewed values of 
Ns, possibly because of assumptions that must be made about the shape of the 
distribution of selection intensities. Nonetheless, we discuss several such meth-
ods at the end of this chapter, after introducing the McDonald-Kreitman test.

Direct selection has a profound influence on the average frequency of poly-
morphisms. Although estimating average selection coefficients (or, more ac-
curately, the product of the selection coefficient and population size) usually 
requires data from multiple loci, one can test whether these values are differ-
ent than 0 or whether selection coefficients differ between classes of polymor-
phisms (e.g., nonsynonymous vs. synonymous). While this information does 
not tell us about the history of a particular gene, it does provide a global view 
of the effects of selection. In the following section I will introduce additional 
statistical tests based on the expectations described here that will allow us to 
learn the history of specific loci.

pN/pS
By analogy with the logic of the comparison of dN and dS laid out earlier in 
the chapter, within a species we can compare the average number of non-
synonymous differences per nonsynonymous site (referred to as pN or pA) 
to the average number of synonymous differences per synonymous site (pS). 
The calculations of pN and pS are straightforward, combining the methods for 
calculating p (Chapter 3) with the methods for calculating nonsynonymous 
and synonymous changes and sites described in Box 7.1. Only sequences from 
within a single population or species are needed. In most cases the calculation 
will often be easier than between-species comparisons, as the limited number 
of polymorphisms will also limit the number of complex codons that must be 
accounted for. 

The interpretation of the ratio pN/pS is also much the same as for dN/dS, 
with an important exception. Values of pN/pS below 1 are again evidence for 
the predominance of purifying selection, and the vast majority of all coding loci 
show pN/pS < 1. Some slightly deleterious polymorphisms may be sampled, 
but because they are kept at low frequency they contribute relatively little to 
the average heterozygosity. The main difference in interpreting pN/pS comes 
when values are greater than 1: since positive selection will rapidly fix advan-
tageous mutations, these adaptive changes will rarely be found in studies of 
polymorphism. Even if one or two such mutations are sampled on their way to 
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fixation, the increase in pN is unlikely to result in values of pN/pS much above 1. 
Instead, we find pN/pS > 1 in genes under multiallelic balancing selection—that 
is, in cases in which a large number of amino acid polymorphisms are main-
tained by some form of balancing selection, such as heterozygote advantage or 
negative frequency-dependent selection. There are few genes that appear to be 
under such selection, with the major histocompatibility complex (MHC) genes 
and other immune system–related or sex and reproduction–related genes as the 
most prominent exceptions. Hughes and Nei (1988) were the first to calculate 
pN/pS for human and mouse MHC loci and found values greater than 1; con-
fusingly, they referred to their statistics as dN and dS.

As with the requirement that dN/dS be greater than 1 for strong evidence 
of positive selection, pN/pS > 1 is a very strict criterion for detecting balanc-
ing selection. Single sites under very strong selection will never contribute 
enough to values of pN to push pN/pS greater than 1, so only rare cases of 
multiallelic selection will be detectable using this method. Even in these cases, 
evidence for balancing selection may be limited to known functional regions 
(as in Hughes and Nei 1988). Still, comparisons of pN and pS are a standard 
method in the population geneticist’s toolbox, and we will see next how slight 
modifications of these statistics can be combined with between-species diver-
gence to create a truly powerful test for natural selection.

DETECTING SELECTION USING POLYMORPHISM  
AND DIVERGENCE

The McDonald-Kreitman test
We have seen how a comparison of dN and dS allows us to detect the action of 
positive selection in a theoretically and statistically rigorous way. But because 
approximately two-thirds of all possible coding mutations lead to changes in 
amino acids, dN/dS will only be greater than 1 when more than two-thirds of 
all differences between species are nonsynonymous. The selective conditions 
under which this can occur are likely limited to those in which there are a very 
large number of recurrent adaptive fixations of nonsynonymous differences. In 
this section I introduce a test first suggested by McDonald and Kreitman (1991) 
that is similar to dN/dS but gets around the very strict conditions for detecting 
positive selection in a principled way. This test combines both polymorphism 
and divergence in order to test predictions of the neutral model. The new test 
will still not be able to detect adaptive evolution on only one or a few fixed 
differences, no matter the strength of selection—to do so, we will have to wait 
for methods introduced in the next chapter. But the McDonald-Kreitman (MK) 
test offers one of the most powerful, robust methods we have for detecting the 
action of natural selection. I first explain how the test is conducted, followed 
by the reasoning underlying it and the interpretation of results.

Experimental design for the McDonald-Kreitman test
The four quantities needed to carry out the MK test for a single gene are the 
number of nonsynonymous polymorphisms (PN), the number of synonymous 
polymorphisms (PS), the number of nonsynonymous fixed differences (DN), 
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and the number of synonymous fixed differ-
ences (DS). These values are placed in a 2 × 2 
contingency table (FIGURE 7.9), and standard 
tests of independence—usually Fisher’s exact 
test when counts are low, but either c2- or 
G-tests for large-sample approximations—can 
be used to calculate significance. 

The general experimental design used to 
obtain these four quantities involves sampling 
multiple chromosomes from a single species, as 
well as either a single chromosome or multiple 
chromosomes from a second species. When 
multiple chromosomes are sampled from more 
than one species, either the counts of polymor-
phisms can be combined (as in the original 
McDonald and Kreitman study of the Adh gene 
in Drosophila melanogaster, D. simulans, and D. 
yakuba), or separate tests can be run separately 
for each species, especially if ratios of PN/PS 
differ significantly among the species. In gen-

eral, the MK test is fairly robust to the sampling of chromosomes from true 
“populations”: sampling one chromosome from each of multiple subpopula-
tions within a species will not lead to incorrect inferences of positive selection, 
though it can result in other incorrect conclusions (see below).

All values used in the MK test are counts—there is no need to calculate 
the number of nonsynonymous or synonymous sites. While there still may 
be some issues involving complex codons when both nonsynonymous and 
synonymous changes have occurred in the same codon, these can be resolved 
using the same methods outlined in Box 7.1 (although only integer-valued 
numbers are used in the MK test). There are few issues of ascertainment bias 
with respect to sample sizes when using the standard MK test because allele 
frequencies are not used, though obviously all mutations must be ascertained 
without respect to whether they are nonsynonymous or synonymous (geno-
typing platforms are often enriched for nonsynonymous variants). In fact, one 
really only needs to sample two chromosomes from within a single species 
and one chromosome from an outgroup to be able to conduct the test, as long 
as there are enough polymorphisms and fixed differences within the sample. 
How many are enough? It is impossible to get a P-value of less than 0.05 in a 
2 × 2 test unless the sum of the counts in the rows and the sum of the counts in 
the columns are both 4 or greater (i.e., there are at least four polymorphisms 
and four fixed differences, regardless of the type of mutation). So sampling 
should proceed—by collecting more chromosomes either from within a popu-
lation or from a more distant outgroup, depending on what is needed—to 
increase statistical power. Otherwise it will not be possible to get a statistically 
significant result.

One important difference between calculations of divergence in the MK test 
and dN/dS is that in the McDonald-Kreitman test we are explicitly counting 
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FIGURE 7.9 The McDonald-Kreitman test. 
The four counts needed are the number of 
nonsynonymous fixed differences (Dn), the 
number of synonymous fixed differences (DS), 
the number of nonsynonymous polymorphisms 
(Pn), and the number of synonymous polymor-
phisms (PS).
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fixed differences for the values of DN and DS in the sample. A fixed differ-
ence in this case means that the identity of the allele found in the population 
sample is different than the nucleotide found in the outgroup. This is a slightly 
different meaning of the term divergence than is used in calculations of dN and 
dS. If there are two different alleles at a site in the population sample and they 
both differ from the outgroup, then we count them as one polymorphism and 
one fixed difference. While differences found to be fixed in a small number 
of chromosomes may not be fixed species-wide, as long as the same criterion 
is used for calling nonsynonymous and synonymous fixed differences there 
is no problem with this definition. In fact, fixed differences in the MK test do 
not necessarily have to come from comparisons of only two species. In cases 
in which chromosomes from three species are sampled, regardless of whether 
polymorphism data are collected from all of them, we can polarize changes 
along single lineages to use as fixed differences. It is best to compare polarized 
changes along a lineage to the polymorphism data collected from the tip of the 
same lineage, as we expect the neutral mutation rates to be the most similar in 
such comparisons. In addition, the MK test can be carried out by comparing 
fixed differences between gene duplicates, even if they are in the same species. 
This type of comparison comes with additional caveats, however, and should 
be considered carefully (see below).

Expectations for levels of polymorphism and divergence
The McDonald-Kreitman test explicitly relies on expectations based on the 
neutral theory of molecular evolution. The 2 × 2 table outlined above tests 
whether the ratio of nonsynonymous to synonymous changes is the same for 
polymorphism and divergence. The neutral expectations for the four values 
used in the test are:
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 (7.16)

where mnonsyn is the neutral mutation rate across nonsynonymous sites, msyn is 
the neutral mutation rate across synonymous sites, a is Watterson’s correction 
for sample size (Equation 3.6), and Lnonsyn and Lsyn represent the number of 
nonsynonymous and synonymous sites, respectively. Recall that we require 
two different neutral mutation rates because the fraction of all mutations that 
are neutral will differ for nonsynonymous and synonymous sites at any par-
ticular gene. Earlier we assumed that mnonsyn is equal to some fraction, f0, of 
the total mutation rate, n, and that msyn is simply equal to the total mutation 
rate because all synonymous mutations are neutral. Regardless of what these 
fractions are, and whether all synonymous mutations are truly selectively 
equivalent, if we assume the same neutral mutation rate over time within 
both types of sites then the ratio of both PN/PS and DN/DS is equal to mnonsyn/
msyn. Alternatively, we can view the MK test as a comparison of the ratios of 
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polymorphism to divergence for nonsynonymous and synonymous muta-
tions, with no change in interpretation. In this case both PN/DN and PS/DS are 
equal to 4Ne/2t, at least within a single locus.

In either comparison, the expectation built into the 2 × 2 table is that the 
ratios should be equivalent. This expectation is derived under the assump-
tion that all of the polymorphisms and fixed differences observed are neutral: 
there have been no fixations of advantageous mutations, and there are no bal-
anced polymorphisms or deleterious polymorphisms found in the sample. If 
this assumption is met (and often when it is not), the McDonald-Kreitman test 
will not be significant. The method is therefore explicitly testing whether there 
have been positively selected fixations, or whether there are balanced and/
or slightly deleterious polymorphisms. The MK test will not be significant 
when there is strong purifying selection—the expectation of the ratios under 
strong purifying selection is exactly the same as under no selection. Unlike 
the comparison of dN and dS, detecting purifying selection is not an object of 
the method. If we included the number of nonsynonymous and synonymous 
sites as two additional cells and made the table a 3 × 2 table we would be able 
to make inferences about whether there is any signature of purifying selec-
tion, but this approach is not generally used. In addition, the MK test will not  
be significant when there is an excess of both polymorphic and fixed  
nonsynonymous differences (i.e., both pN/pS > 1 and dN/dS > 1). In these cases 
the ratios in the table will be the same, and, again, because we are not using 
the number of sites in our test, we will not be able to detect such departures 
from neutrality.

Interpreting the McDonald-Kreitman test
FIGURE 7.10 shows the values of PN, DN, PS, and DS collected in the original  
study of the Adh gene by McDonald and Kreitman (1991). The ratio of  

nonsynonymous to synonymous polymorphism  
is 2:42, while that for divergence is  7:17. The 
McDonald-Kreitman test on these data gives 
P = 0.007 and is generally interpreted to show 
evidence for adaptive natural selection. This in-
terpretation comes from the apparent excess of 
nonsynonymous fixed differences in the com-
parison. Of course this is a 2 × 2 test of inde-
pendence, and therefore it is possible that the 
significant result is due to an excess or deficit 
of counts in any of the cells. However, the inter-
pretation of positive selection is a biologically 
motivated one, as large changes in the number 
of synonymous variants—without concomi-
tant changes in the number of nonsynonymous 
variants—are not expected to occur. In the next 
section we discuss several situations in which 
this interpretation may not be correct because 
assumptions of the method have been violated.

7 2

17 42

Nonsynonymous

Synonymous

PolymorphicFixed

FIGURE 7.10 A McDonald-Kreitman 
table with evidence for positive selection 
(P = 0.007; Fisher’s exact test). Data are from 
the Adh gene with polymorphism and fixed 
differences from Drosophila melanogaster, D. 
simulans, and D. yakuba. (After McDonald 
and Kreitman 1991.)
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A significant excess of nonsynonymous fixed differences at a gene is ex-
pected to occur when there is recurrent fixation of amino acid substitutions, 
as with dN/dS > 1. Note, however, that the number of fixations needed for the 
MK test to be significant is much lower than in the dN/dS comparison (indeed, 
dN/dS for Adh between the same three Drosophila species is 0.114). The MK test 
is still unable to detect positive selection on only one or a few substitutions, no 
matter how strong selection may be, but the power is greatly increased over 
dN/dS. In addition, as is the case for both dN/dS and the MK test, we do not 
know which particular amino acids have been selected for. 

The MK test gets its real power by using the polymorphism data (PN and 
PS) as a proxy for the ratio of nonsynonymous to synonymous neutral mu-
tations without the contribution of positively selected variants. Although 
it is obvious how positive selection will contribute to the number of fixed 
differences, advantageous mutations spend so little time as polymorphisms 
as they speed through a population that they are not expected to contribute 
much to PN. Smith and Eyre-Walker (2002) provide a striking example of the 
dichotomy in the contribution of adaptive mutations to polymorphism and 
divergence: if mutations with an average advantage of Nes = 25 occur at 1% 
the rate of neutral mutations, they will contribute 50% of all fixed differences 
but only 2% of all polymorphisms. Therefore, assuming that neutral mutation 
rates at nonsynonymous and synonymous sites stay constant over time, any 
excess nonsynonymous fixed differences that are due to positive selection will 
show up as an increased ratio of DN/DS in the 2 × 2 table, and the MK test will 
be significant (assuming enough variant sites were sampled).

In addition to being significant because of an excess of nonsynonymous 
fixed differences, the MK test can also be significant when there is an excess 
of nonsynonymous polymorphisms. The assumption that all of the nonsyn-
onymous polymorphisms in the sample are neutral is often violated. In fact, 
even the original Adh data of McDonald and Kreitman include a well-known 
balanced amino acid polymorphism (Hudson, Kreitman, and Aguadé 1987). 
Although balancing selection on a single site is expected to raise polymor-
phism levels at linked sites (see next chapter), this increase should equally 
affect linked neutral nonsynonymous and synonymous polymorphisms; 
only the single balanced polymorphism will contribute to an excess change 
in the ratio of PN/PS. In general, balancing selection appears to be a limited 
explanation for significant excesses of nonsynonymous polymorphism. Only 
when there is strong multiallelic balancing selection will there be an excess 
of multiple amino acid polymorphisms, and in these cases there may also be 
an excess of nonsynonymous fixed differences, leading to a nonsignificant 
MK test.

The more common explanation for a significant excess of amino acid poly-
morphism is that these variants are slightly deleterious. FIGURE 7.11 shows an 
example of a McDonald-Kreitman table in which there is a significant excess 
of nonsynonymous polymorphism (Nachman, Boyer, and Aquadro 1994). If 
these variants are slightly deleterious they will contribute to levels of non-
synonymous polymorphism but will not be fixed. Note that this is only true 
of weakly deleterious variants—strongly deleterious mutations will not rise 
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to appreciable frequency and are therefore un-
likely to be sampled; in these cases the MK test 
will not be significant (Akashi 1999). 

However, any inference that there are slightly 
deleterious polymorphisms in a sample can be 
strongly influenced by the way in which chro-
mosomes are sampled. Even though I stated 
earlier that nonrandom sampling of chromo-
somes within a species is unlikely to result in 
an apparent excess of nonsynonymous fixed 
differences in the MK framework, the same is 
not true of an excess of nonsynonymous poly-
morphisms. The conclusion that unusually 
high numbers of amino acid polymorphisms 
are due to weakly deleterious polymorphisms 
rests on the assumption that the sample comes 
from a single population. If, for instance, single 
individuals are each sampled from a different 

subpopulation, it is possible that local adaptation in each subpopulation will 
have led to differences at a number of amino acids. These differences could 
be misinterpreted as an excess of weakly deleterious nonsynonymous poly-
morphism rather than an excess of locally adaptive polymorphisms. While 
this sort of sampling scheme may seem unusual, it is a regular occurrence in 
species with low levels of variation within subpopulations, such as in the self-
ing plant Arabidopsis thaliana. The fact that these slightly deleterious polymor-
phisms are expected to be at lower frequency in the population (see Equation 
7.15) does not help to distinguish between deleterious and locally adaptive 
variants: because only a single accession is sampled from each locale, under 
either scenario the nonsynonymous variants may be low in frequency in the 
sample but high in frequency within a subpopulation.

Methodological extensions of the MK test
The presence of non-neutral polymorphisms—especially slightly deleterious 
ones—can act to mask patterns of positive selection. To see why this is the 
case, consider a hypothetical locus that has both an excess of fixed adaptive 
nonsynonymous substitutions and an excess of slightly deleterious nonsyn-
onymous polymorphisms (FIGURE 7.12A). If reduced to a comparison of just 
the numbers of polymorphic and fixed sites, the MK test would not be sig-
nificant (FIGURE 7.12B; P = 0.093). This is because the MK test assumes that 
all polymorphisms are neutral: the excess deleterious nonsynonymous poly-
morphisms increase the ratio of nonsynonymous to synonymous segregating 
sites, making it appear as though the high number of nonsynonymous fixed 
differences is expected given neutral evolution. 

How do we deal with the confounding presence of slightly deleterious al-
leles? Templeton (1996) suggested an extension of the MK test that separates 
singleton polymorphisms (of both types) from all other polymorphisms. The re-
sulting 3 × 2 table (FIGURE 7.12C) attempts to disentangle the effects of slightly 
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23 13

Nonsynonymous

Synonymous

PolymorphicFixed

FIGURE 7.11 A McDonald-Kreitman table 
with evidence for weakly deleterious polymor-
phisms (P = 0.004; Fisher’s exact test). Data 
are from the ND3 gene with polymorphism 
data from Mus domesticus and fixed differ-
ences relative to M. spretus. (After nachman, 
Boyer, and Aquadro 1994.)
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deleterious polymorphisms, which are expected to be overrepresented at low 
frequencies, from those of neutral polymorphisms present at higher frequen-
cies. While there are neutral nonsynonymous polymorphisms at low frequency, 
under neutrality there should also be a proportional number of synonymous 
polymorphisms at the same frequency. This table is essentially a combination 
of the test proposed by Sawyer, Dykhuizen, and Hartl (1987; Figure 7.7) and 
the McDonald-Kreitman test (Figure 7.9). Akashi (1999) proposed a further 
extension to this approach, comparing the full frequency spectrum of both  
nonsynonymous and synonymous alleles (not just singletons and multitons) and 
including fixed differences as one of the frequency classes (as in Figure 7.12A).  
He showed that this approach is more powerful than both the standard MK test 
and Templeton’s extension to the test, although a large number of polymor-
phisms may be needed to adequately populate each frequency class.

Testing for significance in a 3 × 2 table or using the full frequency spec-
trum offers more power to detect an excess of adaptive fixed differences, but 
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FIGURE 7.12 A hypothetical example of a gene with an excess of both low- 
frequency and fixed nonsynonymous differences. (A) The hypothetical allele fre-
quency spectrum of nonsynonymous and synonymous changes for a gene with  
n = 10 sampled chromosomes. Fixed alleles are included as a frequency bin.  
(B) The standard McDonald-Kreitman table for this gene (P = 0.09; Fisher’s exact 
test). (C) The 3 × 2 table proposed by Templeton (1996), separating singleton 
polymorphisms from all others (P = 0.07; Fisher’s exact test). (D) The 2 × 2 table 
proposed by Fay, Wyckoff, and Wu (2001), including only polymorphisms found 
on more than one chromosome (P = 0.04; Fisher’s exact test).
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the results can also be difficult to interpret when the ratio of nonsynonymous 
to synonymous differences varies among frequency classes. Fay, Wyckoff, 
and Wu (2001) conducted a much simpler comparison by simply remov-
ing all polymorphisms at frequencies <15% in their sample. They showed 
that by removing low-frequency polymorphisms—and simply conducting a  
2 × 2 test using common polymorphisms and fixed differences (FIGURE 7.12D; 
P = 0.045)—they were able to more easily detect patterns of adaptive natural 
selection. Although the 15% cutoff used by Fay, Wyckoff, and Wu is seem-
ingly arbitrary, it turns out that this value is a near-optimal solution to the 
problem of segregating deleterious amino acids, though many instances of 
positive selection will still be missed (Charlesworth and Eyre-Walker 2008). In 
most moderately sized samples simply removing singletons from the counts 
of polymorphism in the MK test will have a similar effect.

Assumptions of the MK test
Before considering further uses of the McDonald-Kreitman test, it is worth 
reviewing the major assumptions being made in making inferences from this 
test. Overall, we can say with some confidence that inferences of positive 
selection using the MK test are robust to most assumptions, including how 
chromosomes are sampled, the recent population history of the sample, the 
presence of non-neutral polymorphisms, recombination among sites, and even 
the selective equivalency of all synonymous mutations. The most important 
assumption may simply be that there is no bias in detecting nonsynonymous  
versus synonymous differences. However, there are several instances in 
which the assumptions of the test can be violated so as to cause a rejection of 
the null hypothesis, especially with regard to several novel uses of the MK test 
discussed in the next section.

Possibly the most unrealistic assumption of the MK test is that the neutral 
mutation rate is constant over time for both nonsynonymous and synonymous  
changes. For nonsynonymous changes this means that the fraction of all mu-
tations that are neutral does not change over time (i.e., that selective constraint 
is constant), even though this value may be quite sensitive to changes in  
effective population size, Ne. To be explicit, this assumption comes from the 
fact that expectations for both PN/PS and DN/DS in the 2 × 2 test of inde-
pendence are equal to mnonsyn/msyn; if these rates change over time, then this 
assumption no longer holds. In most cases we expect that even when con-
straint does change at a single gene over time, this change does not have a 
directionality, and there is therefore little effect on the MK test (Fay and Wu 
2001; FIGURE 7.13). 

At the whole population level, however, consistent changes in the effec-
tive population size over time may result in wholesale differences in levels of 
constraint. For instance, if population sizes for a species of interest were on 
average smaller in the distant past (when most fixed differences accumulate) 
than they are in the recent history of a sample (when most polymorphisms 
accumulate), then we would expect the neutral mutation rate to be higher 
for fixed differences relative to polymorphisms because some fraction of cur-
rently slightly deleterious mutations would have been effectively neutral. This 

ameuv
Highlight

ameuv
Highlight



DIRECT SElECTIon  157

han39657_ch07_131-164.indd 157 02/26/18  06:46 PM

situation could cause a rejection of the null hypothesis that is not due to posi-
tive selection. Conversely, population sizes may have crashed in the recent 
past, increasing the proportion of mutations that are neutral and making it 
seem as though there were a large number of segregating deleterious poly-
morphisms. Lower recent population sizes may also result in smaller numbers 
of segregating polymorphisms, lowering the overall statistical power of the 
test (e.g., Parsch, Zhang, and Baines 2009). In general, the magnitude of popu-
lation size change must be quite large to have an effect on most inferences 
of positive selection (Eyre-Walker 2002). In order to rule out the possibility 
that a recent increase in population size was responsible for the patterns of 
adaptive natural selection they observed in D. melanogaster, Fay, Wyckoff, and 
Wu (2002) tested several ancillary predictions of the increased population size 
model. They compared PN/PS ratios in African flies to non-African flies to see 
if the ratio was lower outside of Africa (the native range of this species) and 
found no difference. They also asked whether there were more rare nonsynon-
ymous variants in non-African samples—as might be expected if the average 
selective effect against deleterious polymorphisms had increased—and found 
no difference. Finally, they reasoned that an overall increase in population size 
would affect all genes in the genome, causing an across-the-board increase in 
the ratio of DN/DS; instead, they found heterogeneous effects among genes, 
with a substantial divide between a set of neutrally evolving genes and a set 
of adaptively evolving genes. Together, these results indicate that population 
size changes were not responsible for generating misleading patterns of posi-
tive selection.

There is one scenario in which the MK test—and the assumption of con-
stant neutral mutation rates—will be consistently violated such that positive 
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FIGURE 7.13 Hypothetical change in the ratio of nonsynonymous to synonymous 
mutations that become fixed or are polymorphic. For a single-copy gene (red  
line) the strength of selection may vary over time, with the arrow denoting the  
mnonsyn/msyn ratio found within the polymorphism data. For a newly duplicated gene 
(black line) the strength of selection is initially relaxed and then changes when a new 
function is acquired (denoted by the star). In these cases the comparison of polymor-
phism to divergence can be positively misleading. (Modified from Fay and Wu 2001.)
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selection will be inferred when none has necessarily occurred. This scenario 
is that of recent gene duplicates (as discussed in Jones and Begun 2005; 
Thornton and Long 2005; Arguello et al. 2006). A common pattern in the evo-
lution of gene duplicates is that selection is relaxed on the newly duplicated 
gene (reviewed in Conant and Wolfe 2008; Hahn 2009). If there is little con-
straint early in the history of a duplicate, then many nonsynonymous fixed 
differences will accumulate because they are neutral. If selection then gets 
stronger in the recent past—as when duplicates find new functions—then the 
ratio of nonsynonymous to synonymous polymorphism will provide a much 
different picture than that of divergence. This outcome can lead to a rejec-
tion of the neutral hypothesis and an interpretation of positive selection in 
the history of the gene duplicate simply because there is an excess of fixed 
nonsynonymous differences relative to nonsynonymous polymorphisms. But 
positive selection on the coding sequence has not necessarily occurred, as an 
environmental change—or even a single advantageous regulatory change—
may have been responsible for the new function and the consequent change 
in selective pressure. 

The second major assumption made by the MK test is that the average 
genealogical history of nonsynonymous and synonymous differences in the 
sample is the same. In a non-recombining region this is obviously true: there 
is only one (possibly unknown) genealogy relating all the samples and there-
fore all the sites. With recombination, however, different parts of the sequence 
have different genealogies and may therefore have longer or shorter times to 
their most recent common ancestor (and therefore more or fewer segregating 
sites). If there is an association between time to the most recent common an-
cestor and either nonsynonymous or synonymous changes in a region, there 
may be a difference in the number of segregating sites of each type simply 
because of the evolutionary variance among regions (see Chapter 6 for a dis-
cussion of evolutionary variance). To be explicit, this assumption comes from 
the fact that expectations for both PN/DN and PS/DS in the 2 × 2 test of inde-
pendence are equal to 4Ne/2t. If the expected time to the MRCA of the sample 
(represented here by the value of Ne) differs among regions, this assumption 
does not hold. But because nonsynonymous and synonymous changes within 
a locus are usually interdigitated among one another, the average genealogy is 
expected to be the same. At a single gene, even if nonsynonymous and syn-
onymous changes are spatially separated, it is still unlikely that there are large 
differences in the genealogies of adjacent regions. In both of these cases the 
only source of variance needed to be accounted for in the 2 × 2 table is sam-
pling variance among chromosomes and mutations.

However, there are a growing number of instances in which the classes 
of mutations being compared (e.g., nonsynonymous and synonymous) are 
spatially separated in the genome (see next section). In these cases it is no 
longer appropriate to apply the 2 × 2 test of independence, as the variance 
in the expected number of segregating sites among regions is inflated rela-
tive to a non-recombining locus. This inflated variance leads to an increase in 
false rejections of the neutral model (Andolfatto 2008). Although such appli-
cations do violate the assumptions of the MK test, there are several solutions 
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to the problem. Andolfatto (2008) proposed carrying out coalescent simula-
tions with recombination to establish more accurate significance levels for 
hypothesis testing. Such simulations can be used to simulate any amount of 
recombination between loci and can therefore be used in a wide variety of 
circumstances. Alternatively, testing can explicitly take both the evolutionary 
and sampling variance into account. The HKA test (see Chapter 8) is similar in 
conception to the MK test but is intended for use at multiple unlinked loci; the 
statistical framework of this test therefore incorporates the expected increase 
in variance. The details of this test will be laid out in the next chapter, but for 
now it is sufficient to say that a test taking into account the evolutionary vari-
ance among loci must be used if different classes of sites do not have similar 
genealogies.

Biological extensions of the MK test
The key insight of the MK test is that by comparing different classes of sites—
those under selection versus those putatively under no selection—we can 
largely control for the fact that populations are unlikely to meet all of the equi-
librium assumptions of the Wright-Fisher model. In other words, comparison 
to a putatively functionless class of polymorphisms provides an internal con-
trol for nonequilibrium histories that are due to demography or linked selec-
tion. Given this insight, it is natural to ask whether such comparisons can be 
made between other kinds of polymorphisms, especially if they can naturally 
be divided into selected and non-selected classes.

In fact, several different extensions of the MK test have been made to test 
for selection in different types of mutations. Akashi (1995) compared poly-
morphism and divergence among preferred and unpreferred synonymous 
substitutions in Drosophila. In this and other organisms it has often been found 
that one of the multiple synonymous codons coding for the same amino acid 
is favored over the others, either for translational accuracy or for translational 
efficiency (reviewed in Plotkin and Kudla 2011). The favored codons are called 
preferred in these cases, while the unfavored codons are call unpreferred. Rather 
than comparing nonsynonymous and synonymous changes in the MK table, 
Akashi used preferred and unpreferred synonymous changes and was able 
to demonstrate that many unpreferred polymorphisms are weakly deleteri-
ous. Because the synonymous changes were again interdigitated throughout 
single genes, this extension of the MK test did not have the problems associ-
ated with increased evolutionary variance.

A further extension of the MK test examines polymorphism and divergence 
in regulatory sequences. This application was first introduced by Ludwig and 
Kreitman (1995) and Jenkins, Ortori, and Brookfield (1995) but has since been 
applied to a growing number of datasets (e.g., Crawford, Segal, and Barnett 
1999; Kohn, Fang, and Wu 2004; Andolfatto 2005; MacDonald and Long 2005; 
Holloway et al. 2007; Jeong et al. 2008); a test analogous to dN/dS can also be 
used in regulatory regions (e.g., Hahn et al. 2004). These tests compare bind-
ing sites in noncoding regions either to interspersed sites that do not bind 
transcription factors or to synonymous sites in nearby regions. In the case 
of comparisons among polymorphisms and fixed differences in unlinked (or 
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only loosely linked) regions, one again must be cautious in accounting for the 
different histories among loci (Andolfatto 2008). 

Almost as important as accounting for evolutionary variance are several 
important differences between the evolution of nonsynonymous changes in 
coding regions and regulatory changes in noncoding regions (Hahn 2007). First, 
because functional regulatory sequences are often only characterized in a single 
species, assignment of functional homology to a set of homologous nucleotides 
in interspecies comparisons is not always warranted. Experimentally verified 
binding sites present in a well-studied focal species may be absent in other 
species; conversely, sequences with no known function in the focal species may 
actually be binding sites in the other species used in a comparison. Both types 
of errors will lead to misclassification of nucleotides, some error in estimates 
of the strength and direction of selection, and violations of the assumption that 
the neutral mutation rate is constant. A second caveat is that the genetic code 
of binding sites is unknown at present. We have little, if any, information on 
the effect of changes in binding sites on binding affinity. Although the clas-
sification of any change within a binding site as selected is therefore largely a 
hypothesis, it may be just as good as considering any amino acid change in a 
protein to be functionally relevant. The third major caveat in applying the MK 
test to regulatory sequences concerns the manner in which positive selection 
acts. While repeated substitution of amino acids in a protein seems like good 
evidence for positive selection, it is harder to imagine how exactly this might 
work in a regulatory region. This skepticism follows from some important fea-
tures of regulatory sequences: binding sites are often not restricted to specific 
positions, binding sites arise through point mutation quite often, and multiple 
changes in a binding site often result in the complete loss of binding affinity 
(reviewed in Wray et al. 2003). None of these reasons preclude natural selection 
from acting in this manner; rather, they simply suggest that instances in which 
repeated substitutions due to directional selection are detectable will be rare. 

Given all of these caveats, there are in fact a few examples of positive 
selection being detected through use of the MK test on noncoding regions. 
Crawford, Segal, and Barnett (1999) studied variation in the regulatory region 
of the Ldh-B locus between two subspecies of the killifish, Fundulus hetero-
clitus. They found an excess of fixed differences in nucleotides identified as 
being responsible for transcription factor binding relative to substitutions in 
interspersed sites, as well as differences in expression driven by the Ldh-B reg-
ulatory sequence between species. These results are consistent with repeated 
positive selection leading to the fixation of regulatory mutations. 

Summarizing selection across the genome
Given the results of McDonald-Kreitman tests from more than one gene, we 
would like to be able to compare results among genes or to summarize results 
across a single genome. The P-values taken from a test of the 2 × 2 contingency 
table are not ideal for comparisons among genes. One reason this is the case 
is that genes with evidence of positive selection and genes with evidence for 
segregating deleterious polymorphisms can have the same P-value. A second 
reason is that P-values are highly dependent on the counts in each cell—and 
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therefore longer or more rapidly evolving genes will have more extreme 
P-values regardless of the strength of selection. Simply summing contingency 
tables across genes to increase counts is also not a good solution, as it can lead 
to misleading results (Shapiro et al. 2007; Stoletzki and Eyre-Walker 2011). 

In order to provide a simple summary statistic that gives an interpretable 
value to the MK test’s 2 × 2 contingency table, Rand and Kann (1996) pro-
posed the neutrality index (NI):
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Under neutrality, the expected value of the neutrality index is 1, as the ratio of 
PN/DN and PS/DS should be equal. Values greater than 1 represent an excess 
of nonsynonymous polymorphisms, and values less than 1 represent an 
excess of nonsynonymous fixed differences. The neutrality index, or variants 
of it (see below), has been widely used to compare patterns of molecular evo-
lution across organisms and across genes. As stated in the original paper, “the 
index is intended to provide a qualitative indicator of direction and degree” of 
deviations from neutrality (Rand and Kann 1996, p. 737). A P-value must still 
be calculated to infer statistically significant deviations from NI = 1, but the 
index allows a quick comparison of evolutionary forces among genes.

There are several problems in interpreting NI besides the general issues 
of bias and increased variance in a statistic that is a ratio of ratios. One issue 
arises when DN, DS, or PS has a value of 0. In these cases NI is undefined and 
no value can be calculated for such genes. The common solution to this prob-
lem is to add a “pseudocount” of 1 to each cell in the 2 × 2 table, which ensures 
that NI is defined, although hypothesis testing should occur without the pseu-
docounts. A second issue arises because NI values are not symmetric around 
1, in the sense that NI = 2 and NI = 0.5 represent equivalent deviations from 
the neutral expectation and yet are very different in magnitude (Stoletzki and 
Eyre-Walker 2011). A solution to this problem is to take the log (or negative 
log) of NI values, which produces symmetric deviations (e.g., Tachida 2000; 
Presgraves 2005). The negative log also has the pleasing aesthetic side effect of 
giving positive values to genes showing evidence for substitutions with posi-
tive selection coefficients and negative values to genes showing evidence for 
polymorphisms with negative selection coefficients (Li, Costello, et al. 2008). 
FIGURE 7.14 shows negative log(NI) values plotted for thousands of genes in 
yeast, flies, and humans and immediately demonstrates the large number of 
genes showing evidence for positive selection in flies.

A related statistic is a, intended to represent the proportion of nonsynony-
mous substitutions fixed by positive selection (Smith and Eyre-Walker 2002). 
The value of a is given by: 

 α = −
D P

D P
1 S N

N S
 (7.18)



162  CHAPTER 7

han39657_ch07_131-164.indd 162 02/26/18  06:46 PM

which is the same as 1 − NI (Smith and Eyre-Walker 2002). In fact, a is not a 
proportion because it can take negative values. It may be better to think of a as 
a summary statistic, as it is not clear how to interpret a when it is negative (i.e., 
when there is an excess of nonsynonymous polymorphism). Positive values 
do represent the excess of amino acid substitutions that is due to adaptive 
natural selection, however. Rather than calculating a separate value for every 
gene in a genome, a is most commonly used to summarize data across genes. 
This can be done by averaging counts of DN, DS, PN, and PS across genes in 
an unbiased manner. Unfortunately, the original papers outlining methods 
for this summarization described procedures that violated either Simpson’s 
paradox (that combining two datasets can lead to results not present in either 
dataset) or Jensen’s inequality (that the average of ratios is not equal to the 
ratio of averages). While maximum likelihood methods do exist for calculat-
ing a (Bierne and Eyre-Walker 2004; Welch 2006), recent work has provided a 
simple unbiased method for calculating the average a from a large number of 
genes (Stoletzki and Eyre-Walker 2011):

 

∑

∑
α

( )
( )

= −
+

+

D P P D

P D P D
1

/

/

i i i i
i

m

i i i i
i

m

S N S S

S N S S

 (7.19)

where the subscript indicates the ith gene in the set out of m genes total. 
Calculation of a for nonsynonymous differences across the genomes of 
Drosophila simulans and D. melanogaster found a = 0.54, a huge proportion 
of positively selected substitutions (54%; Begun et al. 2007). 

Finally, by combining data on the allele frequency spectrum with data on 
fixed differences, several methods are better able to estimate the proportion 
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FIGURE 7.14 neutrality indices for humans, flies, and yeast. Each point represents 
the neutrality index (nI) for a specific gene and the P-value associated with the 
McDonald-Kreitman test for that gene. For plotting purposes nI is defined as  
(Pn + 1/Dn + 1)/(PS + 1/DS + 1), and the negative log10 of these values is shown. 
The lower horizontal line in each graph represents P = 0.05; the upper horizontal 
line represents the Bonferroni-corrected P = 0.05/n, where n is the number of tests 
conducted. (From li, Costello, et al. 2008.)
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of nonsynonymous substitutions fixed by positive selection (e.g., Boyko 
et  al. 2008; Eyre-Walker and Keightley 2009). These methods use the rea-
soning introduced by Templeton (1996) and Fay, Wyckoff, and Wu (2001) 
to first account for the presence of slightly deleterious nonsynonymous 
polymorphisms before estimating this proportion. While the methods differ 
slightly—  Eyre-Walker and Keightley use the folded allele frequency spec-
trum while Boyko et  al. use the unfolded spectrum—both attempt to first 
estimate the proportion and frequency of nonsynonymous polymorphisms 
by comparison to the spectrum of synonymous polymorphisms. By fitting a 
demographic model to the synonymous dataset and assuming all nonsyn-
onymous polymorphisms are either neutral or deleterious, these methods 
allow for an estimate of the fraction of nonsynonymous fixed differences 
that are due to adaptive natural selection. This and similar approaches can 
also be used to calculate the value of the joint parameter g = 2Nes (also con-
fusingly denoted a), which represents the average effect of selection on 
 nonsynonymous variants (Keightley and Eyre-Walker 2010). Simulations 
show that these methods can provide an accurate estimate of the average 
value of a if data from a large number of genes are collected, even if the 
sample size is small; much larger sample sizes are needed to accurately es-
timate parameters at a single locus (Keightley and Eyre-Walker 2010). As 
sequencing becomes cheaper, even single-locus studies of the frequency of 
deleterious and advantageous mutations will become possible.
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In the previous chapter we discussed the effects of natural selection on 
individual mutations that affect organismal fitness. If there are enough 
of these mutations of a single type—such as advantageous nonsynony-
mous changes—then we can often make strong inferences about the 
dominant mode of selection. However, none of the methods previously 
described are useful for detecting selection on a single advantageous 
mutation, no matter how large an effect it has, or on a single balanced 
polymorphism. In order to identify selective variants of this kind we 
must instead consider the effects they have on linked neutral variation: 
polymorphisms that themselves have no influence on fitness but are 
affected by selection occurring nearby. While methods that use linked 
neutral variation are often still limited to detecting strong, recent se-
lection, they offer perhaps the best window into the recent selective 
history of the genome. I examine the effects of linked selection on three 
distinct aspects of variation and for each discuss tests designed to 
detect the action of selection on specific facets of this variation. 

DETECTING SELECTION USING THE AMOUNT  
OF POLYMORPHISM

Selection has relatively straightforward effects on levels of linked neu-
tral diversity: it can either raise them or lower them. Understanding the 
general conditions under which levels of neutral variation will go up or 
down will help us gain intuition into how tests for selection work and 
exactly which modes of selection can be detected. 

The effects of positive selection on levels of linked neutral 
variation
Positive selection acting to fix a newly arisen advantageous mutation 
will lower levels of diversity. This scenario has been termed a selec-
tive sweep (Begun and Aquadro 1991; Berry, Ajioka, and Kreitman 1991; 
Harrison 1991) or hitchhiking (Maynard Smith and Haigh 1974), with 
each phrase stressing a slightly different outcome of the process (see 
also Kojima and Schaffer 1967). The phrase selective sweep evokes the re-
moval of variation that occurs as the chromosome containing the adap-
tive allele becomes the predominant one in the population (FIGURE 8.1). 

LINKED 
SELECTION 8
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All completely linked variation is swept aside, with the only remaining varia-
tion arising during the transit to fixation. The phrase hitchhiking (or “hitch-
hiking,” in Maynard Smith and Haigh’s original spelling) stresses the fact that 
neutral polymorphisms that happen to reside on the lucky chromosome upon 
which the advantageous mutation arises also rise in frequency (Figure 8.1). 
These hitchhikers will also fix in the population, unless recombination farther 
away from the selected locus unhitches them from the advantageous allele.

To get a slightly more quantitative feeling for how a selective sweep re-
duces polymorphism at a locus, consider the time it takes a mutation to fix in 
a population. This period of time determines how much variation there will 
be: in the most extreme example all chromosomes descend from a single lin-
eage containing a highly advantageous mutation that arose in the previous 
generation. In such a population there would be almost no variation, as all 
polymorphisms would have had to arise in a single generation. The longer a 
mutation takes to fix, the more time there is for associated polymorphisms to 
accumulate. For instance, conditional on its fixation, a neutral mutation takes 
approximately 4Ne generations to fix (Kimura and Ohta 1969), though there 
is a large variance associated with this expectation (Kimura 1970). There is 
an obvious connection between the time to fixation of a neutral mutation and 
the amount of time in a neutral genealogy until all lineages coalesce to their 
most recent common ancestor, which also approaches 4Ne with large samples 
(Equation 6.3). The amount of variation at a neutral locus—and the shape and 

(A) (B) (C)

FIGURE 8.1 Phases of a selective sweep. For each phase an example genealogy 
and an alignment with derived alleles (denoted as circles) is shown. (A) An advanta-
geous mutation (shown as a star) arises on a neutral genealogy. (B) The advantageous 
allele rises in frequency but is not yet fixed in the population. (C) The advantageous 
allele has fixed, with all chromosomes coalescing soon after it appears. The branch 
extending from the root of the sample is shown for clarity.
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height of the genealogy—is therefore intimately connected to the time it takes 
neutral variants to fix. Now imagine a new additive advantageous mutation 
arising once in a diploid population. The time it takes this mutation to fix is  
(Nei 1973, p. 383): 

 T
N

s

2 ln 2
Fix

e( )
≈  (8.1)

If the effective size of a population is Ne = 1,000,000 with a selection coefficient 
of s = 0.0001 (a relatively small advantage), this equation implies that it will 
take the advantageous allele approximately 0.29Ne generations to fix. While 
this is still a long time (approaching 290,000 generations), it is quite rapid in 
comparison to the neutral expectation. As a result of the rapid rise to fixation, 
the genealogy at such a locus will be much shorter and will have a shape dif-
ferent from the one expected under neutrality (Figure 8.1C). These two aspects 
of the genealogy will form the basis for multiple methods that can be used to 
detect the action of selection.

Three very important factors interact to determine differences in the mag-
nitude of reduction in diversity at or near a selected locus: the strength of 
selection (s), the rate of recombination (c), and the time since the sweep ended 
(FIGURE 8.2). Selective sweeps generate a valley (or trough) in levels of poly-
morphism surrounding the location of the advantageous allele (Figure 8.2);  
the depth and width of the valley are determined by these factors. The strength 
of selection, together with the population size, determines how quickly the 
advantageous allele fixes (Equation 8.1). The more quickly it fixes, the lower 
the height and total branch length of the resulting genealogy, and therefore 
the lower the level of diversity around the selected site at the end of the sweep 
(and the deeper the resulting valley). With weaker selection there will be more 
time since the common ancestor of all lineages in the population and therefore 
a taller genealogy with greater total branch lengths, resulting in more varia-
tion. The sweeping allele will also remove any variation linked to it, except 
when recombination allows nearby neutral polymorphisms (often referred 
to as neutral loci) to escape this effect. The recombination rate in the region 
around the advantageous substitution will therefore affect the width of the 
swept region. Similarly, the time to fixation affects the width of this region, as 
a longer transit time also means that there is more time for recombination off 
the sweeping haplotype (Figure 8.2). The size of the region with lower levels of 
variation will therefore be proportional to s/c (Kaplan, Hudson, and Langley 
1989; Barton 1998). From this relationship we can see that selection and recom-
bination counteract each other to determine the width of the diversity valley. 
Finally, once the sweep has ended levels of diversity will begin to return to 
normal, reaching equilibrium close to 4Ne generations later. However, long 
before a locus has reached equilibrium, levels of diversity will have risen 
to within the normal bounds of variation seen at loci evolving neutrally  
(Figure 8.2, middle sweep). As we will discuss later in the chapter, this means 
that the power to detect selection diminishes rapidly after the sweep has 
ended (Simonsen, Churchill, and Aquadro 1995; Fu 1997; Przeworski 2002).
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FIGURE 8.2 Effects of selection intensity 
and time since fixation on the reduction in 
diversity as a result of selective sweeps. 
Sweeps 1 and 2 had a similar selective 
advantage, but sweep 2 ended longer ago 
than sweep 1. Sweeps 1 and 3 ended at the 
same time, but sweep 3 had a smaller se-
lective advantage than sweep 1. (Adapted 
from Macpherson et al. 2007.)

Not all sweeps observed in nature have fixed 
the advantageous allele, either because this allele 
is sampled on its way to fixation or because a 
change in conditions has altered the selection co-
efficient associated with the relevant allele. These 
partial sweeps often have their own unique pat-
terns of variation at linked neutral polymorphisms 
(Figure 8.1B) and will be covered later in this chap-
ter. Additionally, not all sweeps are the result of 
a single advantageous mutation arising once and 
fixing. The scenario in which the adaptive allele has 
only a single origin is often labeled a hard sweep, to 
distinguish it from so-called soft sweeps (Hermisson 
and Pennings 2005). Soft sweeps occur when mul-
tiple copies of the advantageous allele are fixed, 
either because selection acts on standing variation 
that was previously neutral or deleterious, or be-
cause mutations to the same advantageous state 
occur on different backgrounds before the original 
copy fixes. Selection from standing variation is ob-
viously a common occurrence in nature, and there 
is also good evidence that adaptive alleles can arise 

multiple times in the same population (e.g., Karasov, Messer, and Petrov 2010). 
In either scenario, the general effects of soft sweeps on levels of variation are 
much reduced relative to hard sweeps (Hermisson and Pennings 2005; Pennings 
and Hermisson 2006a). Variation around the selected locus is not nearly as low 
in soft sweeps as hard sweeps, as the advantageous allele is associated with 
multiple different haplotypes. Therefore, even if a single selected allele is fixed 
in the population, the surrounding sites can be polymorphic. This makes soft 
sweeps much harder to detect than hard sweeps (Przeworski, Coop, and Wall 
2005; Pennings and Hermisson 2006b), though there may be unique signatures 
associated with each type of fixation (Garud et al. 2015; Schrider and Kern 2016).

The effects of balancing selection and strongly deleterious alleles  
on levels of linked neutral variation
We have just seen how positive selection on a newly arising advantageous mu-
tation can reduce levels of linked neutral variation. Conversely, balancing se-
lection acting to maintain two or more alleles at intermediate frequency in a 
population will increase levels of linked neutral variation. Balancing selection 
acts to counter the effects of drift, resulting in a much slower rate of loss of alleles 
than would otherwise be expected. This effect extends to linked variation, such 
that these neutral polymorphisms are also not lost. The genealogy at a locus 
under balancing selection is much higher than a neutral genealogy and often 
has two or more long internal branches (FIGURE 8.3). As with sweeps, these two 
aspects of the genealogy can be used to detect the action of balancing selection.

The effect of recombination on signatures of balancing selection is again 
to narrow the window of diversity that is affected. As nearby neutral 
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polymorphisms recombine away from the balanced 
alleles, they can be lost. Given that one of the main 
features of balanced polymorphisms is their greater-
than-expected age, the effects of recombination can 
be large: only a small window of excess diversity 
around the selected site may remain (FIGURE 8.4). 
This means that balancing selection can be difficult 
to detect and may be commensurately more difficult 
for older balanced polymorphisms (e.g., Leffler et al. 
2013).

Finally, deleterious alleles can also have an effect 
by reducing linked neutral variation. This process— 
dubbed background selection (Charlesworth, Morgan, 
and Charlesworth 1993; Charlesworth, Charlesworth, 
and Morgan 1995)—occurs because deleterious vari-
ants are removed from the population, removing 
linked neutral polymorphisms with them. The main 
effect of background selection is to reduce the height of 
the local genealogy proportional to the fraction of chro-
mosomes carrying a deleterious allele (Equation 3.19),  
though the shape largely remains the same as in the 
neutral case. Background selection can sometimes 
change the shape of the genealogy (Charlesworth 
2012), but the area of parameter space over which this 
occurs is relatively small (Hudson and Kaplan 1994). 

(A) (B)

FIGURE 8.3 Effects of balancing selection. 
(A) A typical neutral genealogy. (B) A ge-
nealogy under balancing selection. The site 
of the balanced polymorphism is denoted 
by the stars, with the two allele classes as-
sociated with one or the other star. note, 
however, that one of the balanced alleles 
represents the ancestral state and likely did 
not arise on the internal branch of the gene-
alogy. it is shown simply for clarity.
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FIGURE 8.4 Balancing selection at Adh in D. melanogaster. The solid line shows 
a 100-bp average of π across the region, while the dotted line shows the value ex-
pected under a neutral model. The site of the suspected balanced polymorphism is 
marked with an arrow. (From kreitman and Hudson 1991.) 
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Recombination interacts with background selection in much the same way 
it does with the other forms of selection discussed here: higher recombina-
tion limits the distance over which there is an effect, with low recombination 
regions showing the broadest reductions in linked neutral variation. On non-
recombining chromosomes such as the Y, the effects of background selection 
may be quite strong (e.g., Wilson Sayres, Lohmueller, and Nielsen 2014).

The most underappreciated result in molecular population genetics
Before moving on to consider statistical methods for detecting linked selec-
tion, we need to discuss one of the most important and most underappre-
ciated results in modern molecular population genetics. Thus far we have 
examined the effects of selection on levels of linked neutral polymorphism. 
Now we want to ask about the effects of selection on levels of neutral diver-
gence at linked sites. The naïve expectation may be that hitchhiking will in-
crease levels of divergence and that background selection will decrease levels 
of divergence (and maybe that balancing selection will have some unpredict-
able effect). But simple calculations can be used to show that none of these 
processes will change the rate of neutral substitution. Therefore, linked selec-
tion should have no effect on levels of divergence, other than any effect it has 
on levels of ancestral polymorphism that contribute to divergence (Gillespie 
and Langley 1979). This is a key result with many important implications for 
tests of selection.

Although this result was understood by many within the field, it was not 
explicitly spelled out until a paper by Birky and Walsh (1988). Here I present 
the mathematical logic used to show that hitchhiking has no effect on neutral 
substitution rates. Consider first the probability that a derived neutral allele 
will fix in the population, thus contributing to divergence. This probability is 
equal to p, its current frequency in the population. Low-frequency alleles are 
less likely to fix relative to high-frequency alleles, and new mutations have 
probability 1/2Ne of fixing (Chapter 7). If we next imagine that an uncondi-
tionally advantageous mutation that will definitely go to fixation enters the 
population, we can see that any neutral alleles completely linked to it will 
also go to fixation. But what is the probability that the advantageous mutation 
will arise on a chromosome carrying an arbitrary derived neutral allele? This 
probability is also p, the neutral allele’s current frequency. So hitchhiking does 
not change the overall probability of fixation for a neutral allele, and conse-
quently levels of divergence (as measured by d, dXY, or similar statistics) do 
not increase. The importance of this result cannot be overstated, as it means 
that we can use divergence as a control dataset to understand the effect of 
selection on polymorphism.

Although linked selection will not affect the rate of substitution of neutral 
alleles, it will have a substantial influence on advantageous and deleterious 
alleles. This relationship was dubbed the Hill-Robertson effect by Felsenstein 
(1974), after a paper by Hill and Robertson (1966). It is also commonly known 
as Hill-Robertson interference. The effect of selection is to lower the probability 
of fixation of linked advantageous alleles and to increase the probability of 
fixation of linked deleterious alleles. There are multiple ways to think about 
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why this effect occurs. An abstract way to think about it is to say that selec-
tion at a linked site lowers the effective population size at the site of interest 
because selection and (some) recombination increase the variance in offspring 
number. Since the product of Ne and s is what determines fixation probabil-
ities for both advantageous and deleterious alleles (Figure 7.2), lowering Ne 
causes both of these values to approach the probability of fixation for a neutral 
allele. A more direct way to think about it is to see that the fixation probability 
of any chromosome is proportional to the total of the selection coefficients 
associated with it. If an advantageous allele is linked to either deleterious al-
leles or other advantageous alleles that occur on multiple backgrounds, the 
probability that it will fix goes down. Inversely, linkage to advantageous al-
leles actually raises the probability of fixation for deleterious alleles, as long as 
they are not too deleterious. As recombination rates go up the consequences 
of the Hill-Robertson effect go down, so those regions of the genome with the 
highest rates of recombination are expected to be the least affected (Comeron, 
Williford, and Kliman 2008). 

Detecting selection via levels of polymorphism: The HKA test
We have seen how selection at linked sites can either raise or lower levels of 
neutral variation. In the rest of the chapter we will discuss specific ways to 
test for selection at a locus and to determine what kind of selection might be 
acting. One very important caveat to everything covered here is that nonequi-
librium demographic histories can have profound effects on the outcome of 
our tests. Sometimes demography can cause us to miss selection, and some-
times it can cause us to incorrectly infer selection where none has occurred. In 
Chapter 9 we will cover some of the ways that nonequilibrium demography 
can mimic selection, returning to an in-depth discussion of the interaction be-
tween selection and demography in Chapter 10. But understanding exactly 
which signals each of our tests can detect will be important in seeing how they 
can be misled.

Under a neutral model levels of polymorphism should be proportional 
to levels of divergence: the amount of polymorphism in a population is ex-
pected to be 4Nem, while divergence between species is expected to be 2tm. 
Although the mutation rate and the neutral mutation rate can change along 
a chromosome, at any particular locus we expect a correlation between poly-
morphism and divergence because of the shared parameter, m. Arnheim and 
Taylor (1969) were the first to use this expectation to test the neutral hypoth-
esis, though there was little data available to them. With the ability to collect 
DNA sequences from multiple individuals that emerged in the early 1980s 
came more sophisticated methods for testing this prediction. The most com-
monly used such method was introduced by Hudson, Kreitman, and Aguadé 
(1987) and is consequently referred to as the HKA test. 

As originally applied, the HKA test addresses a simple question: If one 
observes a locus with exceptionally low levels of polymorphism, is this due to 
low mutation rate at the locus or a recent selective sweep? Similarly, if one ob-
serves a locus with high levels of polymorphism, is this due to a high mutation 
rate or balancing selection? If there was a recent selective sweep (or balancing 



172  CHAPTER 8

han39657_ch08_165-202.indd 172 02/26/18  06:47 PM

selection), then the level of divergence at the locus of interest will not be ex-
ceptionally low (or high)—instead, it will be selection that has affected levels 
of polymorphism. A key point is that levels of linked neutral divergence are 
unaffected by selection (see above), allowing us to use divergence as a proxy 
for the mutation rate. Therefore, a straightforward test of neutrality should 
test for the proportionality of polymorphism and divergence across loci. The 
HKA test does this in a statistically sound manner. 

Experimental design for the HKA test
The HKA test is normally carried out using two measures from each of two 
or more loci. For each locus we need variation from one species (S) and di-
vergence between this species and another closely related species (d). The 
variation data can come from as few as two homologous chromosomes (as 
long as variable sites are observed), and both polymorphism and divergence 
can use any type of change: that is, it does not matter whether they are syn-
onymous, nonsynonymous, or noncoding. There is no requirement that the 
HKA test be carried out on coding regions, as information about the type 
of change observed is not used. However, it is somewhat common to see 
researchers use only synonymous sites when coding regions are analyzed, 
to increase the probability that the variation they see is not affected by direct 
selection.

To ask whether polymorphism is proportional to divergence across loci, we 
calculate a c2 statistic using the observed and expected values:

 S E S Var S d E d Var d( ) / ( ) ( ) / ( )i i i
i

m

i i i
i

m
2 2 2∑ ∑χ ( ) ( )= − + −  (8.2)

where Si is the observed number of segregating sites at the ith locus (out 
of m loci total), di is the observed number of differences between randomly 
chosen chromosomes in the two species, and E(•) and Var(•) denote the 
expectation and variance of different quantities. We have previously seen 
equations for most of these quantities: E(Si) is found by rearranging Equation 
3.5, Var(Si) is given by Equation 3.7, and E(di) is given by Equation 7.1  
(with all loci sharing the same divergence time, t). The only statistic not 
given previously is:

 Var d E d i i iAnc

2
θ( )( ) ( )= +  (8.3)

where 
iAncθ  is the value of q in the ancestral population at the ith locus (Gillespie 

and Langley 1979). Remember that for all of these values we must be sure we 
are using the formulas appropriate to the chromosome on which each locus 
is found (e.g., X, autosome, etc.). The expectations and variances can be esti-
mated if we first assume that the ancestral population size is the same as the 
current population size and then solve for the unknown parameters: 

iAncθ  at 
each locus and the species split time, t (which appears in the expectation of di). 
The resulting statistic should be c2-distributed with m − 1 degrees of freedom. 
Often simulations are used to generate the null distribution rather than any 
particular parametric distribution.
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There are two important aspects of this experimental and statistical pro-
cedure that should be noted before discussing how to interpret the HKA 
test. The first is the use of d rather than some other measure of divergence. 
As pointed out in the original paper, dXY has the same expectation as d (see 
Equation 7.1 and related discussion), but the variance term for dXY is slightly 
more complicated (Nei 1987, eq. 10.24). There is no other reason not to use 
dXY as the measure of divergence, and d is used only because of the simpler 
variance term. For very recent split times the use of d (or dXY) leads to reduced 
power in the HKA test because of a large amount of segregating ancestral 
polymorphism. To avoid this problem, Ford and Aquadro (1996) proposed a 
modified HKA test that uses the number of fixed differences between species. 
Use of this method is expected to increase power to detect selection when spe-
cies are very closely related (i.e., when d is small relative to q).

Second, the reader may wonder why we cannot apply a simple test of 
independence using the observed values of polymorphism and divergence. 
For instance, given a study that has sequenced two loci, why not simply use 
a 2 × 2 table as in the McDonald-Kreitman test? In fact, this is exactly what 
Kreitman and Aguadé (1986) did using data from the Adh locus and its flank-
ing 5′ region. However, a 2 × 2 table (or any test of independence) assumes 
that the only source of variation in S is a Poisson mutational process. There 
is a second source of variation when sampling different loci: the variation 
contributed by the genealogical process, or what we previously referred to 
as evolutionary variance. Loci can differ in the number of polymorphisms they 
contain not just because of the variation in the mutational process, but also 
because of variation in their total height and length that is due to the sto-
chasticity of the genealogical process (Chapter 6). Without accounting for 
this source of variance we may falsely reject the null hypothesis even when 
it is true, as the variation in S will be greater than is expected under the 
model. Another way to see this is to recall that in conducting the McDonald-
Kreitman test we assume that Ne is the same for synonymous and nonsynon-
ymous polymorphisms; when these sites are interdigitated among each other 
at the same locus, this is indeed likely to be the case. But if the two classes of 
sites are separated along the chromosome we can no longer assume that they 
have the same value of Ne—this difference in Ne is exactly what is reflected in 
the variation in the height of genealogies. As a consequence, we must use a  
goodness-of-fit method like the HKA test.

Interpreting the HKA test
In the pre-genomic era the HKA test was usually carried out with a very small 
number of loci: one of the loci represented the gene or region of most interest, 
while the other loci were designated as “neutral” regions that would provide 
information about background levels of polymorphism and divergence in the 
absence of linked selection. Often the neutral loci also did not reject any other 
test of neutrality that had been applied to the data. Rejection of the null hy-
pothesis of the HKA test with a significant c2 was taken to indicate that the 
focal locus was the target of selection, and post hoc comparisons of diversity 
among loci indicated whether selection was positive or balancing. If diversity 
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was low at the focal locus this was taken as evidence of recent positive se-
lection, and if diversity was high at this locus it was viewed as evidence of 
balancing selection.

However, as with all goodness-of-fit tests, identification of the locus 
under selection—and the type of selection acting—must be made via some 
external information. Given only measures of polymorphism and diver-
gence at a set of loci, it is possible that those initially designated as “neutral” 
are in fact targets of selection. Any one of the values of polymorphism or 
divergence at any locus could be an outlier, or they could all (or all but one) 
be affected by linked selection. In their original paper, Hudson, Kreitman, 
and Aguadé (1987) argued that the 5′ region was much more likely to rep-
resent variation unaffected by linked selection, and given the similar levels 
of divergence the high level of polymorphism at Adh was interpreted as 
evidence for balancing selection (Figure 8.4). This overall problem is similar 
to that in the McDonald-Kreitman test, as part of which a researcher must 
still make decisions about which of the four input values is driving the 
statistical result.

With larger and larger population genetic datasets it has become more 
difficult to identify the specific targets of selection. Often we do not have 
a priori candidates for selection, so the HKA test is asking whether there is 
an overall fit between the data and a neutral model. There are several ap-
proaches we can take to identify the most extreme candidates for selection, 
however. If the overall HKA test is significant, the contribution of each in-
dividual locus to the result can be determined by removing one locus at a 
time and repeating the test (e.g., Moore and Purugganan 2003). Sometimes 
the overall test is not significant, but pairwise tests among loci can still 
reveal targets of selection (Mousset et al. 2003). Alternatively, Wright and 
Charlesworth (2004) formulated a maximum likelihood version of the HKA 
test that can formally test a model of selection at individual loci against a 
model without selection. Using whole-genome data, Langley et al. (2012) 
used Ford and Aquadro’s (1996) formulation of the HKA test to calculate the 
expected numbers of segregating sites and fixed differences in each window 
using the observed variation and divergence on the rest of the chromosome. 
Each genomic window was therefore being tested as an outlier compared 
to a defined background. However, in all of these situations one is assum-
ing that at least some of the loci in the dataset are evolving neutrally. As a 
counterexample, imagine a dataset in which levels of polymorphism at 99 
loci are affected by positive selection at linked sites, but at one locus are 
unaffected. Any implementation of the HKA test would identify the single 
neutrally evolving locus as the outlier, and further infer that it was affected 
by balancing selection. If all loci are affected by recent positive selection, or 
all are affected by balancing selection, there may not even be heterogeneity 
in levels of polymorphism among loci; in this case the HKA test would not 
be significant. Nonetheless, a significant HKA test can be taken as evidence 
against the neutral hypothesis (but see caveats below), and the loci with the 
highest or lowest levels of polymorphism will represent the best candidates 
for balancing or positive selection.
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Before addressing the assumptions made by the HKA test and their 
common violations, it is important to reiterate what exactly a significant test 
means. Because the HKA test is looking for the effects of selection on linked 
variation, a significant test does not mean that any of the variants you see are 
under direct selection or are in any way non-neutral. It means that levels of 
polymorphism (and possibly, but more rarely, divergence) are different than 
expected under only mutation-drift equilibrium. In the case of balancing se-
lection it is possible that the selected polymorphism is in your dataset, but 
for completed selective sweeps it is the low level of neutral polymorphisms 
that makes the test significant—the selected allele has already fixed and is 
not present among the current polymorphisms. The inference that loci are 
evolving non-neutrally is only a statement about the forces affecting levels 
of polymorphism, and also does not imply anything about constraint in  
these regions.

The HKA test makes a number of assumptions that may be violated in real 
data, some of which make the test conservative and some of which make it an-
ticonservative (i.e., more likely to produce false positives). The two most con-
servative assumptions are that there is no recombination within loci and that 
there is free recombination between loci. One reason to use coalescent simu-
lations to generate the null distribution for the HKA test is to relax these as-
sumptions, making the test more powerful. Another reason to use simulations 
is that the HKA test assumes the population is at equilibrium: nonequilibrium 
demographic histories can lead to greater variance in polymorphism among 
loci, leading to false positives. Simulating such histories ensures that this vari-
ance is accounted for. Similarly, the HKA test assumes that the polymorphism 
data come from a single population. Hidden population structure can lead 
in some circumstances to false positives (Ingvarsson 2004). Possibly the most 
important assumption of the HKA test is that neutral mutation rates are con-
stant over time at each locus. Neutral mutation rates that are not constant can 
cause a disparity between polymorphism and divergence. There are multiple 
possible causes of changes in neutral mutation rates: the underlying mutation 
rate can be evolving, purifying selection can have gotten stronger in the recent 
past, or purifying selection can have gotten weaker in the recent past. For  
instance, selection may be stronger because of recent gain-of-function mu-
tations, or it may be weaker because a gene recently became a pseudogene  
(e.g., Schrider and Kern 2015). In the former case polymorphism will be low 
relative to divergence, and in the latter case it will be high. As with the in-
terpretation of all such tests, careful examination of the region of interest is 
necessary to make accurate biological inferences. 

DETECTING SELECTION USING THE ALLELE FREQUENCY 
SPECTRUM

Thus far we have discussed the effects of linked selection on levels of poly-
morphism, but not on the exact distribution of variants. One of the most beau-
tiful features of population genetics is that we can predict the allele frequency 
spectrum of neutral variants in the absence of linked selection (Chapter 6). 



176  CHAPTER 8

han39657_ch08_165-202.indd 176 02/26/18  06:47 PM

We can therefore use deviations from this expected distribution to detect the 
signal of different types of selection.

The effects of positive selection on the allele frequency spectrum
Once again we will focus on the effects of positive selection and balancing 
selection on the allele frequency spectrum. We do not need to consider the 
impact of weak negative selection on the frequency spectrum of linked neu-
tral variants because it has a very small effect (Golding 1997; Neuhauser and 
Krone 1997; Przeworski, Charlesworth, and Wall 1999; Williamson and Orive 
2002); as mentioned above with regard to background selection, strongly del-
eterious alleles also do not affect the frequency spectrum across much of pa-
rameter space (Hudson and Kaplan 1994). As with levels of polymorphism, a 
genealogical perspective will help us to understand the influence of positive 
and balancing selection on the frequency spectrum. We begin by focusing on a 
region completely linked to the selected allele—there has been no recombina-
tion between the neutral variants at this locus and the selected site. Regions 
flanking the selected site, but only partially linked to it, can show subtle yet 
important differences in their allele frequency spectra.

The genealogy at a locus completely linked to a hard selective sweep is 
often described as star-like (Figure 8.1C). The rapid rise in frequency of the 
selected allele from a single copy means that most coalescent events happen at 
the beginning of the sweep, when its frequency is low, giving rise to the star-
like pattern. There is also little time for coalescence among lineages during a 
sweep, and lineages can coalesce simultaneously when there is positive selec-
tion. The shorter the time to fixation—or the less time has elapsed since the end 
of the sweep—the less time there is for coalescence. When there are mutations 
along each branch of a completely star-like genealogy they are by definition 
singletons: there is only one descendant chromosome in the sample with each 
derived allele. Slower sweeps, or more time since the sweep has ended, will 
lead to older coalescences and fewer singletons than stronger or more recent 
sweeps. In either case, the allele frequency spectrum can be skewed toward 
an excess of low-frequency polymorphisms relative to the neutral spectrum 
(FIGURE 8.5). This left-skewed frequency spectrum is the signature of a selec-
tive sweep at a locus (Aguadé, Miyashita, and Langley 1989; Braverman et al. 
1995). In the extreme, all lineages have coalesced quite recently and there is no 
variation in the sample. Such cases are not amenable to methods that use the 
allele frequency spectrum because there are no segregating sites. However, 
as variation arises at a locus each new polymorphism appears as a singleton. 
Therefore, even with extremely strong sweeps the skewed allele frequency 
spectrum will appear after the sweep has ended, or in flanking regions that 
have partially escaped selection.

When recombination intervenes between a sweeping allele and linked 
neutral variants, additional patterns in the frequency spectrum can appear. 
Of course with enough recombination linked neutral variation will be en-
tirely unaffected by a sweep, and there will be no signal of selection. But 
neutral loci closely linked to the selected allele—such that only one or a few 
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sampled lineages become “unhitched” from it—can also produce an excess of  
high-frequency derived alleles (Fay and Wu 2000). To understand how this can 
occur, consider the neutral derived alleles that by chance are on the same chro-
mosome as the advantageous allele when it first arises (Figure 8.1A). These 
alleles will be driven to high frequency by selection. If they recombine onto 
another background during the sweep, placing the ancestral allele on the se-
lected haplotype (FIGURE 8.6A), then they may not reach fixation. Note that 
since these neutral derived alleles occur on many chromosomes containing 
the advantageous allele, any single recombination event cannot completely 
separate them from the sweep. Instead, it is the fact that the ancestral alleles 
at the same positions become “hitched” to the sweep that prevents their fixa-
tion. Genealogically, this process results in a star-like pattern combined with a 
neutral-like pattern (FIGURE 8.6B). The ensuing allele frequency spectrum has 
an excess of both low- and high-frequency derived alleles (FIGURE 8.6C). This 
pattern is a strong indicator of the “shoulders” of a selective sweep.

The effects of balancing selection on the allele frequency spectrum
As we have seen, the genealogy at a locus under balancing selection can be 
quite different from a neutral genealogy. The exact form of balancing selec-
tion has a large influence on exactly how different these topologies are, as do 
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FIGURE 8.5 The effect of positive selection on the allele frequency spectrum at a 
locus completely linked to the selected allele. The average frequency spectrum at loci 
evolving neutrally (yellow bars) is compared to one at loci recently experiencing a 
selective sweep (blue bars), based on simulations. (From Braverman et al. 1995.)
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the age of the balanced polymorphism and the frequencies of the balanced 
alleles (Charlesworth 2006). Here we will consider a simple scenario with a 
single biallelic site that has been under balancing selection for at least 2Ne  
generations—long enough that variation within each allelic class has been 
able to build up and reach equilibrium.

The major distinguishing features of a genealogy at a locus under balanc-
ing selection are the total height of the tree and the length of the two inter-
nal branches (Figure 8.3). The two allelic classes are defined by a balanced 
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FIGURE 8.6 The allele frequency 
spectrum at loci flanking a sweep. 
(A) An advantageous mutation 
(shown as a star) has risen to 
intermediate frequency when 
recombination occurs between a 
chromosome carrying this allele 
and a chromosome not  carrying 
this allele (illustrated as a dashed 
line). The genealogy of the 
 flanking region (highlighted in the 
 alignment) is shown, which means 
that the star does not actually arise 
on this tree. (B) The advantageous 
mutation fixes, bringing along the 
two different backgrounds with 
which it was associated in this 
flanking region. (C) The resulting 
frequency spectrum based on simu-
lated datasets. (A, B based on a 
graphic made by dan Schrider;  
C after nielsen 2005.)



LinkEd SELECTion  179

han39657_ch08_165-202.indd 179 02/26/18  06:47 PM

polymorphism distinguishing the long internal branches of the tree (noted 
by stars in Figure 8.3B). Neutral variation has accumulated both within and 
between classes, so that overall levels of variation (which includes both types 
of polymorphisms) are much higher than expected under neutrality. The dif-
ferences in the allele frequency spectrum at such a locus compared to a neutral 
locus are due solely to the mutations that accumulate on the long internal 
branches. These polymorphisms are at intermediate frequency in the entire 
sample, leading to a distinctive “bump” in the allele frequency spectrum. 

There are a number of important features of balanced polymorphisms that 
make them easier or harder to detect. Within each allelic class the genealogies 
resemble neutral genealogies (albeit from slightly smaller populations), so it 
is only by sampling chromosomes from both classes that we detect balanc-
ing selection. As a consequence, the frequencies of the two selected alleles 
are key to detecting balancing selection via the allele frequency spectrum: if 
one class is too low in frequency in the sample then there will be no excess 
of intermediate-frequency polymorphisms. Biallelic balanced polymorphisms 
closer to 50% in frequency will therefore be the easiest to detect. In addition, 
balanced polymorphisms that are very young will be difficult to detect, or at 
least difficult to ascribe to the action of balancing selection. New alleles subject 
to balancing selection—for instance, in the form of heterozygote advantage or 
negative frequency-dependent selection—are expected to have an initial rapid 
rise in frequency. If a sample is taken at such a locus during the rapid rise there 
may be a strong signature of selection, but it will resemble a partial or ongo-
ing selective sweep. It will be difficult if not impossible to determine that this 
pattern is due to a form of balancing selection. 

Detecting selection using the allele frequency spectrum: Tajima’s D 
and related tests
Given what we now know about how various forms of selection can perturb 
the allele frequency spectrum of linked neutral variants, we shift our atten-
tion to methods for detecting these perturbations. A straightforward solution 
would appear to be to use any statistical method that tests for a difference 
between two distributions. However, linkage among sites means that poly-
morphisms at a locus are not independent, which violates the assumptions 
made by almost all such tests. Instead, we will compare different estimators of 
the population mutation parameter q in order to detect deviations. This may 
seem like a roundabout way to study the allele frequency spectrum, but as we 
will see, it works well in both practice and theory.

In Chapter 3 we learned about a number of different summary statistics 
of variation, all of which were also expected to be estimators of q under the 
standard neutral model (which includes an equilibrium population history). 
These statistics include the commonly used π and qW (Equations 3.2 and 3.5, 
respectively), as well as the less commonly used but no less informative x1, 
h1, and qH (Equations 3.8–3.10). Additional estimators of q are available when 
there are multiple alleles at a site (Equations 3.13 and 3.15) or when sequenc-
ing errors are common (Equations 3.16 and 3.17); a larger number of summary 
statistics are also possible but are rarely used in practice (Fu 1995). Because all 
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of these statistics estimate the same quantity, they should have the same value 
under the standard neutral model; as a result, the expected difference between 
π and qW should be 0. We will denote the difference between any two estima-
tors of q with the letter d (it is usually denoted d, but there are too many other 
quantities called d), so that E(d) = 0. 

Tajima (1989a) used d to construct the first test to detect disparities between 
the allele frequency spectrum in a sample and the one expected under neutral-
ity. His statistic, D, was defined as:
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with n and S denoting the sample size and number of segregating sites at a 
locus, respectively.

Fu and Li (1993a) created statistics quite similar to Tajima’s D for data in 
which segregating polymorphisms are either defined as ancestral/derived or 
are not so defined (i.e., using the unfolded or folded frequency spectrum). The 
statistics using polarized data both use the estimator x1, while the statistics 
using unpolarized data both use the estimator h1. These are known as Fu and 
Li’s D, F, D*, and F*:
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The variances for all of these statistics can be found in Fu and Li (1993a), though 
note that there is a typo in the formula for the variance in F* in this paper; the 
correct expression can be found in Simonsen, Churchill, and Aquadro (1995). 

Under the standard neutral model all of these test statistics are expected to 
have a mean of 0, though with low or no recombination the values are actually 
slightly negative (Thornton 2005). The tests were originally constructed to re-
semble z-scores, with the mean divided by the standard deviation (i.e., with a 
mean of 0 and a variance of 1). Using this normalization scheme it was hoped 
that the statistics might fit a normal distribution, with loci showing devia-
tions from neutrality lying in either tail of such a distribution. However, none 
of these test statistics fit a parametric distribution very well, and right from 
the beginning computer simulations were used to define the null distribution 
(Tajima 1989a). This means that the values in the denominators are irrelevant 
to any significance testing, as we would find the same null distributions if 
we calculated them from the d-values alone (note, however, that the power 
of each test is dependent on this underlying variance). In practice, all of these 
statistics are still calculated as shown above, if only to make numerical results 
comparable across studies. We will discuss one additional d-based test shortly 
(Fay and Wu’s H: d  =  π − qH), noting here only that it is similar to all of the 
above statistics but is calculated without the denominator. These tests are just 
some of many similar ones created, of the many possible combinations of q 
estimators that are possible (Fu 1996, 1997; Zeng et al. 2006; Achaz 2009). 

Neutrality tests of the allele frequency spectrum are quite easy to carry out. 
A researcher must only collect a random sample of chromosomes from nature 
(at least n = 3 chromosomes) and be able to estimate allele frequencies. Only 
variable sites at each locus are needed, and the number of invariant sites—and 
hence per site values—do not figure into any calculations. This means that 
these statistics can be calculated from any type of data, not just full sequences, 
though ascertainment bias will still be an important issue as it has major ef-
fects on the frequency spectrum (Figure 6.6). The possible values taken by 
these test statistics are to some degree limited by the number of segregating 
sites; because of this, further normalization can be done to make comparisons 
among loci (Schaeffer 2002). Given the amount of data being collected by most 
modern genomic studies, however, these normalization steps are largely un-
necessary. No information about haplotypic phase is necessary, and Tajima’s 
D as well as Fu and Li’s D* and F* do not need polarized data, so no outgroup 
sequence is necessary. The allele frequency spectrum is quite sensitive to sam-
pling design and to the fact that all chromosomes come from a true popula-
tion (e.g., Przeworski 2002). This characteristic points to the larger issue of 
alternative explanations for deviations from the expected neutral-equilibrium 
allele frequency spectrum, a point to which we return later in greater depth. 
However, because of their ease of use and their power to detect selection, 
these tests have become some of the most popular in population genetics.

Interpreting Tajima’s D and related tests of the frequency spectrum
All of the tests using the allele frequency spectrum described thus far produce 
very similar numerical values under selective sweeps and under balancing 
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selection. Put simply: these values are all negative when there has been a 
sweep, and they are all positive when there is balancing selection. A good 
heuristic is that Tajima’s D and Fu and Li’s D, F, D*, and F* are usually sig-
nificant when the values obtained are either greater than +2 or less than −2. 
The exact thresholds depend on sample size, number of polymorphisms, and 
the conditions under which simulations are run, but anything >|2| is im-
probable under the neutral-equilibrium model and is likely to be statistically 
significant. Here we examine why the tests generate these positive and nega-
tive values.

Selective sweeps lead to an excess of low-frequency neutral varia-
tion surrounding a selected site (Figure 8.5). When there is an excess of  
low-frequency polymorphisms, summary statistics such as qW, x1, and h1 will 
all be greater than π. To see why this is, remember that π is calculated from 
allele frequencies, while the other statistics are calculated only from the num-
bers of segregating sites. Just after a selective sweep all polymorphisms are 
low in frequency, which means that π will be much lower than expected, while 
statistics based on counts of segregating sites (like qW) will be much closer to 
their expected values. If π is less than qW then d (= π − qW) will be less than 0, 
and consequently Tajima’s D will be negative (FIGURE 8.7A). Similarly, as poly-
morphism levels rebound after a sweep a large fraction of low-frequency vari-
ation will be singletons, meaning that x1 and h1 will approach their expected 
values faster than π and even somewhat faster than qW, which is based on all 
of the segregating sites in a sample (see FIGURE 8.8). Consequently, Fu and Li’s 
D, F, D*, and F* will all also be negative after a selective sweep has occurred.

Balancing selection leads to an excess of intermediate-frequency neutral 
variation surrounding a selected site (Figure 8.3B). When there is an excess of 
intermediate-frequency polymorphisms, π will be greater than qW, x1, and h1. 
Again, this is because π is calculated using allele frequencies and is the sum 
of site heterozygosities—since heterozygosity is maximized by intermediate-
frequency polymorphisms, π can be higher than expected. Summary statistics 
based on counts of polymorphisms are not greatly affected by their higher 
frequencies. If π is greater than qW then d (= π − qW) will be greater than 0, 
and consequently Tajima’s D will be positive. Similarly, both π and qW will be 
greater than either x1 or h1 when there is an excess of higher-frequency vari-
ants. Consequently, Fu and Li’s D, F, D*, and F* will all also be positive under 
balancing selection.

It is worth asking why the various estimators of q  tell us about the allele 
frequency spectrum. A simple answer is that for π to be equal to qW, the frequency 
spectrum must match the neutral expectation. That is, both of these statistics (and 
all of the others mentioned here) are only estimators of q when all variation is 
at mutation-drift equilibrium. While this is a good proximate clarification for 
when the statistics might differ, it does not provide any enlightenment about 
why they differ. An insightful explanation comes from Achaz (2009): all sum-
mary statistics that are also estimators of q are weighted combinations of the 
number of polymorphisms at each frequency in the allele frequency spectrum. 
Recall that in a sample of n chromosomes, polymorphisms are found at fre-
quencies from 1/n to n − 1/n (for the unfolded spectrum; similar arguments 
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apply to the folded spectrum). The allele frequency spectrum is simply a count 
of the number of polymorphisms at each of these frequencies, and it can be 
represented as a vector of the counts. Achaz (2009) showed that our summary 
statistics can all be computed by multiplying these counts by a set of weights 
(also a vector) specific to each statistic (see fig. 1 in Achaz 2009). The simplest 
example of this relationship can be understood by considering x1, in which all 
of the weight in the statistic is placed on the segregating sites present on one 
chromosome; none of the other frequency bins contribute to x1. While some  
statistics are heavily weighted toward low-frequency polymorphisms  
(e.g., qW), some are relatively uniformly weighted (e.g., π), and some are 
weighted toward high-frequency polymorphisms (e.g., qH). Combining statis-
tics with different weightings into a test (i.e., a d-value) makes them sensitive 
to distortions in the allele frequency spectrum. Considering the combinations 
of weights used in each test provides a conceptual basis to understand why 
tests can differ in their sensitivities toward different types of selection.

Finally, it is important to stress that any interpretation of tests of the fre-
quency spectrum strongly rely on assumptions about the individual neutral-
ity of the polymorphisms in the sample. In the above explanations I have 
described the expected effects of linked selection on neutral variants—none of 
the polymorphisms were themselves directly affected by selection. Problems 
would arise, for instance, if a sample contained multiple slightly deleterious 
polymorphisms, leading to a skewed frequency spectrum (see Figure 7.6). In 
fact, Tajima (1989a) originally applied his test to exactly this kind of data, con-
cluding that a negative D-value was evidence for weakly deleterious variation. 
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To ensure that we are detecting linked selection Tajima’s D and similar tests 
are often run using only synonymous or noncoding polymorphisms, although 
in genomic datasets the fraction of all variants in a window under direct selec-
tion can be quite low. My colleagues and I previously showed how to explic-
itly test for slightly deleterious variation at a locus by comparing D-values 
calculated separately for nonsynonymous and synonymous polymorphisms 
(Hahn, Rausher, and Cunningham 2002). This heterogeneity test can be used 
for any situation in which different selective processes may be differentially 
affecting subsets of the data, and it can specifically test for the effects of linked 
selection even in the presence of non-neutral variation.

Detecting selection using the allele frequency spectrum: Fay  
and Wu’s H
Another commonly employed test of neutrality also uses deviations from the 
allele frequency spectrum but is most sensitive to detecting the shoulders of 
selective sweeps (i.e., the regions flanking the sweep). Fay and Wu (2000) de-
fined their test statistic as:

   H Hπ θ= −  (8.10)

which is similar to the other tests of the frequency spectrum we have seen, 
but without a denominator. The H test is best at detecting an excess of high- 
frequency derived polymorphisms: recall that qH is defined using the unfolded 
spectrum and heavily weights high-frequency polymorphisms (Equation 3.10).  
This test is not especially sensitive to the excess of intermediate-frequency poly-
morphisms associated with balancing selection.

At a non-recombining locus surrounding a recently fixed advantageous 
mutation we do not expect to see an excess of high-frequency derived muta-
tions. Any neutral derived mutations that hitchhiked along with the advanta-
geous one have also been fixed, so we should not generally expect Fay and 
Wu’s H to be significant. However, at a neutral locus flanking the selected 
locus there can be an excess of high-frequency derived alleles, as long as there 
has been some recombination between the loci. As was discussed earlier in 
the chapter, when neutral derived alleles that are initially associated with the 
advantageous mutation become “unhitched” during the passage to fixation, 
they can be left at high frequency. Recombination during the sweep therefore 
produces genealogies that contain an excess of both high- and low-frequency 
polymorphisms (Figure 8.6). Because so few high-frequency polymorphisms 
are expected in the neutral allele frequency spectrum, Fay and Wu’s H is better 
able to detect this deviation. When a sweep occurs, therefore, H will be nega-
tive (FIGURE 8.7B).

Importantly, H will be lowest in the shoulders of a completed sweep, not 
directly at the site of selection (Figure 8.7B). Care must therefore be taken 
when identifying the locus that is the direct target of selection. Much of the 
interpretation of H will depend on exactly on how large the windows being 
analyzed are relative to the recombination rate. If the recombination rate is 
low and the windows are small enough, one may be able to detect a pattern of 
paired windows with very negative H-values on either side of a window with 
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low levels of polymorphism but H = 0. If the recombination rate is high or the 
windows are much larger, the target of selection may reside within a single 
significant window with negative H-values. The resolution of any analysis is 
dependent on many parameters outside the control of individual researchers, 
and so interpreting results always requires some careful thought. 

In the next section we consider the statistical power to detect selection 
using tests of the allele frequency spectrum. Before moving on, though, I 
would like to preview a topic to which we will return after this: partial or 
incomplete sweeps. Before a sweep has completed—that is, before the ad-
vantageous allele has fixed—the sweeping haplotype will rise in frequency, 
possibly bringing with it multiple linked neutral variants. In cases like this, 
there can be an excess of intermediate- or high-frequency derived neutral alleles dir-
ectly around the target of selection. Now the task of the researcher becomes even 
harder: Are we looking at the shoulders of a completed sweep or the center of 
a partial sweep? Genealogically, the signature of a partial sweep (Figure 8.6A) 
can be quite similar to the shoulder of a completed sweep (Figure 8.6B) and 
can also resemble a soft sweep (Schrider et al. 2015). Although these possibili-
ties are difficult to disentangle, later in this chapter and again in Chapter 10 
we will consider statistical tools that can help us to determine the exact forms 
of selection acting in nature. Methods that explicitly consider the physical ar-
rangement of low-frequency and high-frequency derived alleles will help to 
detect and pinpoint targets of selection.

The power to detect natural selection using tests of the frequency 
spectrum
The advantage of tests looking at patterns of linked neutral polymorphism—
whether at the total amount of variation or at the frequency spectrum of this 
variation—is that they make it possible to detect natural selection on even a 
single selected mutation. These tests do not depend on the repeated fixation 
of multiple advantageous changes, or on the maintenance of more than two 
balanced alleles. The fixation of a single advantageous mutation affects linked 
neutral variation in a predictable way, enabling us to determine the mode of 
selection. But how strong does selection have to be to leave behind detectable 
signals? And how long after a sweep (or balancing selection) begins can we 
detect these signals? These questions have been addressed multiple times in 
the literature, using many different statistical tests (e.g., Simonsen, Churchill, 
and Aquadro 1995; Fu 1997; Przeworski 2002), and here I give only a brief 
overview of the most important conclusions from these studies.

In regions of normal recombination, the power to detect balancing selection 
decreases as balanced polymorphisms become very old. This decline occurs 
because recombination will wear away signals at linked sites (e.g., Figure 8.4), 
making it harder to detect older balancing selection (Hudson and Kaplan 1988; 
Wiuf et al. 2004; Gao, Przeworski, and Sella 2015). With increasing age and re-
combination, only the nucleotide site containing the balanced polymorphism 
will have the selected genealogy. Under such conditions it is not possible to 
detect patterns of balancing selection from linked neutral polymorphism. 
Earlier in the chapter we discussed the difficulties in determining whether 
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balancing selection is acting on newly arising balanced polymorphisms. Now 
we can see that we are limited both at the early and at the later stages of bal-
ancing selection, possibly restricting the number of cases detected in nature. 

As an advantageous allele rises in frequency it sweeps away linked neutral 
polymorphism, and after it fixes levels of polymorphism immediately begin 
to return to their expected values. The time window in which selection can be 
detected is therefore limited: too early during the sweep and neither the levels 
nor frequencies of linked variation will be perturbed; too late after the sweep 
has ended and both levels and frequencies of variants will have returned to 
normal. As with balancing selection, our ability to detect selective sweeps is 
thus also bounded.

We can see the effects of selection most clearly by tracking the values of π 
and qW after an advantageous mutation appears (Figure 8.8A). For scenarios 
involving relatively weak selection, in which the advantageous allele takes 
approximately 0.6Ne generations to fix, there is essentially no signal of selec-
tion for approximately the first 0.3Ne generations (Figure 8.8A; remember that 
time in the figure is measured in units of 2Ne generations). Neither π nor qW are 
initially reduced because the selected allele is still at low frequency. As it rises 
in frequency it begins to depress levels of linked polymorphism and to distort 
the frequency spectrum, leading to deviations from the neutral expectations 
(Figure 8.8B). Just prior to the fixation of the advantageous allele and its asso-
ciated haplotype, Tajima’s D takes on its minimum value. This may seem sur-
prising given the earlier discussion of the processes that generate the excess 
of low-frequency polymorphisms, as very few new alleles will have arisen. 
Instead, what is producing this signal is the rapid extinction of derived al-
leles found on non-advantageous backgrounds. As the last non-advantageous  
haplotypes are driven from the population they are found at low frequencies 
and can carry with them a relatively large number of derived alleles (see, e.g., 
Figure 8.1B). These low-frequency variants are what cause Tajima’s D to be so 
low, and they are easily distinguishable from post-fixation patterns because 
all of the low-frequency alleles are on one or a few haplotypes. Good empirical 
examples of this pattern can be found at the TRPV6 gene in humans (Stajich 
and Hahn 2005) and at the janus-ocnus locus in Drosophila simulans (Parsch, 
Meiklejohn, and Hartl 2001). 

The power to detect selection is determined by the magnitude of reduction 
in our test statistics and the length of time that they stay reduced. For the exam-
ple shown in Figure 8.8B, Tajima’s D is reduced well below the levels expected 
under neutrality, meaning that there is power to detect selection, at least at the 
peak of this signal. As π rebounds to its expected value (or at least returns within 
the bounds of its expected value) the difference between π and qW disappears, 
and therefore the power to detect deviations in the frequency spectrum disap-
pears. Although we will not examine explicit power calculations for the HKA 
test, note that its power should approximately follow the value of qW alone. 
When qW is severely reduced the HKA test will have power to detect selective 
sweeps, but as qW returns to values that are consistent with a neutral locus the 
test will no longer be significant (in Figure 8.8A this loss of significance coincides 
with a point approximately 0.8Ne generations after the beginning of the sweep).
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The power to detect selection differs among the different tests we have con-
sidered. FIGURE 8.9A shows the power of several tests of the allele frequency 
spectrum to detect selection. Here the power of the tests is expressed as the 
fraction of simulated datasets with test statistic values outside 95% of values 
simulated under the neutral-equilibrium null hypothesis. We can see that the 
greatest power in the tests coincides with the time when the test statistics are 
lowest (compare Figure 8.9A with 8.8B): there is close to a 90% rejection rate 
when Tajima’s D reaches its minimum, though power quickly declines with 
time. By Ne generations after the sweep has started there is essentially no statisti-
cal power to reject neutrality—this point defines the end of the window in which 
we can detect selection. If selection is stronger there may be more power to reject 
neutrality, and power may peak sooner after the sweep begins. However, the 
signature of selection still will not usually extend more than Ne generations after 
the start of the sweep (Simonsen, Churchill, and Aquadro 1995). Among the tests 
shown here, Tajima’s D has consistently higher power than either Fu and Li’s 
D* or their F* (Figure 8.9A). Regardless of which test is used, there is at least 
as much variation in power explained by sample size. FIGURE 8.9B shows that 
we can increase our power by increasing the number of chromosomes sampled. 
Though there is not a lot of power gained by increasing sample sizes from n = 
50 to n = 100, we cannot reach significance for more than 50% of the cases with 
selection when n = 20 or less. The increased power comes from the increased 
resolution in the allele frequency spectrum afforded by larger sample sizes: we 
are simply better able to distinguish deviations between distributions with an 
increased number of frequency bins into which polymorphisms can be placed.

Our ability to detect sweeps is also determined by the distance between our 
sampled loci and the location of the selected site. To a first approximation, the 
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FIGURE 8.9 The power to detect selective sweeps. in both panels the simulated 
sweeps are the same ones shown in Figure 8.8. (A) The power of different test statistics 
to reject neutrality over the period of time since the sweep began (where t is measured 
in 2Ne generations). (B) The power of Tajima’s D to reject neutrality given different num-
bers of sampled chromosomes. (From Simonsen, Churchill, and Aquadro 1995.)
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effect of distance is much like the effect of time: just as power begins to decline 
after a sweep ends, so it also declines as we move away from the selected site 
(e.g., Pennings and Hermisson 2006b). This reduction in power is easily un-
derstood by considering the effects of recombination on our ability to detect 
deviations in the allele frequency spectrum. As recombination unhitches 
linked backgrounds from the selected allele, more sampled chromosomes will 
come from non-selected haplotypes. When there are enough non-selected hap-
lotypes in our sample we will no longer see any deviation in the frequency 
spectrum. Move far enough away on a recombining chromosome and there 
will be no signal of selection at all (Figure 8.7). For similar reasons, Fay and 
Wu’s H test will show a steep decline in power moving away from the selected 
site, as the excess of high-frequency alleles generated by selection is present 
only in an exquisitely fine window flanking a sweep (e.g., Przeworski 2002).

DETECTING SELECTION USING PATTERNS OF LINKAGE 
DISEQUILIBRIUM

One advantage to all of the methods discussed thus far is that haplotypic 
phase is not needed for any of them. As long as you have information on 
the number and frequency of variants observed in a sample—and sometimes 
information on sequences from closely related species—no additional phase 
information is needed. While full sequence data are usually required, single 
diploid individuals with unresolved haplotypes will work just as well as fully 
phased data for methods based on levels of diversity or the allele frequency 
spectrum. Pooled sequencing data is also amenable to those methods.

However, natural selection does have an effect on the associations between 
neutral alleles linked to a selected site. Therefore, ignoring this information 
means that we could be losing power to detect selection and, more importantly, 
to distinguish between modes of selection. One of the earliest tests of neutrality 
(the Ewens-Watterson test; Ewens 1972; Watterson 1977, 1978) used haplotype 
information, though this was due more to a technical limitation than to any 
push to increase power: allozyme technologies did not permit the resolution 
of nucleotide sequences, so protein haplotypes (“alleles,” in their terminology) 
were the unit of variation being studied. The Ewens-Watterson test is still one 
of the most powerful methods for detecting certain kinds of selection (Zeng, 
Shi, and Wu 2007), and so it and other tests that use haplotypic phase remain 
relevant today. Here we describe several of the most popular such tests, starting 
with a discussion of how various modes of selection affect both the frequency 
distribution of haplotypes and general patterns of linkage disequilibrium. 

The effects of balancing selection on linkage disequilibrium
To understand the effects of selection on haplotypic diversity, recall that there 
are a number of ways of summarizing this variation (Chapter 3): we can count 
the number of unique haplotypes in a sample (K) or the expected haplotype 
homozygosity, F:

  F pj
j

K
2

1
∑=
=

 (8.11)
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where pj is the frequency of the jth haplotype at a locus (out of K unique hap-
lotypes; see also Equation 3.21). From this we can calculate the expected het-
erozygosity, H (= 1 − F), as well. (I apologize for the two Fs and two Hs in 
this chapter—it cannot be helped.) We can also introduce two new measures: 
M, defined as the frequency of the most common haplotype, and C, a vector 
of haplotype frequencies, analogous to the allele frequency spectrum for in-
dividual segregating sites but calculated using haplotypes. The expected fre-
quencies of all unique haplotypes in C under the standard neutral model were 
given by Ewens (1972) in his eponymous Ewens sampling formula. With no re-
combination, K is at most S + 1. With free recombination there can be up to 2S 
unique haplotypes. In a population conforming to the standard neutral model, 
the number of unique haplotypes we expect to find should be positively cor-
related with S (and therefore with n). Likewise, the haplotype homozygosity 
should be negatively correlated with K (Watterson 1977). Recombination will 
increase the number of haplotypes, leading to higher K and lower F. 

Balancing selection can perturb these expectations, though perhaps not too 
much. A balanced polymorphism at a single site with two alleles leads to an 
extreme genealogy with two long internal branches (Figure 8.3B). While there 
can be many polymorphisms on these branches, each additional polymorphism 
after the first to appear on either internal branch does not create an additional 
unique haplotype—it just further differentiates the two allelic classes. Therefore, 
the value of K|S (the number of unique haplotypes given the number of poly-
morphic sites) will be lower than expected under a neutral genealogy. Likewise, 
we expect that the haplotype frequency spectrum, C, could be perturbed rela-
tive to the neutral expectation, with a deficit of low-frequency haplotypes. 

Linkage disequilibrium is maximized when polymorphisms arise on the 
same branch of a genealogy (Chapter 4). Therefore, we expect that the average 
LD at a locus—measured by statistics such as ZnS (Equation 4.5)—will increase 
under balancing selection as many variants arise on the two long internal 
branches. Of course this prediction, like the ones above regarding haplotype 
frequencies, is based on a situation with no recombination. When there is re-
combination, balancing selection has the effect of generating even more haplo-
typic diversity than expected, as the ancient age of balanced alleles means that 
they are associated with many more recombination events. Indeed, DeGiorgio, 
Lohmueller, and Nielsen (2014) proposed that the site of a balanced polymor-
phism may resemble a recombination hotspot, with much less pairwise linkage 
disequilibrium across this locus than otherwise expected. As a consequence, 
the effects of balancing selection on patterns of haplotype diversity and link-
age disequilibrium are expected to be mixed, or at least strongly dependent on 
the age of balanced polymorphisms and rates of recombination.

The effects of completed sweeps on linkage disequilibrium
Positive selection can have very strong effects on haplotypic diversity and 
linkage disequilibrium, especially when compared to balancing selection 
(negative selection will have negligible effects on haplotypes, beyond limit-
ing the number and frequency of segregating polymorphisms). First, we con-
sider a recently completed sweep. In this case there are two distinct effects of 
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positive selection. In the non-recombined region directly surrounding the ad-
vantageous mutation, most variation has been removed or is made up of poly-
morphisms that arose during the sweep. Therefore, as we saw above when 
considering tests based on the allele frequency spectrum, there will be a star-
like genealogy with many low-frequency variants (Figure 8.1C). In this case 
there is very little haplotype structure and almost no linkage disequilibrium. 
However, there is a deviation from the expected patterns of haplotype diver-
sity, as there can be more haplotypes than expected: the value of K|S is higher 
than expected (though K may be lower than the equilibrium expectation). This 
is because each low-frequency polymorphism is creating a new haplotype. 
Similarly, haplotype homozygosity will be lower than expected because few 
sampled chromosomes share the same states at polymorphic sites.

The effects of completed selective sweeps on haplotype diversity will be 
stronger in the regions flanking the fixed advantageous mutation (Figure 8.6). 
These regions are driven up in frequency by selection but do not reach fixa-
tion because of recombination off the selected background. The rapid increase 
in frequency of a single haplotype strongly affects the haplotype diversity in 
such regions and increases linkage disequilibrium within them (Przeworski 
2002; Kim and Nielsen 2004; McVean 2007). The rapid rise in frequency means 
that there is a single haplotype that is more common than expected under 
neutrality. As a consequence, the number of haplotypes (K) will be lower than 
expected, the expected homozygosity of haplotypes (F) will be higher, the 
haplotype frequency spectrum (C) will be skewed, and, most importantly, the 
frequency of the most common haplotype (M) will be much higher than ex-
pected. Linkage disequilibrium will be increased on either side of the sweep, 
but there will not be higher LD across the selected site (i.e., between polymor-
phisms on either side of the fixed allele; Kim and Nielsen 2004). LD is higher 
in the shoulders of the sweep because many polymorphisms can arise on the 
long branch connecting the neutral background with the one initially associ-
ated with the advantageous allele (Figure 8.6B); these polymorphisms will be 
in strong linkage disequilibrium with each other. 

The effects of partial sweeps on linkage disequilibrium
There can be many reasons we may have sampled an advantageous allele 
while it is still polymorphic. It may be part of an ongoing sweep, with the 
 advantageous allele destined for fixation. In this case we happen to have 
taken a sample of chromosomes in the short window of time when such 
 alleles are passing through the population. Alternatively, the beneficial allele 
may have risen rapidly in frequency as a result of the advantage it gave in 
an environment that recently changed. That is, it may no longer be advanta-
geous, but the effect of its rapid rise may still be detectable in the population. 
Similarly, multiple forms of balancing selection (such as negative frequency- 
dependent selection) will drive low-frequency alleles up in frequency until 
they become too frequent, at which point they will lose their advantage. 
Because we cannot be sure of the reasons why we are sampling a polymor-
phic sweep in a population, I prefer the more agnostic term partial sweep to the 
oft-used ongoing sweep or incomplete sweep.
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If we are lucky enough to catch a sweeping allele while it is still poly-
morphic, we can expect to find the strongest effects on haplotype diversity 
and linkage disequilibrium. Like the shoulders of completed sweeps, partial 
sweeps drive a single haplotype up in frequency (Figure 8.1B). This means 
that again the number of haplotypes will be lower, the expected homozygos-
ity of haplotypes will be higher, the haplotype frequency spectrum will be 
skewed, and the frequency of the most common haplotype will be higher than 
expected given the number of polymorphic sites in the sample. 

As an alternative way to think about the effects of partial sweeps, note that 
the frequency of an allele is indicative of its age. As briefly discussed in Chapter 
6, in general new (derived) alleles are low in frequency, while older alleles are 
higher in frequency (Watterson and Guess 1977; Griffiths and Tavaré 1998). 
This relationship is important because the age of an allele is proportional to 

the amount of neutral variation associated with 
it: we expect allelic classes defined by new alleles 
(i.e., the set of haplotypes carrying this allele) 
to have less variation within them than allelic 
classes defined by older alleles. Therefore, if we 
observe an allelic class with much less varia-
tion than expected given the number of times it 
occurs in our sample, this lower level of varia-
tion may be due to selection driving the allelic 
class up in frequency. For instance, the allelic 
class defined by the star in Figure 8.1B is at high 
frequency (many lineages carry the “star” allele), 
but the total length of the genealogy associated 
with it is very small because of positive selection. 

While this may seem like just another way to 
describe the effects of partial sweeps on the sum-
maries K, F, C, and M, it also suggests alternative 
ways to detect the patterns of such sweeps. Instead 
of counting unique haplotypes, we can ask about 
the amount of variation associated with allelic 
classes. The variation associated with these classes 
can also take on multiple forms, further expand-
ing our repertoire. The most obvious form of vari-
ation associated with an allelic class is nucleotide 
polymorphism. When selection drives an allele up 
in frequency rapidly there will be few nucleotide 
polymorphisms that arise within this class—that 
is, there will be fewer mutations occurring in the 
sub-tree defined by the advantageous mutation. 
Therefore, we may find one single haplotype at 
higher frequency than expected or one allelic 
class with a small number of associated polymor-
phisms (e.g., FIGURE 8.10). This pattern will be the 
basis of a test introduced in the next section.

5T

FIGURE 8.10 Relationships among hap-
lotypes at the MMP3 locus in humans. 
Haplotypes carrying the “5T” functional allele 
are boxed; the remaining haplotypes carry 
the “6T” allele. (From Rockman et al. 2004.)
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Recombination is another form of variation that can be associated with 
allelic classes. As with nucleotide mutations, the number of recombination 
events in a genealogy is proportional to the total length of the genealogy 
(Equation 6.12). Therefore, as an advantageous allele rises in frequency, there 
should be fewer recombination events associated with it than expected—that 
is, there should be fewer recombination events occurring in the sub-tree de-
fined by the advantageous mutation. The lack of such recombination events 
will be manifested as long segments without recombination. There are mul-
tiple ways to measure the length of non-recombined segments, but one simple 
and widely used method is to consider the length of a region flanking the se-
lected site in which all polymorphic sites are homozygous (FIGURE 8.11). This 
statistic is usually calculated using haplotype frequencies, such that we are 
still measuring the expected homozygosity at each position based on sample 
frequencies (i.e., F). When there is strong selection driving a haplotype up 
in frequency we can maintain homozygosity over very long distances. Note, 
however, that in Figure 8.11 tracts of observed homozygosity in each individual 
are plotted.

An important experimental advantage to some methods that measure 
the amount of recombination is that they do not require full sequencing of 
individuals—genotype data can be used. While genotype data would ob-
viously not suit our purposes if we were trying to measure the amount of 
nucleotide variation associated with individual haplotypes, when measuring 
recombination we have no such ascertainment problem. Our ability to detect 

Position (bp)

−1,000,000 −500,000 500,000 1,000,000 1,500,0000

FIGURE 8.11 Haplotype homozygosity associated with different alleles at the LCT 
locus in humans. Position 0 distinguishes individuals homozygous for the lactase per-
sistence allele (red) from individuals homozygous for the non-persistence allele (blue). 
The length of tracts homozygous at polymorphic sites flanking the functional alleles 
are shown. (From Tishkoff et al. 2007.)
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recombination events is unaffected (or affected only a little) by pre-ascertained 
polymorphisms. This means that recombination-based tests for partial sweeps 
can be used with datasets that are not amenable to other analyses. 

Detecting selection using linkage disequilibrium: Haplotype 
summary statistics
In describing the effects of selection on haplotypic diversity and linkage dis-
equilibrium we have largely covered the general approaches one would use 
to detect selection. However, there are a number of tests that should be ex-
plained explicitly, as well as best practices for several others.

Given a number of unique haplotypes, K, a number of segregating sites, S, 
and a sample size, n, Depaulis and Veuille (1998) defined a haplotype number 
test. As with almost all of the tests introduced here, exact results for the ex-
pected value of K are often not possible, and when they are it is only with 
the assumption that there is no recombination. Therefore, coalescent simula-
tions with the appropriate amount of recombination must be used to generate 
confidence intervals around K. Similar tests by Strobeck (1987) and Fu (1997) 
use π instead of S, with the latter calculating the probability of K alleles using 
the Ewens sampling formula (Ewens 1972). Andolfatto, Wall, and Kreitman 
(1999) showed how these methods could be used while controlling for the 
multiple implicit tests that are often done when choosing regions to analyze. 
Confidence intervals for all methods are found by simulation.

Tests that use haplotype homozygosity, F, or haplotype heterozygosity, H, 
can be conditional on either K or S. That is, we can test for unusual values of 
either F|K or F|S. The former test—haplotype homozygosity conditional on 
the number of unique haplotypes—is called the Ewens-Watterson test (Ewens 
1972; Watterson 1977, 1978). For no apparent reason F|S is not generally used: 
instead, we use H|S, with heterozygosity instead of homozygosity (the hap-
lotype diversity test; Depaulis and Veuille 1998). Related to these tests are ones 
based on M and C. The test M|K—the frequency of the most common hap-
lotype conditional on the number of unique haplotypes—was first proposed 
in Ewens (1973), where he also proposed tests based on the number of hap-
lotypes that only appeared once in a sample. Slatkin (1994a, 1996) proposed 
a test using C|K, while Innan et al. (2005) introduced a test based on C|S. 
Again, in all of these tests we should use simulations in order to generate con-
fidence intervals, though it is important to note that standard fixed-S methods 
for carrying out coalescent simulations (Chapter 6) may not be appropriate 
(Markovtsova, Marjoram, and Tavaré 2001; Wall and Hudson 2001). 

A test introduced in Hudson et al. (1994) is used instead of M|S, though 
M|S can be considered a special case of the test. This test is often referred to 
as Hudson’s haplotype test (HHT). Hudson’s haplotype test again asks whether 
there is a high-frequency allelic class in the sample, and whether it is associ-
ated with lower than expected levels of nucleotide variation. For example, 
in the example using the MMP3 regulatory region shown in Figure 8.10, the 
locus contains 22 identical haplotypes among 46 sampled chromosomes (and 
S = 35 segregating sites). The HHT asks whether this is an unusual pattern 
using coalescent simulations: after generating many neutral genealogies with 
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46 chromosomes, we “throw” 35 mutations on each genealogy and ask how 
many times we observe 22 or more identical haplotypes. In this case we ob-
served only 95 out of 10,000 simulated datasets that had 22 or more identical 
haplotyes (so P = 0.0095; Rockman et al. 2004). Though this example explicitly 
uses the number of identical haplotypes (M), we could also use a focal poly-
morphism of interest to define allelic classes. In MMP3 our polymorphism 
of interest defines a class of 31 haplotypes carrying the “5T” allele and 15 
haplotypes carrying the “6T” allele. The 31 5T haplotypes only have S = 7 
polymorphisms among them, while the 15 6T haplotypes contain the other 28 
polymorphisms. Hudson’s haplotype test can be used to ask the probability 
of obtaining a partition as extreme or more extreme than observing 31 haplo-
types with 7 segregating sites. If there is no a priori focal polymorphism, one 
can also partition the data to find the maximum number of haplotypes with 
the minimum number of segregating sites between them (Parsch, Meiklejohn, 
and Hartl 2001; Meiklejohn et al. 2004). This approach is unbiased and can be 
used to scan genomes for regions with unusual haplotype structure, whether 
at the center of a partial sweep or in the shoulder of a completed sweep.

Detecting selection using linkage disequilibrium: Measures  
of pairwise LD
As was discussed earlier, positive selection can greatly increase values of pair-
wise linkage disequilibrium, but this effect varies both along chromosomes 
and with time since a sweep began. For completed sweeps, LD will be high in 
flanking regions that have partially escaped fixation (Figure 8.6B) but will not 
be elevated directly around the selected site. Partial sweeps will be accompa-
nied by increased LD surrounding the selected site.

To measure these increases in LD, one simple approach is to use a sum-
mary statistic like ZnS that averages pairwise LD across all pairs of segregat-
ing sites in the sample. One simply needs to calculate ZnS in windows along a 
chromosome to see locally elevated (or possibly depleted) values surrounding 
selected variants. As with many of the haplotype-based summaries discussed 
here, the choice of window size in which to calculate this statistic matters a lot: 
too large and the lack of LD around the selected site (for a completed sweep) 
will be missed; too small and larger patterns may be missed.

As an alternative way to detect the signature of LD around a completed 
sweep, Kim and Nielsen (2004) proposed a statistic that looks explicitly for 
a spatial pattern of high LD followed by low LD followed by high LD. Their 
statistic, w, is defined as:
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where we have divided our S segregating sites arranged linearly along a chro-
mosome into two groups, one to the left (L) and one to the right (R) of the ith 
polymorphism (the left-hand group includes position i). For whichever value 
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of i we choose, we calculate LD (using r2; Equation 4.4) between all the sites 
on the left, and separately between all the sites on the right (the two sums in 
the numerator). We allow i to go from 2 to S − 2 so that there are at least two 
variable sites in each group. In the denominator of this equation we calculate 
LD pairwise between pairs of sites in the left and right groups, but not within 
groups. The statistic in Equation 8.12 is also sometimes calculated without 
singleton polymorphisms (Jensen et al. 2007). 

The statistic w  is designed so that it is maximized when there is high LD 
within the two groups (i.e., in both shoulders of the sweep) and low LD be-
tween groups. In this way it matches the expectations for patterns of linkage 
disequilibrium surrounding a completed sweep if we imagine that the se-
lected site was just to the right of the ith polymorphism. In practice we do not 
know where the selected site is, so we choose the value of i that maximizes 
this statistic; we refer to the resulting value as wmax (Kim and Nielsen 2004). 
Using the spatial pattern of LD expected after a sweep can be more powerful 
than overall summaries of LD (like ZnS), but now we are assuming that the 
selected site is located physically within the range of polymorphisms consid-
ered. If the selected site lies outside the variants used to calculate w, we do not 
expect this statistic to have very much power to detect selection—fortunately, 
this means that it can actually be used to help localize the targets of selection 
(see Chapter 10). Fast and computationally efficient software exists to calcu-
late w  centered on every position in a genome (Alachiotis, Stamatakis, and 
Pavlidis 2012).

Detecting selection using linkage disequilibrium: Haplotype 
homozygosity
In order to find regions where partial sweeps have taken place we can also 
look for derived alleles associated with large blocks of very little recombi-
nation. There are many methods to measure regions with little recombina-
tion (e.g., Slatkin and Bertorelle 2001; Hanchard et al 2006; Wang et al. 2006), 
but the most common way is to assess the expected haplotype homozygosity 
associated with new derived alleles. There are also many different ways to 
use measures of haplotype homozygosity to construct a test (e.g., Sabeti et 
al. 2002; Toomajian et al. 2003; Voight et al. 2006; Ferrer-Admetlla et al. 2014). 
Here we describe several of the most commonly used methods, starting with 
the extended haplotype homozygosity (EHH) test of Sabeti et al. (2002).

All of the approaches we describe start with a focal or “core” polymor-
phism with two alleles, one ancestral and one derived (in their original paper 
Sabeti et al. [2002] used a core haplotype, but the test is now generally ap-
plied to single core sites). We divide the haplotypes in a region into those 
carrying the ancestral allele and those carrying the derived allele at this vari-
able site. If there are n total chromosomes sampled, there are nA ancestral 
and nD derived haplotypes (nA + nD = n). Among all the haplotypes carrying 
the derived allele at the core in a region, we can then calculate the expected 
haplotype homozygosity, F (Equation 8.11); we can also do the same for the 
chromosomes carrying the ancestral allele. The calculation of F for each hap-
lotype class is equivalent to calculating EHH for each, with some additional 
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wrinkles described below. As a test statistic we could compare the relative 
EHH (REHH) of the derived class to the ancestral class (i.e., FD/FA), with pos-
sible values going from 0 to infinity. We would expect selection on the derived 
allele to increase the value of this statistic (FIGURE 8.12).

One issue with the way I have described the test thus far is how to choose 
a window size over which to calculate F. It is obvious that F starts at 1 (when 
only the focal allele is used) and must decay when one uses larger window 
sizes, as it becomes more and more likely that recombination events have oc-
curred. How do we know how large a window to use as a test statistic? Sabeti 
et al. (2002) calculated EHH and REHH at multiple distances away from the 
core polymorphism of interest, determining P-values via simulation for each 
distance used. This approach results in a collection of P-values (one for each 
window size), which may still be difficult to interpret. As an alternative, Voight 
et al. (2006) proposed a method for integrating EHH over different window 
sizes to get an integrated haplotype homozygosity (iHH). This single statistic is 
easily associated with each core polymorphism tested.

In order to calculate iHH we now must keep track of the polymorphisms to 
either side of our core polymorphism, as well as their genetic distances apart 
(iHH requires a fine-scale recombination map of the organism of interest). We 
refer to the position of our focal polymorphism as x0, the position of the clos-
est polymorphism as x1, and so on; we repeat all calculations moving to the 
left and right (i.e., both upstream and downstream) of the core site, so x1 can 

Distance from core polymorphism (Mb)
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(A)  No selection

0 0.5 1 1.5
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FIGURE 8.12 decay in haplotype homozygosity (EHH) away from a core poly-
morphism. in both panels, each line represents results from a different simulated 
dataset. (A) EHH for backgrounds associated with derived and ancestral alleles 
(red and blue lines) when there is no selection. (B) EHH for derived and ancestral 
alleles when the derived allele is advantageous and at frequency 0.5. (From Voight 
et al. 2006.)
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refer to the closest polymorphism in either direction. We start by calculating 
EHH for the haplotypes carrying the derived allele out to polymorphism xi as:

 x pEHHD i j
j

KD
2

1
∑( ) =
=

 (8.13)

which is exactly the same calculation as that used for F in Equation 8.11, 
with KD defined as the number of unique haplotypes associated with the 
derived allele at the focal location. The homozygosity associated with the 
ancestral allele out to polymorphism xi, EHHA, is calculated in the same 
manner, using the unique haplotypes associated with the ancestral allele at 
the focal site (KA).

We can now calculate the integrated haplotype homozygosity by inte-
grating over EHH values at different values of xi using the trapezoidal rule. 
Again, we calculate iHH separately for haplotypes associated with the de-
rived and ancestral alleles at the core site (borrowing notation from Szpiech 
and Hernandez 2014):
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Here we calculate the area under the EHHD curve going out both to the left 
(L) and right (R) of the core site. In each direction we take the average value of 
EHH for adjacent markers and multiply this by the genetic distance between 
them, g(xi-1, xi). A question arises as to how far upstream and downstream 
(“left” and “right”) to calculate EHH values—generally these calculations are 
carried out until EHHD(xi) < 0.05.

Like EHHD values on their own, iHHD values without comparison to iHHA 
are relatively uninformative. After calculating iHHA (again using Equation 
8.14), we can construct an analog of REHH using iHH values. This is referred 
to as the unstandardized integrated haplotype score (iHS):

 unstandardized iHS ln
iHH

iHH
D

A

=










 (8.15)

As in Szpiech and Hernandez (2014), we modify this definition relative to the 
one given in Voight et al. (2006) so that it is a ratio of derived to ancestral iHH, 
in the same way that REHH is a ratio of derived to ancestral EHH. When there 
is positive selection on the derived allele, unstandardized iHS becomes larger 
and positive.

Although the unstandardized iHS values in combination with simulations 
could be used to generate P-values, it has become common practice to in-
stead report “standardized” iHS values. These values are standardized simply 
by comparing the unstandardized scores at our focal site to unstandardized 
scores for polymorphisms at similar frequencies across the genome. We need 
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to use only those scores with similar frequencies because unstandardized iHS 
can vary with derived allele frequency. We calculate this value as:
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where the expectation (Ep[•]) and standard deviation (SDp[•]) of unstandard-
ized iHS are estimated from the empirical distribution calculated around 
polymorphisms at the same derived allele frequency, p, as the core site under 
consideration. In other words, iHS expects that you have calculated unstan-
dardized iHS for every polymorphism in the genome (often excluding those 
with a minor allele frequency under 5%), and that you have estimated the 
mean and standard deviation among all such polymorphisms at every fre-
quency, or in small frequency bins. As a result, iHS should be approximately 
normally distributed, with a mean at 0. This statistic does not have P-values 
attached to it but instead can be used to identify extreme values across the 
genome.

Let us take a step back to ask: Why are we doing all of these calculations 
with haplotype homozygosities? Are these tests any better than the tests 
outlined earlier in the chapter? In fact, EHH and iHH are quite similar in 
conception and practice to Hudson’s haplotype test, and they come with 
the same caveats (they also appear to be quite similar in power; Zeng, Shi, 
and Wu 2007). In all methods we split our data into two sets based on a 
polymorphism of interest, asking about the amount of variation associ-
ated with each set. In Hudson’s haplotype test we consider the nucleotide 
mutation events associated with each focal allele, expecting that selection 
will lower the resulting nucleotide variation in the selected set of haplo-
types because of the rapid coalescence among lineages. Similarly, in the 
EHH and iHH tests we are indirectly considering the recombination events 
associated with each focal allele, measured as the length of homozygous 
haplotypes. 

The big advantage to the EHH and iHH tests is that they, unlike HHT, can 
be used with genotyped samples—there is no need for full sequences. The as-
certainment bias inherent in genotype data (Chapter 2) means that such data 
cannot be used to ask about levels of nucleotide variation. However, there is 
no such ascertainment with respect to recombination events, and therefore 
genotype data can be used in tests that are looking for signatures of reduced 
recombination. The EHH/iHH tests can be used with full sequence data, and 
their power and robustness can be improved slightly by using genomic dis-
tances instead of recombination distances (Ferrer-Admetlla et al. 2014). But 
in these cases it may be easier and more powerful simply to use HHT or 
other similar tests because they will always provide greater power to detect 
mutation events relative to recombination events, so tests based on nucleo-
tide variation should be more sensitive. We can also make comparisons of  
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EHH/iHH values between populations at the same positions (referred to 
as either Rsb [Tang, Thornton, and Stoneking 2007] or XP-EHH [Sabeti et al. 
2007]), something that is not possible using the P-values from HHT. Such com-
parisons can tell us about population-specific sweeps using patterns of hap-
lotype homozygosity.

Interpreting tests based on haplotype structure and linkage 
disequilibrium
We have already introduced many of the caveats and interpretations of the 
tests mentioned here as we have covered them. But there is one point regard-
ing the effect of recombination worth discussing a little further.

Because the amount of recombination at a locus has a large effect on 
the haplotypes that are observed, it is important to ensure that simulations 
use the amount of recombination appropriate to the locus being studied. 
Although most site-based tests (like Tajima’s D) are more conservative with 
low recombination, haplotype-based tests have a more complicated rela-
tionship with recombination (Wall 1999; Zeng, Shi, and Wu 2007). This is 
largely because we may be testing for either an excess or a deficit of hap-
lotypes. Low recombination always means fewer haplotypes, so if we are 
testing for a relative excess of haplotypes (such as occurs after a completed 
sweep), simulations with low recombination will be anticonservative. 
Conversely, more recombination always means more haplotypes, so tests 
looking for a deficit of haplotypes (such as with a partial sweep) will also 
be anticonservative if we simulate with high recombination. It is therefore 
important to accurately estimate recombination at each locus being tested, 
and to use locus-specific recombination rates in simulations. Simply using 
an average recombination rate when there is variation across loci can result 
in false positives.

Recombination rate variation is largely controlled for using the REHH 
or iHS tests (but not completely; see Ferrer-Admetlla et al. 2014). This is 
because we are always comparing homozygosity between haplotypes as-
sociated with the ancestral and derived alleles at a single locus. We expect 
that regions with high (or low) recombination will have high (or low) re-
combination within both the ancestral- and derived-carrying chromosomes, 
such that among-locus variation does not affect our results. Even when this 
assumption does not hold—such as when there is a site affecting recombi-
nation rate that is polymorphic in a population—the effects on haplotype 
structure and linkage disequilibrium are minimal (Hellenthal, Pritchard, 
and Stephens 2006). 

Finally, it should be mentioned that the power to detect completed sweeps 
using haplotype structure or LD declines quite rapidly, even by comparison to 
frequency spectrum–based tests. Whereas we have some power to detect se-
lection up to about 0.4Ne generations after the sweep has ended using Tajima’s 
D (Figure 8.9A), using the number of unique haplotypes or ZnS will give us 
power only until about 0.05Ne generations since fixation of the advantageous 
allele (Pennings and Hermisson 2006b). Despite this greatly reduced power, 
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when used in conjunction with other tests these statistics are often informative 
about the precise targets or mode of selection. 

CAVEATS TO TESTS OF LINKED SELECTION 

As was mentioned earlier in the chapter, all tests of linked selection come with a 
very important caveat: our null expectations are based on neutral-equilibrium  
populations (sometimes referred to as the standard neutral model). This means 
that both selection and nonequilibrium demographic histories can cause de-
viations from these expectations, making it very difficult to tease the two 
apart (we come back to this task in Chapter 10). Nonequilibrium demogra-
phy can shift both the mean value of our test statistics and the variance ex-
pected among loci. As a result, we cannot simply re-center the mean of our 
data but must also simulate data under nonequilibrium histories to properly 
capture the expected variance in order to avoid false positives. But because 
selection can mimic many aspects of nonequilibrium population histories  
(see Chapter 9), this procedure also leads to an increase in false negatives 
(Hahn 2008).

It is worth considering why we did not focus on the assumptions of  
neutral-equilibrium populations in the discussion of tests of selection in ear-
lier chapters. One reason is that many of these tests compare two classes of 
sites that are assumed to be affected equally by demography. For instance, the 
McDonald-Kreitman test is explicitly a comparison between nonsynonymous 
and synonymous changes within the same gene. Similarly, it is often the case 
that FST is used to robustly infer the action of selection by comparing values 
in different classes of polymorphisms (e.g., Barreiro et al. 2008). This does not 
mean that these tests are unaffected by demography, but they are certainly 
less affected.

Tests using the amount of variation, the allele frequency spectrum, and even 
linkage disequilibrium use comparisons against theoretical expectations and 
can therefore be especially sensitive not only to nonequilibrium histories but 
also to sampling schemes. If we do not sample from a single population, we 
can often be misled. The problems with sampling extend to tests using levels 
of variation, as loci with large between-population levels of differentiation 
can be incorrectly interpreted as evidence for balancing selection. Similarly, 
sampling from multiple populations can lead to skews in the frequency spec-
trum if alleles differ in frequency across populations. Even when we sepa-
rately consider the frequency spectrum for nonsynonymous and synonymous 
polymorphisms, our sampling scheme can affect our conclusions about selec-
tion. Consider a gene at which different amino acids are fixed because of local 
adaptation in multiple different populations—if we were to sample only one 
individual per sample we would incorrectly infer an excess of low-frequency 
nonsynonymous alleles, consistent with weakly deleterious variation (simi-
lar incorrect inferences would be made using the MK test as well). We have 
also already seen (in Chapter 5) that polymorphisms that are in linkage equi-
librium within populations can appear to be in linkage disequilibrium when 
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sampling across multiple populations. Again, this may lead us to infer the 
wrong types of selection when we interpret our patterns of LD in terms of our 
expectations within single populations.

Overall then, all methods for detecting linked selection must be accompa-
nied by a careful consideration of the demographic history of the populations 
being sampled. In addition, the exact sampling design of experiments that set 
out to detect linked selection must be thought out in advance, or population 
structure needs to be accounted for before tests are conducted. In the next 
chapter we discuss the effects of nonequilibrium demographic histories on 
patterns of variation, returning in Chapter 10 to a synthesis of the effects of 
selection and demography on molecular variation.
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Genetic variation data are widely used to infer the demographic history 
of populations and species. As populations grow, contract, split, and 
come back together, the variants carried across individuals record these 
changes. Many methods have been developed to infer demographic 
events from sequence data and to estimate their magnitude. There are 
three main demographic parameters that researchers attempt to esti-
mate: effective population size (Ne), migration rate (m), and the time of 
population divergence (t). Multiple elaborations of each of these par-
ameters is possible—for instance, the value of Ne as it changes through 
time and when these changes occurred—but these three parameters 
form the building blocks of almost all more complex models. Often we 
can only estimate these parameters jointly (e.g., Nem, Nem), and their 
values can depend on one another (e.g., t can be expressed in units of 
Ne generations). This means that obtaining the numerical value of any 
single parameter is dependent on external estimates of others. Most 
often we use external estimates of the mutation rate, as there are experi-
mental methods for doing so; we also use estimates of the generation 
time to convert time from units of Ne to units of years.

Any discussion of the methods used to study population demogra-
phy must begin by clarifying what exactly it is that we are able to esti-
mate. The most important thing to consider is that patterns of variation 
are determined by the joint effects of population history and natural 
selection. This means that our estimates also include the joint effects 
of both of these processes. The effects of selection are apparent across 
the vast majority of almost all genomes (e.g., Corbett-Detig, Hartl, 
and Sackton 2015), and it is therefore very difficult to obtain estimates 
solely influenced by demographic history (but see Voight et al. 2005 
and Gazave et al. 2014 for attempts to do exactly this). The problem is 
compounded by the fact that most methods assume there is no effect of 
selection, as violations of this assumption can result in the inference of 
demographic events (such as migration) when none has occurred (e.g., 
Mathew and Jensen 2015; Roux et al. 2016). 

Demographic inference is a very important part of modern molecu-
lar population genetics. Most of the methods described in this section 
have been used many times to inform our knowledge of population 

DEMOGRAPHIC 
HISTORY 9
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histories. The caveats listed above should not detract from this use but should 
give us pause in interpreting every parameter value produced by our analy-
ses. Though the big-picture outlines of inferred population histories may be 
correct, very few studies are able to verify the precise parameter estimates 
with known histories (e.g., McCoy, Garud, et al. 2014). Newer methods are 
being developed that can co-estimate demography and selection (Chapter 10),  
but more needs to be done to determine how robust our inferences are to vio-
lations of the most common models. For simplicity, however, throughout this 
chapter I will refer to methods that aim to infer population histories as demo-
graphic, recognizing that in real data many forces may affect the results.

THE DEMOGRAPHIC HISTORY OF SINGLE POPULATIONS

The simplest inferences of demographic history use only a single population. 
In a single population there is one evolutionary parameter to be estimated—
Ne—and the only demographic events that can occur are changes in this ef-
fective population size. As mentioned above, however, the value of Ne can 
change through time, and so we may want to estimate different values of Ne 
at multiple time points in the past. Below we build to an understanding of 
demographic inference for single populations by discussing the histories that 
are possible, how variation is affected by nonequilibrium histories, and the 
different ways genealogical measures can be used to infer specific histories. 
We move on to estimating parameters when multiple populations are consid-
ered in the next part of the chapter.

Nonequilibrium demographic histories
Our null model in demographic inference is usually a Wright-Fisher popula-
tion at equilibrium (FIGURE 9.1A). Equilibrium means that the population has 
had a constant size of Ne (or 2Ne) for such an extended period of time that 
the entire history of our sample has only experienced this size. There is no 
linked selection, and neutral mutations have arisen at a constant rate so that 
the allele frequency spectrum matches our expectations under mutation-drift 
equilibrium.

 Given this equilibrium history, there are only two nonequilibrium events 
that can occur when considering a single population: Ne can go up (looking 
forward in time) or Ne can go down. We refer to these events as population ex-
pansion and population contraction, respectively (FIGURE 9.1B,C). All further 
embellishments to create more complex histories in a single population are 
combinations of, or can be reduced to, expansions and contractions. The one 
exception in discussions of more complex models is that we often talk about 
population “bottlenecks” as a unique type of history, even though they are 
just a combination of a contraction followed by an expansion (FIGURE 9.1D). 
But the bottleneck model occurs often enough in population genetics that it is 
helpful to consider on its own.

A simple model of either expansion or contraction has three parameters 
(Figure 9.1B,C): the ancestral effective population size (denoted NA), the time 
before the present at which the population size instantaneously changed  
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(t0; measured in 2N0 generations), and the current effective population size (N0). 
Although we usually consider population size changes to be instantaneous, 
this assumption is clearly not realistic—it is used solely for computational and 
mathematical convenience. A more realistic size-change model that is com-
monly used has Ne growing or shrinking exponentially. Exponential models 
also have three parameters: N0, t0, and the exponential growth rate, r (where r 
can be negative to specify population contraction). Here t0 represents the time 
that the population begins to grow or shrink exponentially. We do not need to 
specify the ancestral effective population size because it is given by N e/ rt

0
0 .  

Exponential size changes may still not be the most realistic demographic 
model, but again they are relatively easy to work with. One rarely sees models 
in which population size changes linearly with time.

A standard bottleneck model has five parameters (Figure 9.1D): NA, N1, N0, 
t1, and t0. Essentially these are a combination of the initial contraction and sub-
sequent expansion parameters. The added parameters represent the size of 
the population during the bottleneck (N1), the time before the present that the 
population contracted (t1), and the time before the present that it expanded 
(t0). It is also common to see these events represented by the “strength” of 
the contraction during the bottleneck (= N1/NA) and the length of the bottle-
neck (= t1 − t0), with no change in the number of parameters that need to be 
specified. There is no requirement that the population be exactly the same 
size post-bottleneck as pre-bottleneck—the ancestral size can be either above 
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FIGURE 9.1 Demographic histories of single populations. in all panels the current 
day is all the way to the left on the x-axis. (A) Equilibrium history. (B) Population ex-
pansion. (C) Population contraction. (D) Population bottleneck. 
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or below the current size—though for simplicity they are often considered to 
be equal. 

The term bottleneck is an ambiguous one in the literature. When explicit 
inference of population histories is being carried out there is no ambiguity, 
and all of the different bottleneck parameters must be specified. But bottle-
neck is often used more loosely as a synonym for either expansion or contrac-
tion. That is, authors will use the term to mean more expansion-like histories 
or more contraction-like histories. Because bottlenecks are a combination of 
the two, individual outcomes of population bottlenecks can resemble either 
more of an expansion history or more of a contraction history, depending on 
which of these two events has had the dominant effect on patterns of varia-
tion. While this lax language should not be condoned, the conflation of terms 
does point to the difficulty we have in distinguishing among similar demo-
graphic histories.

The effect of changing population size on gene genealogies
Population expansions, contractions, and bottlenecks all affect patterns of nu-
cleotide variation. These effects can best be understood by first considering 
the genealogy at a locus (or set of loci) that has experienced such events.

Because nonequilibrium histories in a single population are represented 
only by changes in Ne, we must consider what changing the value of Ne does 
to the underlying genealogy. Recall from Chapter 6 that the rate of coalescence 
is determined by the population size. With a constant-sized diploid popula-
tion the probability that two lineages will coalesce in a single generation is 
1/2Ne, and therefore the average waiting time until the next coalescent event 
in a genealogy is directly proportional to Ne (Equation 6.2). With changing 
population size the same expectations hold, but now the rate of coalescence 
will be proportional to the existing population size within any time window. 
In periods when population sizes are large the rate of coalescence will be 
relatively low, while in periods when population sizes are small the rate of 
coalescence will be relatively high. Given continuously changing population 
sizes—as in exponentially growing or shrinking populations—we also have 
expectations for the rate of coalescence at any time point (Slatkin and Hudson 
1991). Alternatively, we can think of the coalescent process for nonequilib-
rium populations as following the typical process for a population of constant 
size, noting that times in the tree are proportional to Ne generations. Changes 
in population size are then represented by the stretching or compressing of 
branch lengths in the intervals corresponding to larger or smaller Ne, respect-
ively. No matter how we view this process, we expect to see fewer coalescent 
events in periods experiencing large population sizes and more coalescent 
events in periods experiencing small population sizes.

Examples of how changes in Ne can affect genealogies are shown in 
FIGURE 9.2. Relative to the genealogy from an equilibrium population with 
the same current effective population size, genealogies from expanding popu-
lations have short internal branches and long external branches (Figure 9.2B). 
This is because the rate of coalescence in the most recent epoch is slower as a 
result of population growth, while the rate in the previous epoch is faster as 
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a result of the smaller population size. In exponentially growing populations 
the rate of coalescence increases exponentially going back in time. One further 
effect of the increased rate of coalescence going back in time is that genealo-
gies at different loci will all tend to have their most recent common ancestor in 
a small window of time when the population started to expand (Slatkin and 
Hudson 1991). As a result, the variance in tree height among loci (and there-
fore the variance in total tree length) will be lower in expanding populations  
than in equilibrium populations. With greater population growth the genealo-
gies will become even more star-like, and the variance in tree height among loci  
will become even smaller.

For populations undergoing a contraction, the opposite effect is seen: 
longer internal branches and shorter external branches (Figure 9.2C). In this 
case the rate of coalescence in the most recent epoch is higher because of the 
small population size, while the rate in the previous epoch is slower as a result 
of the larger population size. Here, the severity of the contraction (N0/NA) 
and the time since the contraction started (t0) are also crucial to the expected 
tree shape. If the contraction is too severe or lasts too long, all lineages will 
coalesce in the most recent epoch. Consequently, severe contractions may be 
more difficult to detect than moderate ones (Voight et al. 2005). In order to 
observe a genealogy like the one shown in Figure 9.2C, two or more lineages 
must “escape” the contraction, instead coalescing in the prior epoch. There 
are no specific values of these parameters that will always lead to trees with 
longer internal branches, as the probability that any two lineages will escape 
the contraction without coalescing is just a function of the joint parameter 
N0/t0. As a result of this stochasticity in tree shape, the variance in tree height 
among loci (and therefore the variance in total tree length) will be higher in 
contracting populations than in equilibrium populations. That is, some loci 

(A) (B) (C)

FIGURE 9.2 Representative genealogies from different population histories. in all 
panels the size of the population is denoted by the distance between the dashed 
lines. (A) genealogy from an equilibrium population. (B) genealogy from a 
 population undergoing an expansion. (C) genealogy from a population undergoing 
a contraction.
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will resemble the genealogy in Figure 9.2C, while others will resemble very 
short neutral genealogies, completely coalescing in the most recent epoch.

Genealogies from bottlenecked populations may resemble those from 
either an expanding or a contracting population (or both), depending on the 
timing of the constituent contraction and expansion. If the initial contraction 
was relatively recent or relatively severe, then the genealogical history at most 
loci will be dominated by this event. In contrast, if the contraction was rela-
tively further in the past and not as severe, but the expansion was rapid and 
large, then genealogies will be dominated by the expansion event. For any 
arbitrary history combining contractions and expansions, the shape of gene-
alogies from such populations will reflect the changing rate of coalescence at 
many different time points. Whether or not any single demographic event 
dominates, the shape of the tree should be an accurate guide to the history of 
changes in Ne.

The effect of changing population size on the allele  
frequency spectrum
Now that we have gained an intuition for the effect of changes in Ne on the 
shape of genealogies, we would like to apply this insight to understanding 
these effects on patterns of sequence variation. Dating back to the beginning 
of molecular population genetics, researchers have attempted to examine the 
effects of nonequilibrium histories on the average heterozygosity and number 
of alleles in allozyme data (e.g., Nei, Maruyama, and Chakraborty 1975; 
Maruyama and Fuerst 1985). There are many different ways to summarize 
patterns of sequence variation, and many of the different statistics discussed 
in this book will be affected by nonequilibrium histories. DNA sequence data 
clearly allow us to go beyond the very coarse inferences available with al-
lozymes, and here I begin with a discussion of the behavior of the allele fre-
quency spectrum. In the next section I will cover some other commonly used 
statistics in demographic inference, as well as several approaches to measur-
ing sequence variation that have not been covered before now.

The effects of nonequilibrium histories on the allele frequency spectrum 
should be apparent from the shape of the genealogies shown in Figure 9.2. 
With longer external branches come more singleton polymorphisms, and 
therefore a skew in the allele frequency spectrum toward low-frequency al-
leles. Population expansions generate star-like trees with relatively long ex-
ternal branches, resulting in exactly this sort of skew (Figure 9.2B). Therefore, 
we expect summaries of the allele frequency spectrum such as Tajima’s D or 
Fu and Li’s D (Chapter 8) to be negative under population expansion (Tajima 
1989b). Conversely, with longer internal branches come more intermediate-
frequency polymorphisms and a commensurate skew in the allele frequency 
spectrum. Population contractions can generate exactly these sorts of genealo-
gies (Figure 9.2C). Again, we expect summaries of the allele frequency spec-
trum to reflect this skew, resulting in positive values of Tajima’s D and similar 
statistics (Tajima 1989b). As an alternative to this genealogical view, we can 
also try to understand the effects of nonequilibrium demography by taking 
a forward-in-time view. In an expanding population the addition of new 
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chromosomes means that more mutations can be generated every generation. 
While these mutations will eventually result in higher overall levels of varia-
tion, the new polymorphisms will all start out at low frequency, leading to a 
skewed frequency spectrum. In a contracting population many chromosomes 
are lost, taking rare polymorphisms with them. These rare alleles will be lost 
disproportionately, leading to an excess of intermediate-frequency polymor-
phisms and a skew in the frequency spectrum.

The effects of a bottleneck on the allele frequency spectrum can vary. As 
stated above, the genealogical consequences of a bottleneck can be either 
more expansion-like or more contraction-like, and this behavior is reflected 
in the allele frequency spectrum. If the expansion event dominates, then the 
frequency spectrum will be skewed toward low-frequency alleles. If the con-
traction event dominates, the spectrum will be skewed toward intermediate-
frequency alleles. These dynamics are demonstrated in FIGURE 9.3, where a 
brief but very strong bottleneck starts at varying times in the past, returning to 
the same size post-contraction. When the contraction portion of the bottleneck 
occurs longer ago, Tajima’s D is negative, reflecting the fact that it is the sub-
sequent expansion that has the major effect on the allele frequency spectrum.  
As the contraction becomes more recent it begins to dominate patterns of vari-
ation, such that very recent bottlenecks have a positive Tajima’s D (Figure 9.3). 
There is also a point in the past at which there is no overall skew in the fre-
quency spectrum, and Tajima’s D = 0. Here the effects of the contraction and 
expansion have exactly canceled each other out, cautioning against the use 
of only a single summary statistic for demographic inference. However, note 
that in Figure 9.3 only the mean value of Tajima’s D is reported. A bottleneck 
will also generally increase the variance in D among loci (Voight et al. 2005; 
Stajich and Hahn 2005), suggesting that there is more information contained 
even in this simple summary statistic.
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FIGURE 9.3 Frequency spectrum 
after a bottleneck. The mean value of 
Tajima’s D across 20,000 simulated 
datasets that have a bottleneck with 
a 95% reduction in Ne for 0.05Ne 
generations. The figure shows the  
effects of the bottleneck for loci on 
the autosomes (A), X chromosome (X),  
and mitochondrial genome (mt). 
Time on the x-axis is measured in 
units of 2Ne generations. (From 
gattepaille, Jakobsson, and Blum 
2013.)
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As an added complication, Figure 9.3 shows the effects of the same bottle-
neck history on loci located on the autosomes, the X chromosome, and the 
mitochondrial genome. The main difference among these loci is that the ef-
fective population size of each is 2Ne, 1.5Ne, and 0.5Ne, respectively. But this 
seemingly small difference in population size can result in very different ge-
nealogical outcomes: for the exact same population history, loci found in the 
same individuals can give either very positive or very negative Tajima’s D 
values (Fay and Wu 1999). This phenomenon occurs because the smaller Ne 
of mtDNA means that the rate of coalescence during the contraction phase of 
the bottleneck is even higher, while the higher mutation rate of this genome 
means that the recovery of variation can be faster. As a result, all genealogies 
find their most recent common ancestor toward the beginning of the contrac-
tion, with no lineages escaping into the older epoch with larger population 
sizes. Variation is quickly reintroduced because of the higher mutation rates, 
and therefore the history of mtDNA is dominated by the subsequent expan-
sion phase of the bottleneck. In general, nonequilibrium population histories 
can affect genealogies at loci in distinct genomic compartments (i.e., auto-
somes, X, mtDNA) quite differently, and so we should expect to see differ-
ences in patterns of variation (e.g., Fay and Wu 1999; Hey and Harris 1999; 
Wall, Andolfatto, and Przeworski 2002; Pool and Nielsen 2008).

The effect of changing population size on other measures  
of variation
The allele frequency spectrum is just one summary of variation data that en-
ables us to make inferences about changing population size, and it is in fact 
limited in its resolution (Myers, Fefferman, and Patterson 2008; Terhorst and 
Song 2015). Fortunately, there are many other measures of variation that cap-
ture additional information about the shape of genealogies from nonequilib-
rium histories, including the genealogies themselves.

Patterns of linkage disequilibrium are affected by changes in Ne. Recall 
that a genealogical interpretation of LD considers the branches of a genealogy 
on which mutations have arisen (Chapter 6). Higher levels of LD—as mea-
sured by statistics such as r2—occur when mutations have occurred on the 
same branch of the tree, and this branch is an internal branch. If mutations 
arise on different branches of the genealogy, or arise on the same external 
branch, LD will be lower. Given these considerations, it should be clear that 
the average level of LD will be positively correlated with the average length of 
internal branches of a genealogy. Histories of population expansion are char-
acterized by extremely short internal branches relative to external branches 
(Figure  9.2B). Therefore, expansion events are expected to generate lower 
levels of LD (Slatkin 1994b). We can also view this pattern in light of the aver-
age allele frequency, which in an expansion is lower than expected. The large 
number of new mutations in expanding populations will not be consistently 
associated with one another, and therefore LD will not be as high as in the 
equilibrium case. In contrast, histories of population contraction (or bottle-
necks dominated by the contraction phase) are characterized by long internal 
branches relative to external branches (Figure 9.2C). Therefore, contraction 
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events can generate higher levels of LD (e.g., Tishkoff et al. 1996; Kruglyak 
1999; Andolfatto and Przeworski 2000; Reich et al. 2001; Wall, Andolfatto, and 
Przeworski 2002). 

Summaries of haplotype variation (such as K, F, or M; Chapter 8) will also 
be affected by nonequilibrium histories, and in fact much of the theory used 
when studying allozymes (i.e., the infinite alleles model) can be applied to 
these data. Because haplotype diversity reflects the joint patterns contained in 
the allele frequency spectrum and LD, it may carry additional information not 
seen when analyzing either one alone. However, there are relatively few stud-
ies that use only these haplotype summary statistics for demographic inference 
(e.g., Lohmueller, Bustamante, and Clark 2009). One exception is the so-called 
mismatch distribution (Rogers and Harpending 1992). As its name implies, 
the mismatch distribution is an accounting of pairwise differences between 
all haplotypes at a locus—these are the kij values in Equation 3.3. Assuming 
there is no recombination, these pairwise differences will be approximately 
geometrically distributed for an equilibrium population: most pairs of haplo-
types will be expected to have very few nucleotide differences between them, 
with fewer and fewer pairs having more and more differences (Slatkin and 
Hudson 1991). Under population expansion, the underlying tree will be star-
like, and therefore all haplotypes will be approximately equally related (e.g., 
Figure 9.2B). Consequently, there will be a unimodal mismatch distribution at 
such loci (Slatkin and Hudson 1991; Rogers and Harpending 1992). This ge-
nealogical feature of population expansions allows researchers to estimate the 
onset of the expansion phase (given an estimated mutation rate), as long as the 
data come from a non-recombining locus. Because of the strong assumptions 
concerning the lack of recombination, the use of the mismatch distribution has 
largely been confined to analyses of mtDNA and Y chromosomes. In addition, 
the mismatch distribution seems to be used in the literature solely to study 
population expansions—not contractions. The reason for this is likely the non-
identifiability of contractions relative to equilibrium populations. Although 
in the limit the mismatch distribution should be geometric for populations at 
equilibrium, for any single tree the observed distribution is often multimodal, 
reflecting the longer internal branches separating sub-genealogies containing 
more closely related haplotypes (e.g., Figure 9.2A; Slatkin and Hudson 1991; 
Rogers and Harpending 1992). The resulting mismatch distribution will be 
highly similar to the one expected under a contraction.

The discussion thus far should make it clear that a major goal of demo-
graphic inference in a single population is to infer the coalescence times among 
sampled chromosomes. If we can estimate the coalescence times, then we can 
estimate the rate of coalescence during any period of time; this in turn repre-
sents an estimate of Ne. The main tool researchers have used to obtain these 
coalescence times is drawn from the sample genealogies themselves. By gene-
alogy, here we mean a topology and an associated set of branch lengths repre-
senting time, such that all of the coalescence times are known (FIGURE 9.4A). 
In order to estimate such a tree we require that there have been no recom-
bination events and enough nucleotide substitutions to estimate all branch 
lengths sufficiently. When these conditions are met, the average time to go 
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from i → i − 1 lineages (for all i) can 
be used as a maximum likelihood 
estimate of q (Felsenstein 1992; Fu 
and Li 1993b). If the mutation rate, 
m, is known, these coalescence times 
(the Tis in Figure 9.4) can therefore 
be used to estimate Ne. The more in-
teresting implication of this general 
approach is that each time between 
coalescent events is informative 
about Ne during that time window 
(FIGURE 9.4B). In an equilibrium 
population the rate of coalescence 
in each interval should be the same, 
with the time until the next coales-
cent event simply proportional to 
1/[i(i − 1)] (Equation 6.2). However, 
as Ne changes so does the rate of 
coalescence and, consequently, the 
time between events. Approaches 
using coalescent time intervals es-
timated from non-recombining loci 
can therefore be used to infer broad 
nonequilibrium histories (Nee et al.  
1995) or specific estimates of Ne 
through time (Pybus, Rambaut, and 
Harvey 2000; and see below).

The presence of recombination 
poses major constraints on meth-
ods that use full genealogies. When 
there is recombination the inferred 
tree is a mixture of multiple (corre-
lated) genealogies and may not ac-
curately reflect any single marginal 
tree. The average tree will tend to 

be more star-like because the average coalescence time between all pairs of 
lineages will be the same (Schierup and Hein 2000). As with the mismatch dis-
tribution, this means that such methods have been limited to analyses of com-
pletely non-recombining loci such as mtDNA and Y chromosomes. In order to 
deal with recombination we could estimate genealogies from blocks of auto-
somal sequences where no recombination is detected, and many methods take 
this approach (e.g., Gattepaille, Günther, and Jakobsson 2016). However, even 
when there are no detectable recombination events (i.e., when the four-gamete 
test is not violated), recombination can still have an effect on the reconstructed 
tree (Hudson and Kaplan 1985). In addition, such methods generally assume 
that there is free recombination between all non-recombining blocks, which is 
also unlikely to be the case with even a moderate number of loci.

Time before present

T7 T6 T5 T4 T2T3

Ne

0

(A)

(B)

FIGURE 9.4 Estimating Ne from coalescence times. (A) A 
representative genealogy with branch lengths representing 
time. The vertical dashed lines demarcate periods with i 
lineages in them, and the times between dashed lines are 
denoted by the Ti  s. (B) For each interval we can use the coales-
cent time (Ti  ) to estimate Ne, using Equation 6.2. (After Ho 
and shapiro 2011.)
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Multiple approaches estimate coalescent times in the presence of recom-
bination by modeling the correlation between tree topologies at neighboring 
loci. Some of the most common methods take advantage of the sequentially 
Markovian coalescent (SMC; McVean and Cardin 2005)—or the updated ver-
sion of this model, SMC´ (Marjoram and Wall 2006)—to infer population sizes 
through time. Recall that this model describes how genealogies change as 
you move along a chromosome: when there is a recombination event the tree 
may change slightly from the one preceding it (Chapter 6). Using the SMC 
for inference therefore allows you to gain information from both coalescence 
times and recombination, as well as to account for correlations among trees. 
The simplest SMC-based methods use coalescent times between only a pair of 
chromosomes (usually in a single diploid individual) but include information 
from tens of thousands of loci or more. This approach provides rich informa-
tion about the rate of coalescence at many periods in the past. A description of 
these methods can be found below. 

Finally, the demographic history of a population can leave a signal in the 
length of sequences identical between individuals. The two main approaches 
leveraging such information consider either the length of sequences shared 
without an intervening recombination event (denoted identical-by-descent, 
or IBD) or the length of sequences shared without an intervening mutation 
(denoted identical-by-state, or IBS; also sometimes referred to as runs of homo-
zygosity). Before considering how these measures are used, it is important 
to point out that the terms identical-by-descent and identical-by-state can have 
multiple meanings. At a single nucleotide position, we often wish to specify 
whether sequences share a common allele because it was inherited from their 
common ancestor (IBD) or because convergent mutations to the same allelic 
state occurred on multiple lineages (IBS). This usage of these terms is most 
often found in a phylogenetic context, in which multiple mutations at a site 
are a concern. Identical-by-descent is also used in fixed pedigrees to denote loci 
that are shared between individuals because they are inherited from the same 
reference individual. Here we are applying the terms to samples of (relatively) 
unrelated individuals in a single population.

The effects of population history on the length of sequences that are either 
IBD or IBS are the same, and a major distinction between the two is whether 
the relevant model is applied to genotype data (IBD) or full sequence data 
(IBS). For simplicity I will first explain the underlying idea for IBS at a non-
recombining locus because only one process (mutation) needs to be consid-
ered (FIGURE 9.5). Assuming that mutations are Poisson-distributed along the 
genome, the length of sequences that are IBS between two chromosomes is 
expected to be exponentially distributed with mean 1/(2mT), where T is co-
alescence time. Because the two sequences are identical except for the 2mT 
mutations that have accumulated between them, the length of these identi-
cal tracts (the IBS tracts) contains information about coalescence times. These 
lengths are inversely correlated with T: very recent coalescences will leave 
less time for mutation and therefore larger average IBS tracts, and vice versa. 
Similarly, if we consider only recombination, the length of IBD tracts is infor-
mative about coalescence times, with more recombination resulting in smaller 
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average tracts. From the full distribution of tract lengths we can also infer 
changes in Ne over time. Detailed population histories can be gleaned from 
the distribution of IBD tracts (e.g., Palamara et al. 2012), but they are limited 
to very short periods of the recent past (Chapman and Thompson 2002). IBS 
tracts offer the ability to examine changes in Ne across much longer periods 
of time, but both mutation and recombination have to be taken into account. 
Fortunately, recent work has been able to derive the expected IBS tract length 
distribution under arbitrary population histories (Harris and Nielsen 2013).

Types of data and computational methods  
used in demographic inference
Understanding how nonequilibrium population histories affect genetic varia-
tion helps us to understand how to infer these histories from data. For every 
measure of sequence variation there are at least a few (and sometimes many 
more than a few) methods for turning these data into estimates of demo-
graphic history. Many early methods focused on rejecting equilibrium sce-
narios using summary statistics (e.g., Fu 1997; Ramos-Onsins and Rozas 2002), 
but the resulting answers were often limited simply to whether there had been 
a recent expansion or contraction or some other deviation from the standard 
neutral model. More recent work has focused explicitly on parameter estima-
tion, with the values of Ne at various points in time as parameters. Of course  
the simplest inference comes from setting one of the estimators of q  (Chapter 3)  
equal to 4Nem and solving for Ne using an external estimate of the mutation  
rate. If selection has had no effect on levels of variation, then the value of Ne 
from such calculations roughly represents the harmonic mean of population 
sizes across the recent past (see Crow and Kimura 1970, pg. 110).

More complex inferences of changes in Ne over time are possible using 
many different approaches that use sample sizes ranging from n = 2 to thou-
sands of chromosomes, and sequence data organized in multiple different 
ways. Here I will focus on three data types that are commonly used, whether 
in analyses involving a single population or those involving multiple pop-
ulations. Even when the underlying sequences are collected in the same 
manner, the data can be presented and analyzed in different ways using dif-
ferent assumptions. These three data types generally represent the different 

T

L1 L2 L3 L4 L5

FIGURE 9.5 The length of tracts that are identical-by-state. For a given time to 
 coalescence between two lineages (T, shown at left) 2mT mutations will accumulate 
between them (derived mutations shown as circles in the alignment at right). The 
lengths of tracts that are identical-by-state between the two chromosomes are denoted 
by the Lis, which are on average shorter given larger values of T. The full distribution 
of these lengths is also informative about changes in Ne over time. 
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ways that linkage is treated in the downstream analyses, ranging from com-
pletely ignoring relationships among sites to fully taking into account these 
correlations. 

The first data type considers each polymorphic site separately, under the 
assumption that they are independent from one another. This approach can 
provide millions of data points from a single dataset containing up to thou-
sands of sequenced individuals, though the only information it captures is 
allele frequency. Data collected from genotyping platforms are included 
within this type, recognizing that the ascertainment scheme must be ac-
counted for in order to make accurate inferences. The second data type con-
siders a large number of short sequence blocks, each containing a moderate 
number of polymorphisms. All demographic reconstruction methods using 
such data assume free recombination (i.e., independence) between blocks but 
differ as to whether there is no recombination or some recombination within 
blocks. Because results can be very sensitive to the specific recombination 
rates used (Ramírez-Soriano et al. 2008), it is commonly assumed that there 
is no recombination within blocks. This assumption does not improve infer-
ences but is made for convenience. The datasets to be analyzed can have thou-
sands of sequence blocks and dozens to hundreds of individuals, and they are 
readily collected using reduced representation approaches such as RAD-seq 
or transcriptome sequencing (Chapter 2). The third data type considers whole 
genomes or long contiguous stretches of a genome at once. The correlations 
induced by linkage between sites or between short windows along a chromo-
some must be accounted for when analyzing such data. Methods using these 
data are often the most computationally demanding, limiting the sample sizes 
that can be used to only a very small number of individuals.

In addition to using diverse types of data, methods for carrying out demo-
graphic inference use many different computational and statistical approaches 
for parameter estimation. Closed-form mathematical expressions to determine 
the probability of sequence data given a set of parameters are available only 
for simple histories (Ewens 1972) or for very small samples from more com-
plex histories (Lohse, Harrison, and Barton 2011). Therefore, a wide variety of 
approaches from computational statistics have been used in order to estimate 
the detailed demographic histories of populations. Likelihood, Bayesian, and 
heuristic methods are all employed, often with slight variations. A compre-
hensive review of these approaches is beyond the scope of this book, but here 
I attempt to familiarize the reader with at least the basic vocabulary necessary 
to understand specific methods described in the next section.

The most commonly used computational approaches use likelihood or 
Bayesian methods (see ch. 8 in Wakeley 2009 for a good overview). It is im-
portant to note at the outset that Bayesian methods employ likelihood: the 
key distinction between the two is that Bayesian methods apply prior prob-
abilities to likelihoods, providing posterior probabilities as output. To a first 
approximation, Bayesian methods that employ uniform (i.e., uninformative) 
priors will give results equivalent to those produced by likelihood methods, 
in that the maximum a posteriori estimates will correspond to the maximum 
likelihood estimates. 
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Common approaches for calculating likelihoods in population genetics can 
broadly be divided into two types: those that use likelihood functions (full like-
lihood methods) and those that use simulations to approximate the likelihood 
function (approximate likelihood methods). Analytical functions for the likeli-
hood of sequence data are available for a range of models, often under the 
assumption of either no recombination or free recombination, and likelihoods 
can be calculated via numerical methods. A well-known example calculates 
the likelihood of a tree topology given sequence data (Felsenstein 1981a), and 
indeed such methods are used in evaluating coalescent genealogies from non-
recombining loci (e.g., Kuhner, Yamato, and Felsenstein 1995). Approximate 
likelihood methods were first described earlier in this book (Chapter 4): by 
simulating data under a range of parameter values (often using coalescent 
simulations) we can approximate the likelihood of a model’s parameters, al-
lowing us to find the maximum likelihood estimates (MLEs) of our param-
eters of interest. Approximate methods are therefore quite useful, as they can 
be used to evaluate complex histories or summary statistics for which we do 
not have a likelihood function (Weiss and von Haeseler 1998). 

The distinction between full likelihood methods and approximate meth-
ods is not always clear, with many methods falling somewhere in-between. 
For instance, even when likelihood functions are given it may be difficult to 
find MLEs of parameters because of the enormous state space that must be 
searched. This is especially true for models with multiple parameters, includ-
ing scenarios in which a large space of tree topologies must be explored. In 
these cases, we can use methods that efficiently explore parameter space but 
that do not guarantee maximum likelihood estimates, including importance 
sampling and MCMC methods (reviewed in Wakeley 2009, sec. 8.4). MCMC 
is widely used in population genetics (e.g., Kuhner, Yamato, and Felsenstein 
1995; Hey and Nielsen 2007) and is often required by “full” Bayesian meth-
ods because it is almost impossible to find maximum a posteriori estimates 
without such approaches. Another method that is sometimes described as ap-
proximate involves composite likelihood calculations. Often we have full like-
lihood functions for one part of the data—for instance, single polymorphic 
sites or pairs of sites—but not for all the data together. The idea of composite 
likelihood is that we can combine the likelihoods from each individual data 
partition by assuming they are independent. This approach may provide the 
correct MLEs of our parameters, though the confidence associated with each 
parameter value must be calculated via resampling or the Godambe informa-
tion matrix (Coffman et al. 2016). Again, composite likelihoods are commonly 
used in population genetics (e.g., Nielsen 2000; Hudson 2001; Wooding and 
Rogers 2002; Polanski and Kimmel 2003; Marth et al. 2004). We can even cal-
culate the individual likelihoods of each data partition using simulations (i.e., 
approximate likelihood) and then combine these likelihoods to get a compos-
ite likelihood estimate (e.g., Adams and Hudson 2004; Excoffier et al. 2013).

Finally, approximate Bayesian computation (ABC) methods have more 
recently found wide use in demographic inference (they are originally due 
to Tavaré et al. 1997). ABC combines the flexibility of approximate likeli-
hood with the ability to specify prior distributions on parameter values. ABC 
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simulates a large number of datasets, calculating a collection of summary sta-
tistics for each one. By sampling parameter values that produce simulated 
datasets with a close fit—assessed via regression—to the observed data, ABC 
produces an approximate sample from the posterior distribution (Beaumont, 
Zhang, and Balding 2002). Because ABC often uses sampling methods, it also 
offers the ability to estimate values for a large number of parameters. 

Inferring nonequilibrium population histories
A large number of software packages are available for demographic inference, 
implementing an equally large number of methods (see Schraiber and Akey 
2015). Rather than a tedious description of all these methods, here I describe 
the major classes of methods and highlight some of the more commonly used 
packages that implement them. These methods generally follow the types of 
data described in the previous section.

The allele frequency spectrum is often used on its own to infer demographic 
histories. There are multiple ways to find the parameters of a demographic 
model that best fit this spectrum, but one important similarity between all 
methods is that they are limited to histories with n – 1 epochs, as this would 
be the number of frequency bins in the data if we used polarized mutations. 
As we will see, methods that do not depend on the allele frequency spectrum 
can subdivide histories into many more epochs, each with its own value of 
Ne (many methods can also infer histories that do not have discrete epochs). 
Estimates of Ne are often obtained by estimating the rate of coalescence in 
each specified time period. But the allele frequency spectrum does not have 
finer resolution than the number of frequency bins in the sample, so it cannot 
provide estimates with more resolution. Regardless, in practice such methods 
are used to estimate Ne in many fewer than n − 1 time periods. Estimating 
histories from the frequency spectrum is also almost always done using com-
posite likelihood. This is because there are multiple ways to calculate the most 
likely demographic history from individual allele frequencies, but not from 
the allele frequency spectrum as a whole. Assuming all polymorphisms are in-
dependent from one another allows for the efficient identification of the maxi-
mum likelihood parameter values. The efficiency (and low cost) of using only 
the allele frequency spectrum also enables the analysis of datasets containing 
thousands of individuals, which in turn opens up the opportunity to study 
very rare alleles. Exactly these sorts of studies have revealed the demographic 
history of even the last few thousand years of human existence (e.g., Coventry 
et al. 2010; Keinan and Clark 2012; Nelson et al. 2012; Tennessen et al. 2012).

One common class of methods uses diffusion theory to predict the allele 
frequency spectrum at individual sites. Fully solved for the case in which only 
mutation and drift are acting by Kimura (1955), diffusion theory gives the 
probability density of polymorphisms in a population. Williamson and col-
leagues (2005) were the first to show how numerical solution of diffusion ap-
proximation equations could be used for arbitrary demographic models. This 
general approach is implemented in the popular software package ∂a∂i (“dif-
fusion approximations for demographic inference”; Gutenkunst et al. 2009). 
∂a∂i can be used on either single populations or multiple populations and can 
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infer constant or exponentially expanding or shrinking population sizes in 
multiple time periods. While there are other ways to solve the diffusion equa-
tions (e.g., Lukić and Hey 2012), ∂a∂i has become a very widely used package 
for demographic inference.

Another common class of methods connects the observed allele frequency 
spectrum to a tree topology. Such methods present an intuitive way to under-
stand the connection between a particular demographic history, the genealo-
gies produced by this history, and the resulting frequency spectrum. Theory 
originally presented in Fu (1995) and Griffiths and Tavaré (1998) allows us to 
connect the probability of finding a segregating site at a particular frequency 
in a sample with the coalescence times in a genealogy. This theory and related 
computational methods have been extended in multiple ways (e.g., Wooding 
and Rogers 2002; Polanski and Kimmel 2003; Marth et al. 2004) and are imple-
mented in the stairway plot (Liu and Fu 2015) and fastNeutrino (Bhaskar, Wang, 
and Song 2015) software packages.

As discussed earlier, treating polymorphisms from different sites as if they 
are completely independent does not take linkage into account and therefore 
does not carry all of the information contained in sequence data. Although 
they are still not “full” sequence data, multiple different types of methods 
use short sequence blocks for analysis. These methods generally assume no 
recombination within blocks and free recombination between blocks; again, 
these assumptions mean that we can calculate tractable likelihoods on each 
individual block and then multiply these likelihoods together to get an overall 
composite likelihood.

One class of methods based on sequence blocks estimates population his-
tories from gene genealogies at each locus. The coalescence times in such ge-
nealogies are informative about population sizes at many periods in the past. 
One of the first such methods to provide a rich description of these histo-
ries is referred to as the skyline plot (Pybus, Rambaut, and Harvey 2000). The 
method is called this simply because plotting estimates of Ne against time 
can resemble the skyline of a city when there are many changes in popula-
tion size over time (as in Figure 9.4B). Skyline plots demand a lot from the 
data: that the genealogies be accurately inferred and that they be ultrametric 
(i.e., contain information about time), which also means that the substitution 
model must be accurate. Individual trees and locus-specific substitution rates 
are rarely known perfectly, so the skyline plot has been extended in multiple 
ways to incorporate this uncertainty (reviewed in Ho and Shapiro 2011). The 
main extensions have been to apply Bayesian methods in order to integrate 
over a large number of compatible gene genealogies (Drummond et al. 2005) 
and to combine information from multiple loci (Heled and Drummond 2008). 
Bayesian inferences from skyline plots are still limited in the number of loci 
that can be used—and make important assumptions about the lack of recom-
bination within each locus—but under ideal conditions can provide accurate 
reconstructions of population histories (FIGURE 9.6). These methods are imple-
mented in the software package BEAST (Drummond and Rambaut 2007).

Many approximate methods are used to infer demographic histories from 
short sequence blocks because they can be applied to summary statistics 
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calculated from each block. Coalescent 
simulations are used to generate the 
same summary statistics from a wide 
range of demographic histories, and 
the combination of simulated param-
eter values that produce the best fit to 
the observed data is taken as the esti-
mated history. As an example, Voight 
et al. (2005) estimated the demographic 
histories for multiple human popula-
tions using sequence data collected 
from 40 loci. In order to capture infor-
mation about levels of polymorphism, 
the allele frequency spectrum, and 
linkage disequilibrium, the authors 
calculated the average of Tajima’s D, 
Fu and Li’s D*, S, p, and rCL, as well as 
the variance in Tajima’s D across loci. 
Considering a family of bottleneck 
models for non-African populations 
and a growth model for their sampled 
African population, they used approxi-
mate likelihood to simulate thousands 
of replicate datasets (each consisting of 40 loci) for each set of parameter values 
across a grid of parameter values. Loci were also simulated with a range of re-
combination rates. The fit of each set of simulations was assessed, and a small 
region of parameter space that fit the data well was identified. 

Approximate likelihood inferences are easy to carry out, but often only a 
small range of possible histories can be explored. In order to expand this range 
to include more parameters (e.g., more possible population size changes), 
ABC methods are commonly used. Multiple programs have been developed 
to allow easy implementation of ABC methods for all types of data and popu-
lation histories (e.g., Hickerson, Stahl, and Takebayashi 2007; Cornuet et al. 
2008; Lopes, Balding, and Beaumont 2009; Thornton 2009; Pavlidis, Laurent, 
and Stephan. 2010; Wegmann et al. 2010; Boitard et al. 2016). There is still 
some skill involved in choosing which summary statistics to include in model 
selection—and some knowledge required to specify the even wider range of 
histories to be considered—but ABC methods represent a very flexible and 
accessible set of tools. It should also be noted that recent theoretical advances 
make it easy to calculate the expected values of summary statistics under a 
range of histories (Gao and Keinan 2016), which may further lower the bar for 
carrying out demographic inference using short sequence blocks.

The final set of methods to consider use very long stretches of chromo-
somes as the basis for demographic inference. Once again, the goal is to use 
coalescence times across the recent past to estimate values of Ne in multiple 
discretized time windows. But using this type of data necessarily means 
modeling both recombination and mutation, as well as extracting signal from 

Ne

Time before present
0

True history
Inferred history

FIGURE 9.6 Example of inference using the skyline 
plot. The extended Bayesian skyline plot applied to a 
simulated history (solid line). The input data consisted 
of 32 loci, each with n = 16 sampled sequences. The 
dashed line is the median history from the posterior, 
while the gray area represents the 95% central posterior 
density. (After Heled and Drummond 2008.)
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patterns produced by both processes. Here I briefly discuss one of the first 
methods to do this, the pairwise SMC (or PSMC) model (Li and Durbin 2011). 
PSMC only examines coalescence times between pairs of chromosomes (i.e.,  
n = 2), usually in a single diploid individual. This constraint means that 
haplotypic phase is no longer required and that there is only one possible 
tree topology, making the inference problem much easier. This also means 
that the single coalescence time within each tree is the time to the most 
recent common ancestor (TMRCA) at each locus. Within this single individual 
are thousands of individual loci, each with a coalescence time and a differ-
ent length (FIGURE 9.7A). These observations provide information about the 
population size at different times in the past. Unlike methods based on the 
allele frequency spectrum, for which there is a limit to the number of historical 
epochs in which Ne can be estimated, there is no natural number of epochs for 
PSMC. Instead, PSMC discretizes times in the past so that any coalescences 
within the same short period are assumed to come from a population with the 
same constant size during this epoch, and multiple approaches can be used to 
determine the boundaries of these time windows (Li and Durbin 2011). PSMC 
uses a hidden Markov model (HMM) run along the genome to infer the time 
periods in which each locus coalesces (the “hidden” states in the HMM), pro-
viding a detailed history of population size through time (FIGURE 9.7B). 

One drawback of the PSMC method is that studying only two sequences 
at a time does not provide a lot of information about population sizes in the 
very recent past. This is because few coalescent events are expected to have 
occurred during this time period, which means that there can be a lot of uncer-
tainty associated with estimates of recent Ne (Li and Durbin 2011). Therefore, 
multiple methods have been developed to include more sequences in the 
analysis while still modeling the dependencies among linked loci, as larger 
samples mean more coalescent events in the recent past. One such method 
is the multiple sequential Markovian coalescent, or MSMC, model (Schiffels and 
Durbin 2014). MSMC can handle multiple (phased) sequences at a time but 
focuses solely on the first coalescent event in the sample, no matter which two 
sequences this happens between. As with PSMC, an HMM is run along each 
chromosome to infer the time to first coalescence at each locus, along with 
the pair of sequences that coalesced. In this way MSMC is most informative 
about events in the recent past and is in some ways complementary to PSMC. 
The software MSMC implements this method, along with PSMC using the 
updated SMC´ model (Schiffels and Durbin 2014); this latter implementation 
is the recommended one for PSMC inference. 

Two methods that can be applied to modest numbers of individuals— 
without making only pairwise comparisons—are implemented in the soft-
ware diCal (Sheehan, Harris, and Song 2013) and ARGweaver (Rasmussen et al. 
2014). Both of these methods differ in important underlying ways from PSMC 
and MSMC, and both are statistically and computationally elegant solutions 
to a very difficult inference problem. diCal uses the conditional sampling dis-
tribution (CSD) to carry out its calculations. The conditional sampling dis-
tribution “describes the probability, under a particular population genetic 
model, that an additionally sampled DNA sequence is of a certain type, given 
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that a collection of sequences has already been observed” (Paul, Steinrücken, 
and Song 2011, pg. 1115). In this way, the CSD can be used to describe the joint 
probability of all haplotypes in the sample under an arbitrary demographic 
history quickly and easily. This property makes it ideal for estimating the opti-
mal history. As yet another alternative, Palacios, Wakeley, and Ramachandran 
(2015) have shown that Bayesian methods can be used with the SMC´ model 
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FIGURE 9.7 The PsmC model and method. (A) The PsmC model infers the time to 
coalescence (in discretized “hidden” states, A1, A2, etc.) for pairs of sequences in 
each non-recombining segment of the genome. Because the sample size is n = 2, 
the time to coalescence also represents the TmRCA of each segment. Recombination 
events (shown as light dotted lines along the chromosome) allow for transitions 
between different TmRCAs. Filled dots represent mutations that have accumulated on 
each haplotype and are used to help infer the TmRCA. (B) The PsmC method applied 
to the autosomes of a Korean individual. The solid red line is the estimate from all the 
data, with each gray line representing one of 100 bootstrapped estimates. Note the 
log-scale on the x-axis, converted to years before present. (A adapted from Dutheil 
2017; B adapted from Li and Durbin 2011.)
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and known gene genealogies without discretizing past time periods, improv-
ing demographic inference (similar to what has been done for skyline plots; 
Minin, Bloomquist, and Suchard 2008). Currently such methods using the 
SMC´ depend on accurately inferred gene genealogies as input, but Bayesian 
methods can naturally be extended to deal with genealogical uncertainty in 
the future.

Finally, one limitation of single-population studies must be mentioned 
before moving on to multiple populations. Methods that aim to infer Ne 
values in the past from polymorphisms sampled in the present are obvi-
ously constrained in how far back they can “see.” If there are no coalescent 
events in the distant past (and no polymorphisms from these periods), then 
our data contain no information about population sizes. Indeed, the expected 
TMRCA is only 2Ne generations for a sample of size 2, approaching 4Ne for 
larger samples (Equation 6.3). This average is still not reflective of the limits of 
our approach, as it does not tell us the upper limit to observing coalescences. 
Fortunately, the probability distribution of the TMRCA for a sample of size n 
is known (Tavaré 1984; Takahata and Nei 1985). Using this distribution, we 
expect that 95% of genealogies (i.e., loci) will have found their TMRCA by 6Ne 
generations ago when n = 2. Even for large sample sizes (e.g., n = 100), 95% 
of loci will have a TMRCA less than about 8Ne generations ago. This means 
that our data contain almost no information about population sizes further 
back in time. It must also be pointed out that our estimates of Ne are almost 
certainly more error-prone as we move further into the past, as demographic 
history is being inferred from fewer lineages within each locus and from fewer 
loci (those that have not yet reached their MRCA). This is one reason that the 
timescale in PSMC is measured on the log scale, such that larger intervals are 
in the more distant past. Unfortunately, this sort of uncertainty in estimates of 
demography is not accounted for in every method and every representation 
of results. 

THE DEMOGRAPHIC HISTORY OF MULTIPLE  
POPULATIONS

Thus far we have only been concerned with the history of a single population, 
ignoring the complexity that arises when considering more than one popu-
lation at a time, or even the existence of other populations. Single popula-
tions have only one demographic parameter that can vary—Ne. The histories 
of multiple populations can also include the time of population divergence 
between pairs of populations (t) and the amount of migration that may be 
occurring between them (m). Many of the underlying models and ideas used 
when studying multiple populations were discussed in Chapter 5, and anyone 
wishing to focus on inference under population structure should start there. 
Many of the same ideas, types of data, and computational approaches used 
in single populations are also relevant to multiple populations, so I will not 
repeat these descriptions again. Instead, my aim is to extend these ideas and 
to introduce additional ways of thinking about data that are not collected from 
a single, panmictic population. 
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It is also important to point out 
that most of the methods described 
here for the study of multiple pop-
ulations can be used to study mul-
tiple species, with little change in 
implementation or interpretation. 
We may expect that results will be 
different when studying different 
species (because there will be larger 
t and smaller m), but the inferences 
are made in much the same way. 
When methods are not appropriate 
for use with multiple species, I will 
be sure to note this. For simplicity, 
however, I will continue to refer to 
models of “populations” for the 
rest of the chapter.

The effect of population 
structure on gene genealogies
In the simplest case of a history in-
volving two populations, there are 
six different parameters that must 
be specified (FIGURE 9.8A): the cur-
rent effective population sizes (N1 
and N2), the ancestral effective pop-
ulation size (NA; often assumed to 
be an average of the current sizes), 
the split time between the two pop-
ulations (t), and migration rates in 
both directions (m1 and m2; some-
times assumed to be the same). We 
can further layer on changes in the 
effective size in each population 
over time, changes in the ances-
tral size, and many elaborations 
to the migration parameters (such 
as allowing migration only at cer-
tain times in the past). Every fur-
ther population considered adds 
an additional Ne and t parameter, 
an additional NA parameter, and 
multiple additional m parameters 
(FIGURE 9.8B). For instance, if there are K sampled populations, there are also 
K − 1 ancestral populations that must be modeled, as well as K − 1 splits be-
tween populations. Migration parameters can also exist between all pairs of 
extant and ancestral populations—these ancestral populations can exchange 
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FIGURE 9.8 models of population structure. (A) in the most 
basic model there are six parameters to be estimated: three 
effective population size parameters (N1, N2, NA), two migra-
tion parameters (m1, m2), and time since the populations split (t).  
The split time between populations is often measured in units 
of 2Ne generations, where Ne can be either the average of 
the two current effective population sizes or the ancestral 
population size. (B) in models with more populations, each 
additional split adds one split time, two effective population 
sizes, and six migration parameters (because every popula-
tion can exchange migrants with all other contemporaneous 
populations).
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migrants with any other population with which they coexist (Figure 9.8B). For 
K = 10, this implies that there can be up to 19 Ne parameters, 9 t parameters, 
and 162 m parameters (Hey 2010). Therefore, in these situations it can be dif-
ficult both to describe the expected patterns of diversity and to infer histories 
from sequence data.

Characteristic genealogies are generated when there is population struc-
ture. A major effect of structure is that coalescence is not allowed between 
lineages in different populations, only within populations. If there is no mi-
gration, this means there can be no coalescence between these lineages up 
until time t, when (looking backward in time) the two populations become 
one again (FIGURE 9.9A). With migration, lineages can switch populations with 
probability m, the fraction of the population made up of migrants, again looking 
backward in time. After switching populations, these lineages can then coalesce 
with lineages in the other population (FIGURE 9.9B,C). In general, then, subdivi-
sion will result in long internal branches developing between populations as t 
gets larger (holding Ne constant), with any migration that occurs allowing for 
more recent common ancestry. Because the effects of migration can vary across 
loci—whether stochastically or because of selection against migrant alleles at 
specific genes—we also expect there to be much more variation in tree height 
among loci when there is migration (Figure 9.9; Wakeley 1996a). 

Variation in Ne within lineages controls the rate of coalescence in each, 
which determines how fast population structure becomes manifest in genealo-
gies. Slower rates of coalescence within populations mean that many lineages 
persist back until time t, which means there is little effect of subdivision on the 
underlying genealogies. Faster rates of coalescence can result in all lineages 
reaching their MRCA within each population before time t, so that the only 
remaining branch in the genealogy is the one connecting the two populations 

Population 1

(A) (B) (C)

Population 2 Population 1 Population 2 Population 1 Population 2

FIGURE 9.9 Representative genealogies under population structure. The time since 
divergence in all three panels is the same, with migration rates varying between 
them. (A) No migration. (B) moderate migration (denoted with the dashed arrow 
switching populations). (C) High migration.
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(Figure 9.9A). The case in which not all lineages have coalesced within popu-
lations before they join together in an ancestral population is called incomplete 
lineage sorting (Avise et al. 1983). One result of incomplete lineage sorting is 
that lineages within a population can be most closely related to lineages in 
other populations, rather than only to lineages in the same population (e.g., 
Figure 5.7D). We will return to this important concept later in the chapter. For 
now, the important take-home message is that t and Ne can have opposite ef-
fects on the probability of coalescence in the ancestral population of lineages 
from different subpopulations. Larger t and smaller Ne both make it less likely 
that there will be between-population coalescence (apart from the two final 
lineages that must find a common ancestor between the two populations), 
while smaller t and larger Ne make it more likely. Measuring t in units of 2Ne 
generations (or any multiple of Ne generations) accommodates this depen-
dency; alternatively, the split between populations can be expressed as the 
compound parameter t/2Ne, where t is time in generations.

The effect of population structure on the allele  
frequency spectrum
A genealogical view helps us to understand how populations will differ as a 
result of structure and how this will affect patterns of variation. Obviously the 
genealogies themselves will reflect different population histories, and these 
genealogies are often used in demographic inference when there are multi-
ple populations being considered (see next section). But it is also helpful to 
connect these genealogies to summaries such as the average normalized dif-
ference in allele frequencies between populations (i.e., FST) and the allele fre-
quency spectrum, as they represent simple ways to visualize and understand 
the data. 

As we saw earlier in the book, patterns of allele sharing are strongly depen-
dent on population structure. Under models without gene flow, the average 
value of FST depends on Ne and t (Equation 5.15). With migration added, differ-
ences in allele frequencies can depend on Ne, t, and m. In general, more closely 
related populations—having low t, large Ne, or large m—will have more simi-
lar allele frequencies across loci, and less closely related populations will have 
greater differences (Figure 5.7). This allele sharing (or conversely, difference in 
allele frequency) is determined genealogically by the probability that lineages 
in different populations will coalesce with each other sooner than they will 
with other lineages in the same population. We can even express FST as a func-
tion of the average time to coalescence within populations relative to between 
populations (Slatkin 1991, eq. 8), such that smaller differences between these 
two times imply less average differentiation. Coalescence between popula-
tions can be due to either incomplete lineage sorting or migration, as both lead 
to more recent shared ancestry and therefore more shared polymorphisms.

The allele frequency spectrum is also strongly affected by population struc-
ture, though we must now distinguish among different ways to measure this 
spectrum. Two such methods are straightforward: the choice is simply whether 
to report the allele frequency spectrum from each population separately (e.g., 
populations 1 and 2 in Figure 9.8) or to report the “combined” spectrum from 
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all individuals sampled from both populations together. It may seem obvious 
that combining populations before analyzing data is not the ideal approach; 
however, this may be a common occurrence when we do not know there is 
population structure in the first place. It is therefore important to understand  
the effect this hidden structure can have on our summaries of the allele fre-
quency spectrum. Recall that in Chapter 5 we also addressed how hidden pop-
ulation structure can affect linkage disequilibrium (the “multilocus Wahlund 
effect”; Figure 5.11), and we will not discuss this effect further here.

In cases in which there is no migration between two populations, the individ-
ual allele frequency spectrum in each population will match the one expected 
in a single population without structure. However, when taking the combined 
allele frequency spectrum from all samples at once there can be large devia-
tions from expected values. The time since population splitting, t, is the main 
determinant of this deviation (FIGURE 9.10). This time (measured in 2Ne gen-
erations) is key in determining the presence and length of the last branch in the 
genealogy. When the branch is long, polymorphisms accumulate in each pop-
ulation along this branch and are shared among all individuals within each 
population. As a consequence, when data are combined there will be an excess 
of intermediate-frequency polymorphisms, and summary statistics such as 

Tajima’s D will be positive (Figure 9.10). 
Importantly, this genealogical structure 
and pattern of variation looks very 
much like the one generated under 
either balancing selection (Figure 8.3) or 
a population bottleneck (Figure 9.2C): 
long internal branches and an excess 
of  intermediate-frequency polymor-
phisms (Nielsen and Beaumont 2009; 
Peter, Wegmann, and Excoffier 2010).

The patterns observed when samples 
from multiple populations are mistak-
enly combined are also strongly depen-
dent on the balance of sampling and the 
number of subpopulations sampled. 
The example shown in Figure 9.10 has 
only two  populations and equal num-
bers of sampled chromosomes from 
each population (n = 25 in each). If we 
had instead sampled 49 chromosomes 
from the first population and 1 chromo-
some from the second, we might still 
have captured the long internal branch 
separating populations, but all of the 
polymorphisms unique to the second 
population would have been present 
as singletons. Alternatively, we might 
have sampled 50 populations, taking 
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FIGURE 9.10 The effect of population structure on 
the allele frequency spectrum. Two populations are 
simulated with different split times between them, t, 
measured in 2Ne generations. Tajima’s D is calculated 
based on the combined sample, with equal numbers 
of chromosomes from each population (n = 25 from 
each). The thick line shows median D based on 1,000 
simulations at each time point, with 2.5% and 97.5% 
simulated values shown as thin lines. The dashed hori-
zontal line shows the expected value of D in each popu-
lation, with upper and lower horizontal lines showing 
the critical values for rejecting the null hypothesis. (After 
simonsen, Churchill, and Aquadro 1995.)
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one chromosome from each. In this case the pattern of population structure 
would also likely have been apparent as an excess of low-frequency polymor-
phisms (Ptak and Przeworski 2002), mimicking either a population expansion 
(Figure 9.2B), a selective sweep (Figure 8.1C), or slightly deleterious variation 
(Figure 7.6). 

When there is migration between populations, the allele frequency spec-
trum can behave in similarly complex ways. If samples are only taken from a 
single population, migration into this population can affect the spectrum, gen-
erally increasing the number of common alleles at the expense of rare alleles 
(De and Durrett 2007). This implies that unsampled populations (also called 
“ghost” populations; Beerli 2004) may often have effects on our inferences, 
even when we believe we are studying solely the history of a single popula-
tion. Conversely, if samples are taken at random from a large collection of pop-
ulations evolving under the island model or stepping-stone model with large 
m (Chapter 1), then there is not expected to be a deviation from the equilibrium 
allele frequency spectrum (De and Durrett 2007). Finally, sampling schemes 
somewhere in-between these two extremes (e.g., combined from a smaller 
number of populations) can lead to an excess of low-frequency variants, as 
in the no-migration case (Gattepaille, Jakobsson, and Blum 2013). Overall, 
then, we should be careful to identify any population structure in our samples 
before summarizing the data (see Chapter 5 for methods to do this). Care must 
also be taken in interpreting our data, as patterns may be generated by either 
non-neutral evolution or various nonequilibrium population histories. 

A quite different approach uses a third way to summarize the allele fre-
quency spectrum—the so-called joint allele frequency spectrum (also frequently 
referred to as the joint site frequency spectrum, or JSFS). If the sample sizes from 
two populations are n1 and n2, then Sij represents the number of derived alleles 
on i chromosomes from population 1 and j chromosomes from population 2. 
The joint allele frequency spectrum summarizes all of the polymorphisms in 
the two samples in this way: 
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Values in the first column represent polymorphisms unique to population 1, 
while values along the top row represent polymorphisms unique to popu-
lation 2 (S00 and Sn n1 2

 are by definition always 0, as invariant sites are not 
included). All other entries represent polymorphisms shared by the two pop-
ulations. The joint spectrum can also be represented as a higher-dimensional 
matrix when more than two populations are considered, and minor allele fre-
quencies can be used if polymorphisms cannot be polarized.

The joint spectrum was first used by Wakeley and Hey (1997) to estimate 
the demographic history of a pair of populations without migration. Even 
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when assuming there is no migration, the joint spectrum contains all of the 
information present in the allele frequency spectrum from a single population 
(and therefore information about changes in Ne), as well as information about 
split times between populations (e.g., Li and Stephan 2006; Keinan et al. 2007; 
Garrigan 2009). But the joint spectrum is especially sensitive to migration, as 
there will be more shared polymorphisms than expected without migration—
especially shared low-frequency polymorphisms (even though there are fewer 
low-frequency polymorphisms overall). Gutenkunst et al. (2009) introduced a 
method for efficiently estimating parameters from the joint frequency spec-
trum using a diffusion approximation. Their method includes migration and 
can therefore estimate the full set of parameters describing the demographic 
history of multiple populations.

Inferring demographic histories for multiple populations
As with inferring the history of single populations, there are a large number 
of software packages currently used to infer the joint history of multiple 
populations. The programs differ in the types of data they accept, as well as 
the maximum number of individuals and populations that can feasibly be 
analyzed at the same time. As with single-population inferences, these meth-
ods accept data from unlinked (or presumed unlinked) single SNPs, blocks 
of full sequence (often assuming no recombination within blocks and free 
recombination between blocks), or chromosome-scale sequences. The simi-
larity in the methods used also extends to their approximate run times and 
computational demands, both of which generally increase as assumptions 
about linkage are relaxed.

Composite likelihood methods have the ability to analyze both thou-
sands of individuals and thousands of polymorphisms at a time using  
the joint allele frequency spectrum. The program ∂a∂i (Gutenkunst et al.  
2009), introduced when we discussed the history of single populations,  
is again one of the most popular programs of this type. While ∂a∂i is ex-
tremely flexible and can handle very large samples, it can only model rela-
tionships among up to three populations at a time. A similar method using 
the joint spectrum to analyze short sequence blocks is implemented in the 
software Jaatha (Naduvilezhath, Rose, and Metzler 2011), but this program 
can only handle two populations. These are considerable limitations given 
the number of populations regularly collected in current datasets. An al-
ternative method, implemented in the software fastsimcoal2 (Excoffier et al. 
2013), uses coalescent simulations to calculate the approximate likelihood 
of the joint frequency spectrum. The use of simulations means that quite 
complex models involving many different populations can be considered, 
and various types of ascertainment schemes for the data can be accommo-
dated. Putting aside possible limitations in the number of populations, the  
inferences made by ∂a∂i are quite robust to different types of errors: the 
original implementation corrects for errors made in the misidentification of 
the ancestral state, while newer versions can account for sequencing errors 
(Gravel et al. 2011). Accounting for sequencing errors—especially biased 
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false positives (those that consistently make the same incorrect base call; 
e.g., Meacham et al. 2011)—is extremely important. Because much of the 
signal about migration in the joint allele frequency spectrum is contained 
within shared low-frequency alleles, this type of error would lead to incor-
rect inferences about migration. 

There are many methods for making inferences about the history of mul-
tiple populations from short blocks of sequence, almost all of which use 
Bayesian computational approaches. Although such approaches are gen-
erally computationally demanding, they also offer more flexibility in the 
types of mutation models that can be applied to sequences or to other types 
of data (e.g., microsatellites). As discussed in Chapter 5, the IM program 
and its successors (Hey and Nielsen 2004, 2007; Hey 2010) have been widely 
used to infer Ne, t, and m from two or more populations; the latest version 
of this program, IMa2 (Hey 2010), can handle up to 10 extant populations. 
Some methods ignore ancestral relationships among populations, assuming 
an island model in which only Ne and m parameters need to be estimated. 
While it is not clear how many empirical examples in which popula-
tions have reached drift-migration equilibrium there will be, the software 
Migrate can estimate these parameters if the assumptions of the model are  
met (Beerli and Felsenstein 1999, 2001). The software G-PhoCS (Gronau  
et al. 2011) extends MCMCcoal (Rannala and Yang 2003) to estimate migra-
tion in addition to Ne and t. G-PhoCS does not require phased sequences, 
unlike most other methods of this type. Rather, it takes unphased data as 
input, integrating over possible haplotypes as part of the MCMC search. 
Finally, ABC methods are also commonly used when analyzing short blocks 
of sequence, and essentially all of the ABC methods mentioned when con-
sidering single populations are flexible enough to handle the analysis of 
multiple populations. 

There are relatively few software packages that can make inferences 
from multiple populations using very long stretches of sequence data. The 
MSMC program discussed earlier measures a relative cross coalescence rate 
between populations (Schiffels and Durbin 2014). This rate compares the 
timing of coalescence between individuals in different populations to co-
alescence between individuals in the same population. Moving backward in 
time, the relative cross coalescence rate goes from a value of 0 for a pair of 
well-separated populations—because almost all coalescence occurs within 
populations—to a value of 1 when the two populations have reached their 
common ancestor. As such, this measure is not explicitly estimating either 
t or m, and in fact it may better capture the gradual differentiation of pop-
ulations that do not have an instantaneous split time. A newer method, 
implemented in the program SMC++ (Terhorst, Kamm, and Song 2017), 
combines the sequentially Markovian coalescent with an extension of the 
conditional sampling distribution used by diCal. SMC++ uses the CSD to 
describe the probability of the allele frequency spectrum in the sample and 
can be used with multiple populations. Its main advantage over MSMC is 
the ability to handle hundreds of unphased genomes. However, it assumes 
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that populations split instantaneously with no subsequent migration, and 
so is only estimating Ne and t.

Multi-population histories as networks
Thus far we have assumed either that the hierarchical relationships among 
populations are known, or that there are no such relationships (i.e., the island 
model). While there is only one possible relationship between two populations 
(Figure 9.8A), for three or more populations we must specify a phylogeny (or 
population tree). There are many methods for constructing phylogenies, with 
the earliest using allele frequencies in each population (Cavalli-Sforza and 
Edwards 1967; Thompson 1973; Felsenstein 1981b). As long as drift is the only 
force acting to change allele frequencies, populations that are more closely 
related are expected to have more similar allele frequencies. Therefore, the 
length of branches in such trees will be proportional to t/Ne along the lineage, 
and the distance between populations will represent the amount of drift sepa-
rating them. Only population allele frequencies are needed to construct these 
trees—with no requirement for individual genotypes—and large numbers of 
polymorphisms can be easily combined to provide high-resolution results. 
The Contml program (Felsenstein 1981b) in the PHYLIP package (Felsenstein 
1989) builds such trees directly from allele frequency data.

Bifurcating trees are the most appropriate representation of relationships 
among populations related solely by splitting events. However, when popula-
tions exchange migrants (and they often do), the relationships among them are 
no longer solely bifurcating. Reticulate phylogenies—or networks—have connec-
tions between lineages after splitting events. These connections can be viewed 
as the merger of ancestral populations or as the contribution of genetic material 
from one lineage to another, either as a single event or continuously over time. 
The result of such reticulations is that individual gene genealogies evolving 
inside the network may follow one of multiple paths through time. In fact, the 
presence of non-zero migration parameters in the standard representation of 
population trees (e.g., Figure 9.8) implies a reticulate phylogeny. In this sense 
the estimation of migration parameters is equivalent to asking how much re-
ticulation is in a tree, no matter how the tree is drawn. Much of the excitement 
over population networks, however, has come from newer methods that can 
construct reticulate trees solely from allele frequencies. In order to explain these 
methods, we must first make a digression into an area of lexical ambiguity.

The term admixture has made a recent resurgence in population genetics. It is 
most often taken to refer to the merger of individuals from two parental populations 
to create a new admixed (or hybrid) population (Figure 9.11A). Well-known exam-
ples of admixed populations include African Americans and Latinos/Hispanics 
in the Americas (e.g., Bryc et al. 2010). The genetic study of admixture goes back to 
at least Bernstein (1931; cited in Chakraborty 1986), with many newer methods for 
estimating the demographic parameters of admixed  populations drawing from 
large numbers of markers (e.g., Bertorelle and Excoffier 1998; Chikhi, Bruford, 
and Beaumont 2001; Wang 2003; Sousa et al. 2009). More recently,  however, the 
term admixture has become synonymous with gene flow of any type,  includ-
ing the creation of new populations (Figure 9.11A) and the contributions of 
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migrants to preexisting populations 
(Figure  9.11B). Genealogically (and 
biologically) there are important dif-
ferences between these scenarios, the 
main one being whether genetic drift 
has occurred along a lineage after the 
split with its close relatives but before 
the migration event (dashed branch 
in Figure 9.11B). This difference will 
result in slightly larger coalescence 
times for genealogies connecting 
P3 and P1 compared to those unit-
ing P3 and P2 (Figure 9.11B). While 
I prefer to restrict the term admixture 
to its more traditional meaning—
using migration, gene flow, or intro-
gression (when between different 
species) for contributions to existing 
populations—it is important to note 
the fluidity with which these terms 
are used in the current literature.

Given this background, we can now discuss several popular methods for 
inferring admixture graphs (or admixture trees). Such graphs are networks that 
resemble either of the trees in FIGURE 9.11, representing both splitting and 
reticulation among populations. Allele frequency data are all that are needed 
to infer admixture graphs, with the branch lengths again representing the 
amount of drift along a lineage. Each branch of the tree also has a weight de-
noting its proportional contribution to its descendant’s ancestry, such that the 
sum of weights of all branches leading to a particular node equal 100%. In this 
way admixture graphs explicitly represent the ancestry of “admixed” popula-
tions (i.e., those that have received any migrants), including the contributions 
of any ancestral or contemporaneous populations. 

The two most popular methods for building admixture graphs are TreeMix 
(Pickrell and Pritchard 2012) and MixMapper (Patterson et al. 2012; Lipson 
et al. 2013). The methods differ somewhat in their details, but both use only 
population allele frequencies—as well as their variances and covariances—to 
build the graphs. Both begin by building a bifurcation-only tree to use as a 
backbone, followed by the addition of reticulate branches (cf. Lathrop 1982). 
TreeMix builds the initial tree with all the populations being considered, while 
MixMapper only uses populations with no evidence of admixture. The meth-
ods proceed by the sequential addition to the network of those admixture/
migration events (or admixed populations in the case of MixMapper) that sig-
nificantly improve the fit of the data. Neither TreeMix nor MixMapper can dis-
tinguish between true admixture and gene flow into preexisting populations. 
Instead, any genetic drift that has occurred along an independent lineage prior 
to the influx of migrants is subsumed into estimates of the amount of drift that 
has occurred subsequent to migration (e.g., fig. 1D in Patterson et al. 2012). 

(A) (B)

P1 P2P3 P1 P2P3

FIGURE 9.11 Two representations of reticulate phylogenies 
(networks). Both trees show relationships among three popu-
lations, P1, P2, and P3, where P3 is the population accepting 
migrants. (A) A tree demonstrating the traditional meaning of 
admixture. P1 and P2 are the parental populations that mix to 
create P3. The branch with dots is the one measured by f3(P3; 
P1, P2). (B) A tree with migration from P2 into the preexist-
ing P3 population. The main difference from the tree in (A) 
is that drift can occur along the branch with dashes prior to 
the arrival of migrants. The branch with dots is again the one 
measured by f3(P3; P1, P2).
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The method implemented in MixMapper uses a series of f-statistics intro-
duced by Reich, Patterson, and colleagues (Reich et al. 2009; Green et al. 2010; 
Patterson et al. 2012). These statistics are related to the F-statistics introduced 
by Sewall Wright (Chapter 5) but are not exactly the same (see Peter 2016 
for a discussion of the similarities and differences). There are three different 
statistics—denoted f2, f3, and f4—that use allele frequencies from either two, 
three, or four populations, respectively. The f2 statistic measures the distance 
between two populations (call them P1 and P2) and is proportional to t/Ne. 
With sample allele frequencies p1 and p2 and sample sizes n1 and n2, f2 can be 
calculated as:
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and nA and na are the counts of the two alternate alleles at a site in population 1,  
such that nA + na = n1 and nA/n1 = p1 (Patterson et al. 2012). A similar calcu-
lation is made for h2, recognizing that nA and na should reflect the count of 
alleles in population 2. The average value across all polymorphic sites is then 
used as an estimate of f2 between populations. As described here, f2 is similar 
to many other measures of genetic distance (see Chapter 5 in this book, as 
well as Nei 1987, ch. 9) and does not seem to be a necessary addition to the 
population genetics toolbox. However, combinations of f2 among more than 
two populations can be used to form the f3 and f4 statistics (Reich et al. 2009; 
Patterson et al. 2012), and these measures have become invaluable tools in the 
field for detecting gene flow.

I mentioned above that MixMapper builds its initial tree using only popula-
tions for which there is no evidence of admixture. It identifies such popula-
tions using f3 as a test statistic. Consider three populations, P1, P2, and P3, all 
of which we wish to test for admixture. We calculate f3 for P3 as: 

 f P P P p p p p
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3

3

= − − −  (9.3)

where again h3 is calculated using nA, na, and n3  from P3 (using Equation 
9.2), averaging across polymorphisms (Patterson et al. 2012). Similar calcu-
lations can be made for populations P1 and P2 by rearranging the values in  
Equation 9.3—that is, by calculating f3(P1; P2, P3) and f3(P2; P1, P3) using the 
appropriate allele frequencies and sample sizes. 

In cases in which there is admixture or gene flow, f3 can be negative for the 
population that has accepted migrants but will not be negative for either of the 
other populations. Why is f3 negative, and what does it measure exactly? f3(P3; 
P1, P2) can be thought of as the length of the external branch leading to popula-
tion P3 (dotted branches in Figure 9.11); rearrangements of f3 for P1 and P2 are 
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similarly interpreted as the external branches leading to those populations. If 
the tree relating the three populations has no reticulations, then this branch 
must be positive (or at least non-negative); this is a requirement of bifurcation-
only trees (Reich et al. 2009). However, if population P3 does have mixed an-
cestry from two other populations, then this branch length can be negative. 
In this sense, f3 is a test of treeness among P1, P2, and P3—asking whether they 
form a bifurcating phylogenetic tree. An alternative way to think about f3 is to 
note that p3 is not expected to be consistently intermediate in value between 
p1 and p2 unless there is gene flow. When p3 is intermediate, however, the 
value of f3 will be negative (Equation 9.3). This statistic is not negative under 
all migration scenarios, having the greatest power to reject tree-like evolu-
tion for recent reticulations between parental populations that split longer ago 
in the past and that have contributed approximately equally to the admixed 
population (Peter 2016). Significance testing for f3 (and f4) is usually done by 
resampling the dataset to generate a z-distribution, often sampling blocks of 
the genome at a time to obviate the effects of linkage disequilibrium.

The f4 statistic can be employed both in testing for admixture/migration 
and in estimating admixture/migration proportions; confusingly, these uses 
involve either four or five populations, respectively. Here I will only describe 
f4 as a test; see Patterson et al. (2012) for details on its use as an estimate of an-
cestry proportions in admixed populations (the f4-ratio). Consider populations 
P1, P2, P3, and P4, arranged in either of two ways (FIGURE 9.12). Note that these 
arrangements are the same unrooted tree, and have simply been rooted in dif-
ferent places—either of these trees or their unrooted counterpart can be used 
in the f4 test. Following similar notation as used above, f4 can be calculated as 
(Reich et al. 2009; Patterson et al. 2012):

 f P P P P p p p p( , ; , ) ( )( )4 1 2 3 4 1 2 3 4= − −  (9.4)

As with f3, f4 is a test of treeness for these four populations: when there is no 
mixing among populations, there is only one internal branch separating the 
pair of populations (P1, P2) from the pair (P3, P4) (thick line in Figure 9.12; 
Peter 2016). In this case the expectation is that f4 = 0 because the distances be-
tween the pairs of populations are uncorrelated. When there is admixture or 
migration (dashed arrows in Figure 9.12), then there will be multiple internal 
branches in the tree, and f4 can be non-zero. Although the mixing events in 
Figure 9.12 have been drawn as migration events with directionality, the test is 
also sensitive to true admixture, and without regard to the direction of migra-
tion. That is, migration from P2 into P3, or any intergroup exchange between 
either of P1 and P2 with P3 and P4, will also lead to significant f4 values. For a 
more genealogical understanding of f4  statistics, see the explanation of the D 
statistic (also known as the ABBA-BABA test) below.

It also should be mentioned that there are multiple other methods for infer-
ring population and species relationships as networks or graphs. More phylo-
genetically oriented methods (e.g., Than, Ruths, and Nakhleh 2008; Kubatko 
2009; Yu et al. 2014; Solís-Lemus and Ané 2016) often use only a single se-
quence from each population or species, inferring the reticulated phylogeny 
directly from these sequences or from gene trees. Other methods present the 
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relationship among populations 
as a graph without hierarchical 
structure (Dyer and Nason 2004). 
Such graphs are especially useful 
for the visualization and analysis 
of connections (via migration) of 
populations on a landscape. We 
explore similar methods for this 
type of data in the next section. 

The analysis of multiple 
populations in space
Many datasets in population ge-
netics are collected from individ-
uals arrayed across a landscape. 
Researchers may wish to sample 
a wide breadth of variation from 
across a species’ range to test 
for allelic variation associated 
with environmental factors or to 

examine possible corridors/barriers to gene flow. This area of research goes 
by multiple names, including spatial population genetics, geographical genetics 
(Epperson 2003), and landscape genetics (Manel et al. 2003). Because of the focus 
on landscape-scale migration, the models and methods used in studies of this 
type are generally not applied to multiple species, only multiple populations. 

Spatial location is explicitly or implicitly included in such studies, so the 
infinite island model (Chapter 1) is not appropriate. This is because, when 
dispersal is limited relative to sampling distance, the infinite island model 
does not capture the greater genetic similarity expected between individuals 
or populations that are closer in geographic space. Instead, stepping-stone 
models (either one- or two-dimensional) or models of individuals continu-
ously distributed across space are used. The distinction between these models 
is subtle, and the patterns of variation produced by the two are often indis-
tinguishable. Stepping-stone models imagine discrete subpopulations on a 
lattice that are separated in space by unoccupied regions. Random mating 
occurs within subpopulations, with migrants exchanged between them; often 
migration only occurs between neighboring populations (Figure  1.4C,D). 
Models of continuous populations resemble stepping-stone models, though 
they permit only single individuals to occupy the vertices of the lattice, and 
the density of occupied vertices can vary across the landscape. The most 
important migration-related parameter in this model is s2, the variance in 
distance between parents and offspring (Rousset 2007), akin to a dispersal 
distance. In both cases we may loosely expect isolation by distance (Wright 
1940, 1943; Malécot 1948), or the increase in genetic distance with geographic 
distance (note that this phrase is often shortened to IBD, the second use of 
this abbreviation in this chapter). Although Wright’s original model of isola-
tion by distance explicitly involved a continuously distributed population, 

(A) (B)

P1 P2 P3 P4 P1 P2 P3 P4

FIGURE 9.12 Networks with four populations. Both trees 
show relationships among four populations, P1, P2, P3, and P4. 
These rooted trees both show the same unrooted topology, con-
taining a single internal branch (thick line) connecting (P1, P2) 
with (P3, P4) when there is no migration. (Branch lengths are 
not to scale.) (A) A symmetric topology with possible migra-
tion from P3 into P2. (B) An asymmetric topology with possible 
migration from P3 into P2. The test statistic f4(P1, P2; P3, P4) can 
be used to test for the presence of the migration event in either 
tree representation.
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the term is now more generally used to describe patterns of genetic structure 
that are due to limited dispersal.

The distinctions between discrete and continuous population models are 
further muddled by the application of methods for identifying population 
structure in the first place. The methods introduced in Chapter 5 for placing 
individuals into populations do not usually take into account sampling loca-
tion, and they assume that there are discrete populations. When individuals 
are continuously distributed across a geographic region, the clusters identified 
may correspond to sampling discontinuities as much as they do to genetic dis-
continuities (Serre and Pääbo 2004; Rosenberg et al. 2005). Fortunately, models 
can be constructed that use sampling location as a prior, reducing the problem 
of creating unnecessary populations (Guillot et al. 2005; François, Ancelet, and 
Guillot 2006). 

There are multiple ways of determining whether isolation by distance is 
present in a dataset. If individuals are arranged into populations (or they are 
assumed to be) the standard approach is to regress genetic similarity between 
pairs of populations against the geographic distance between them. Multiple 
decisions can be made about how exactly to do this. Often raw values of FST 
between populations are not used; instead they are transformed as either   

1 /4F
1
ST( )−  (Slatkin 1993) or F

F
ST

1 ST( )−
 (Rousset 1997). Plotting genetic distance  

versus geographic distance on a log-log plot is expected to produce a linear 
relationship under IBD (Slatkin 1993). Even when individuals are not in dis-
crete populations, we can still calculate measures of genetic distance between 
them (Rousset 2000). Regressing such measures against geographic distance 
will again reveal whether IBD exists. The standard method for determining 
whether the relationship between genetic distance and geographic distance is 
significant is a Mantel test (Mantel 1967; Sokal 1979), which uses permutation 
of population locations (e.g., Jensen, Bohonak, and Kelley 2005). As an alterna-
tive to FST-based statistics, spatial autocorrelation in allele frequencies can be 
measured via multiple techniques (e.g., Sokal and Oden 1978; Epperson and 
Li 1996; Smouse and Peakall 1999). Autocorrelation methods ask about the 
relationship among measurements of a variable (in this case, allele frequency) 
at different “step” distances apart. While these steps have a clear geographic 
meaning, there is not necessarily a natural scale over which to choose the size 
of steps a priori to conduct analyses. 

Patterns of isolation by distance can be informative about population de-
mographic history. If populations are at migration-drift equilibrium, IBD is 
expected. In this case, the slope of the regression line is determined by the 
product of the effective population size or population density and the disper-
sal distance (Rousset 1997, 2000), and it can therefore be used as an estimate of 
this product. Absence of a pattern of IBD can imply that populations are not 
at equilibrium, or that sampling was carried out at distances that do not allow 
such patterns to appear relative to dispersal distance. Some nonequilibrium 
population histories—such as range expansion—can also produce IBD over 
short distances only, though this depends on the details of how organisms 
move across the landscape (Slatkin 1993). Similar to patterns of IBD, spatial 
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autocorrelation in allele frequencies can be informative about certain demo-
graphic parameters (e.g., Barbujani 1987; Hardy and Vekemans 1999; but see 
Slatkin and Arter 1991).

The methods discussed so far for analyzing landscape-scale genetic data 
have only provided information about demographic parameters, without at-
tempting to connect these parameters to geographic coordinates. That is, they 
have not measured quantities such as the direction of migration or areas on 
a landscape with higher or lower migration. The vanguard attempt to infer 
such migration patterns across a landscape used principal components analy-
sis (PCA) to summarize allele frequency differences among humans in Europe 
(Menozzi, Piazza, and Cavalli-Sforza 1978). PCA is a method for dimension 
reduction in large datasets, with the principal components (eigenvectors) rep-
resenting orthogonal axes of variation. Menozzi, Piazza, and Cavalli-Sforza 
(1978) calculated PC 1 (the principal component explaining the greatest varia-
tion) for individuals sampled across Europe, interpolating their scores into a 
geographic map (FIGURE 9.13). The authors used this map to make inferences 
about migration routes and migration timing, concluding that the migration 

FIGURE 9.13 interpolated values of principal component 1 on allele frequencies 
in humans across Europe. shades indicate different values of PC 1, though there is 
no direct interpretation of these values. (Adapted from Cavalli-sforza, menozzi, and 
Piazza 1993.)
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across Europe proceeded from southeast to northwest. However, patterns 
arising from the use of single principal components can be artifacts of the con-
straints imposed by PCA (Novembre and Stephens 2008), and the loading on 
such maps may actually be orthogonal to the direction of migration (François 
et al. 2010).

Instead, if two principal components, typically PC 1 and PC 2, are plot-
ted against each other as a PCA scatter plot (Patterson, Price, and Reich 2006; 
Novembre et al. 2008), a match between genetic and geographic structure can 
be revealed. In this case individual genotypes are used as the units of analysis, 
rather than populations. In situations in which isolation by distance exists, the 
extent of genetic differentiation will be dependent on geographic distance, 
and PC 1 and PC 2 from genetic data may become surrogates for latitude and 
longitude (or vice versa). Under these conditions, PCA plots provide a striking 
match with the geographic locations of sampled individuals (see the cover of 
this book; Novembre et al. 2008). PCA is still inappropriate for inferring range 
expansions, but complementary work exists on how to do this appropriately 
(e.g., Austerlitz et al. 1997; Ramachandran et al. 2005; Peter and Slatkin 2013). 
Because such plots are easily generated from thousands of polymorphisms in 
hundreds of individuals (using, for instance, smartpca from the EIGENSOFT 
package; Patterson, Price, and Reich 2006), PCA is now a commonly used di-
agnostic tool in landscape genetics.

PCA produces beautiful images—and principal components are useful in 
controlling for population structure in association mapping (Price et al. 2006)—
but because it is not based on a population genetic model, PCA plots are not 
directly informative about the underlying migration processes. One problem 
with PCA is its sensitivity to the details of population sampling across the 
landscape (Novembre and Stephens 2008; DeGiorgio and Rosenberg 2013), an 
issue that is unavoidable because of the underlying genealogical relationships 
among individuals (McVean 2009). 

In order to both get around the sampling problem inherent to PCA 
and directly infer migration patterns across the landscape, several model-
based methods have recently been introduced. The ones described here can 
work with thousands of markers and thousands of individuals, though 
the individuals are assumed to come from a smaller number of discrete 
subpopulations. The software EEMS (Petkova, Novembre, and Stephens 
2016) fits estimated effective migration surfaces (hence the name), which can 
then be used to visualize regions of high or low migration on a landscape 
(FIGURE  9.14). The results from EEMS are especially good at capturing 
local barriers or corridors of gene flow, and the model can handle discon-
tinuities in sampling (Petkova, Novembre, and Stephens 2016). A second 
method, SpaceMix (Bradburd, Ralph, and Coop 2016), places populations in  
a two-dimensional “geogenetic” space, similar to the way a PCA plots in-
dividuals. In SpaceMix, however, the distance between populations can be 
interpreted as proportional to rates of gene flow—closer populations have 
more migration. An additional important feature of SpaceMix is its ability 
to detect long-range genetic exchange between populations separated on 
the landscape, as well as the direction of this migration. While this type of 
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admixture can leave a signature in PCA plots (Patterson, Price, and Reich 
2006), SpaceMix provides clear inferences about the magnitude and direc-
tion of gene flow. 

Finally, many recent studies have focused on finding genetic-environment 
associations: correlations between specific alleles and environmental variables 
that reveal the targets of natural selection. Studies of this kind have existed 
as long as there have been genetic markers (e.g., Dobzhansky 1948), but the 
deluge of genomic data has made such studies more common and more fruit-
ful (e.g., Hancock et al. 2008, 2011; Fournier-Level et al. 2011; Pyhäjärvi et al. 
2013; Yoder et al. 2014; Hoban et al. 2016). The major methodological problem 
when testing for such associations is in fact IBD: geographically closer popu-
lations are both more similar genetically and more likely to share a common 
environment. Therefore, the shared history among populations can lead to 
false positives in naïve tests of genetic-environment associations. One of the 
first attempts to get around genetic non-independence was the use of the par-
tial Mantel test (Smouse, Long, and Sokal 1986), which looks for correlations 
between variables while controlling for genetic distance. Unfortunately, the 
partial Mantel test can fail in many biologically realistic scenarios (Guillot 
and Rousset 2013). Fortunately, multiple methods have recently been intro-
duced that can control for population structure while still identifying poly-
morphisms significantly associated with the environment. Two of the most 
powerful methods are Bayenv (Coop et al. 2010; Günther and Coop 2013) and 
LFMM (Frichot et al. 2013).

(A) (B)

FIGURE 9.14 Estimated effective migration rates on a landscape. (A) simulations 
were carried out by sampling individuals from each focal population (black dots), 
with unsampled populations indicated by white dots at each vertex. migration 
connections are drawn using gray lines between population pairs, with the width 
of the line proportional to the migration rate. There is a region with 10-fold lower 
migration through the middle of the landscape. (B) Average EEMS output from the 
analysis of 100 datasets simulated as in (A). The black dots represent the location of 
sampled populations, with the inferred migration rate ranging from highest for dark 
green to lowest for dark pink. (After House and Hahn 2017.)
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POPULATION GENETICS WITHOUT POLYMORPHISM

The final set of approaches to demographic inference discussed in this chapter 
do not involve any polymorphism data. Instead, they require only a single 
sequence collected from two or more different populations or species, as in 
phylogenetic studies. These data do not contain any information about recent 
demographic history, but they do contain information about the history of 
ancestral populations that pre-date lineage splitting events. They therefore 
allow us to reason about past population genetic processes without the need 
for polymorphism data. The approaches described here use what has recently 
become known as the multispecies coalescent, to separate it from predictions 
made by coalescent theory within species. However, as we will see, many of 
these methods have been around for more than 30 years and were used to illus-
trate patterns between species in some of the first papers describing the coales-
cent model. Below I separate methods using only two species from methods 
using three or more species, as these are based on quite different predictions.

Ancestral parameters inferred from two species
Given one sequence from each of two species, the two lineages will coalesce 
in their shared ancestral population (Figure 7.1). Importantly, this coalescence 
does not occur right at the time of the species’ split, t, but instead at some 
point before it (Gillespie and Langley 1979). For autosomal loci, this time is 
expected to be 2NA generations before t, where NA represents the effective size 
of the ancestral population. 

For any single locus we cannot hope to separate the time before the split from 
the time after. However, given a collection of independent loci, we can begin to 
tease apart these two quantities. This is because all loci share the fixed amount of 
time post-speciation (see Equation 7.1), while the coalescence time pre-speciation 
is exponentially distributed. The variance in these pre-speciation coalescence 
times is directly proportional to NA, which led Takahata (1986) to use this vari-
ance among loci in order to estimate NA. Of course we cannot directly observe the 
coalescence times either, only the amount of nucleotide divergence that has accu-
mulated between two sequences. To account for this, Takahata, Satta, and Klein 
(1995) introduced a maximum likelihood method that includes the additional 
variance in divergence contributed by stochasticity in the mutational process. 

Estimates of ancestral effective population size are very sensitive to a 
number of assumptions, including no variation in mutation rate among loci, 
no selection, no migration, and no recombination within loci (cf. Edwards and 
Beerli 2000). If the mutation rate differs among loci, or if migration has af-
fected some loci and not others, then the variance in estimated coalescence 
times will be larger than expected, leading to overestimates of NA. Yang 
(1997) introduced a method to control for mutation rate variation among loci, 
while Innan and Watanabe (2006) introduced a method that can co-estimate 
 post-speciation migration rates and NA. Selection in the ancestral population 
can both increase coalescence times (via balancing selection) and decrease co-
alescence times (via selective sweeps or background selection), inflating the 
variance in these times among loci. It is not clear how methods to estimate 
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NA can account for selective processes, though in the next section we discuss 
cases in which selection can be positively useful in ancestral inference.

The approaches described thus far assume no recombination within loci 
and free recombination between loci. Recent methods using HMMs relax both 
assumptions, in addition to estimating the population recombination rate in 
the ancestral population (Mailund et al. 2011, 2012). HMMs allow recombina-
tion by modeling the transition in states between neighboring segments that 
individually do not have a history of recombination within them—states in 
this model represent different discretized coalescence times in the ancestral 
population. Transitions between states are caused by recombination, such that 
the frequency of transitions is proportional to the population recombination 
parameter, r (=4NAc). This is actually quite an amazing inference: by simply 
keeping track of the rate at which sequences change their coalescence times 
along a chromosome, we can estimate the amount of recombination occur-
ring in the distant past. Further elaborations on these HMM models have in-
cluded migration between species after the lineage splitting event (Mailund 
et al. 2012).

Ancestral parameters inferred from gene tree discordance 
When the data consist of single sequences from each of four or more species, in 
addition to coalescence times we can make demographic inferences from the 
amount and type of gene tree discordance. Gene tree discordance occurs when 
the topologies at different loci disagree with each other, meaning that some 
will also disagree with the phylogeny describing relationships among species. 
With a single sample from each species there can be no discordance when only 
two species are considered—there is only one possible relationship. In order 
to have discordant relationships with these data we require either four taxa 
or a rooted three-taxon tree (which almost always requires a fourth species 
with which to root it). There are multiple causes of discordance, both techni-
cal and biological (Maddison 1997; Degnan and Rosenberg 2009). The two 
main biological causes are incomplete lineage sorting (ILS) and introgression/
migration/admixture. I begin with a discussion of ILS, as most methods for 
ancestral population inference only consider this process.

In order to understand ILS and its relationship to gene tree discordance, 
consider the phylogeny shown in FIGURE 9.15A. If we sample a single sequence 
from each of the three species or populations, then there are three different 
rooted topologies describing their relationships: one of these three topologies 
is concordant with the phylogeny (FIGURE 9.15B,C), while the other two are 
discordant (FIGURE 9.15D,E). There are actually two ways that a concordant 
tree can be generated. If the lineages from P1 and P2 coalesce in their most 
recent common ancestral population (which has size NA; Figure 9.15A), the 
resulting tree must be concordant (Figure 9.15B). When this occurs, we say 
there is lineage sorting; when it does not occur, we say there is incomplete lineage 
sorting. The probability that these two lineages do not coalesce in the internode 
population is approximately e N/2 Aτ− , where t  = t2 – t1 (Hudson 1983a). If the 
lineages leading to P1 and P2 do not coalesce in this population, they can still 
be concordant when they coalesce in the ancestral population of all three pop-
ulations (Figure 9.15C). In this population we expect to find the three possible 
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(B) (C)

(D) (E)

P1 P2 P3 P1 P2 P3

P1 P2 P3 P1 P2 P3

(A)

NA

P1 P2 P3

t2

t1

FIGURE 9.15 Discordance due to incomplete lineage sorting. (A) A phylogeny showing 
the relationships between three populations. The split time between P1 and P2 is t1, and 
between the common ancestor of P1 + P2 and P3 is t2. The effective size of the common 
ancestor of P1 and P2 is NA. (B) A gene tree topology (blue lines) concordant with the 
phylogeny, coalescing in the common ancestor of P1 and P2. (C) A concordant genealogy 
can still occur when there is incomplete lineage sorting, coalescing in the ancestor of all 
three populations. (D) The discordant genealogy that occurs when P1 and P3 coalesce in 
the ancestor of all three populations. (E) The discordant genealogy that occurs when P2 
and P3 coalesce in the ancestor of all three populations.
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topologies equally frequently, so that there is a one-third possibility of any par-
ticular genealogy, including the two discordant topologies (Figure 9.15D,E).

These results imply that the probability of concordance due to lineage sort-
ing is:

 P concordance lineage sorting e( |   ) 1 N/2 A= − τ−  (9.5)

and the probability of concordance due to incomplete lineage sorting is:

 P concordance ILS e( | )
1
3

N/2 A= τ−  (9.6)

Together, the results provide expectations for the total probability of 
concordance:

 P concordance e( ) 1
2
3

N/2 A= − τ−  (9.7)

as well as the total probability of discordance: 

 P discordance e( )
2
3

N/2 A= τ−  (9.8)

where each of the two discordant topologies occurs with frequency e1/3 N/2 Aτ−  
(Hudson 1983a; Tajima 1983; Pamilo and Nei 1988).

It is important to understand what these expectations mean and what they 
imply, as they form the basis for most of the inferences described below. First, 
the probability of ILS is dependent on two values: the internode ancestral ef-
fective population size (NA) and the internode time (t = t2 – t1). The prob-
ability of coalescence within this population is negatively related to effective 
population size, since the rate of coalescence is lower in larger populations. 
This probability is positively related to time, since with more time comes more 
opportunity for coalescence. Second, it is clear that ILS (also called deep coales-
cence; Maddison 1997) is not the same as discordance, though these terms are 
often used as synonyms in the literature. Genealogies can be concordant even 
when there is ILS (e.g., Figure 9.15C).

Importantly, all that is needed to generate discordant trees that are due to ILS 
is two speciation events in rapid succession, no matter how long ago these events 
occurred. The value of t2 − t1 is fixed after the second speciation event and does 
not depend on the magnitude of t1: the speciation events could have taken place 
100 years ago or 100 million years ago. Obviously if the events occurred 100 
million years ago there are many other factors that could cause discordance in 
addition to ILS (e.g., Scornavacca and Galtier 2017). But the discordance due to 
ILS described here does not ever go away, as the gene trees are “frozen” in their 
discordant state. In this way, though the process of lineage sorting is the same, 
ILS when sampling one sequence from each of multiple species is qualitatively 
different from ILS involving multiple sequences from only two species. In the 
latter scenario ILS does slowly resolve itself over time (e.g., Figure 5.7D–F), even-
tually reaching the point at which all coalescences (except the last one) occur 
before the ancestral population (Avise et al. 1983). With enough time or small 
enough effective population sizes, each of the two populations or species will 
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become reciprocally monophyletic (Hudson and Coyne 2002; Rosenberg 2003). 
Unfortunately, we do not have different words or phrases for these two cases of 
ILS, which seems to cause unnecessary confusion in the field.

Demographic inferences from gene tree discordance use the expectations 
given in Equations 9.5 through 9.8. The basic idea appears to have been first 
employed by Nei (1986): given a set of inferred gene trees, we can solve for 
the joint parameter t/NA in Equation 9.8 using the fraction of discordant 
genealogies. Given external estimates of the internode time, t, we can then 
solve for the ancestral effective population size, NA (or vice versa). The same 
basic approach has been used multiple times, with several embellishments 
(Wu 1991; Hudson 1992; Takahata, Satta, and Klein 1995; Ruvolo 1997; Chen 
and Li 2001). The branch lengths of each tree, combined with the expecta-
tions laid out above for the two-species case, can also be used to tease apart t 
and NA (Yang 2002). One important improvement to all of these methods has 
been to take into account some of the errors in gene tree reconstruction, which 
can lead to increased discordance and therefore increased estimates of NA. 
The software MCMCcoal mentioned earlier in the chapter can do exactly this 
(Rannala and Yang 2003; Burgess and Yang 2008), as well as deal with varia-
tion in the mutation rate among loci (also see G-PhoCS; Gronau et al. 2011). 
Note that any sources of discordance (including incorrectly inferred gene trees 
and introgression) that are still unaccounted for by these methods will result 
in severely overestimated ancestral effective population sizes; estimates from 
the very distant past should therefore be regarded with caution. 

In order to account for recombination, HMMs similar to the ones described 
for inferences from two species can be used (see Wall 2003 for an alternative 
approach using approximate likelihood). These HMMs now have states corre-
sponding to each possible topology: two concordant topologies (one with and 
one without ILS) and two discordant topologies (Hobolth et al. 2007; Dutheil  
et al. 2009). As before, the HMM is run along a genome-scale alignment of three 
species plus an outgroup, with transitions between states proportional to the 
population recombination parameter. Any recombination events taking place in 
the common ancestor of P1 and P2 can lead to state transitions, such that coales-
cence occurs in a different population without a change in topology (e.g., be-
tween the two concordant genealogies) or in the same population with a change 
in topology. Combining the expectations laid out here and in the previous section 
using two species, these methods can estimate both effective population sizes 
and the recombination rate in multiple ancestral populations. Recent extensions 
to HMM methods have included introgression in the model (e.g., Brandvain  
et al. 2014; Liu et al. 2014), though these methods are best for identifying genomic 
regions that have introgressed, rather than estimating population parameters.

To emphasize the point that we are using population genetic reasoning 
to learn about past populations, consider one additional prediction from 
models of gene tree discordance. Although the time between the two specia-
tion events, t, is expected to be constant across the genome, NA may vary 
from locus to locus. Most importantly, in the presence of strong selection—
either positive or negative—NA is consistently lower for linked neutral poly-
morphisms (Maynard Smith and Haigh 1974; Charlesworth, Morgan, and 
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Charlesworth 1993). Based on the expectations laid out above, we would 
therefore expect to find less discordance (more concordance) in regions with 
stronger selection. This hypothesis is supported by results showing lower 
discordance within regions experiencing strong selection (coding sequences) 
compared to regions experiencing on average weaker selection (noncoding 
sequences; Hobolth et al. 2011; Scally et al. 2012). In addition, while strong 
natural selection may occur at any position in the genome, the effects of this 
selection are magnified in regions with low recombination, as a much larger 
region is affected by any selected variant (Chapter 8). Therefore, among a set 
of randomly chosen loci, the action of strong selection should cause the re-
combination rate to be negatively correlated with NA and consequently posi-
tively correlated with discordance. Multiple studies have shown that regions 
of low recombination (in current populations) are associated with less gene 
tree discordance (Hobolth et al. 2011; Prüfer et al. 2012; Pease and Hahn 2013; 
Munch et al. 2016), suggesting that they also experienced lower effective sizes 
in ancestral populations.

Introgression inferred from gene tree discordance 
Robust inferences of introgression can be made based on gene tree discor-
dance. Like the approaches described in the previous section, these methods 
for inferring introgression only require a single sequence from each of four 
or more populations (at least three populations and an outgroup). Unlike the 
previous methods, we are now inferring more recent demographic events, oc-
curring on the tip branches of the phylogenies being considered.

For the phylogeny shown in Figure 9.15, the expectation under ILS alone 
is that the two discordant topologies will be found at equal frequency, and 
that this frequency will equal e1/3 N/2 Aτ− . However, when there is migration 
between lineages there can be a significant imbalance in the number of discor-
dant trees. Specifically, when there is exchange between either P3 and P1 or P3 
and P2, we may observe more of one of the two discordant topologies (either 
the one in Figure 9.15D or 9.15E, respectively). We cannot detect introgression 
between P1 and P2 in this way because it will not result in any disparity in dis-
cordant trees. When exchange does occur between non-sister populations the 
direction of introgression is not important—for instance, both migration from 
P1→P3 and P3→P1 will lead to an excess of trees with these sequences sister to 
each other—but there must be more exchange between these two populations 
or species than between P2 and P3; equal migration between the two pairs will 
result in equal proportions of the two discordant trees. A test for introgres-
sion based on this reasoning, using counts of discordant topologies, appears 
to have first been proposed by Huson et al. (2005).

Rather than use reconstructed gene trees, a straightforward alternative is 
to use the counts of site patterns that are consistent with the two alternative 
discordant topologies (Green et al. 2010). A site pattern is simply the pattern 
of alternative alleles at one site in an alignment. Defining the ancestral state 
(the state in the outgroup) as A and the derived state as B, the informative 
site pattern concordant with the phylogeny shown in FIGURE 9.16A would be 
designated BBAA. The discordant topology with P2 and P3 sister would lead 
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to the informative site pattern ABBA (FIGURE 9.16B), while the one with P1 and 
P3 together would lead to the informative site pattern BABA (FIGURE 9.16C). 

A test based on counts of these site patterns, nABBA and nBABA, summed 
across a large alignment, uses the D statistic:

 =
−
+

ABBA BABA

ABBA BABA

D
n n
n n

 (9.9)

where the expectation of D is 0 when incomplete lineage sorting is the only 
process acting (Green et al. 2010; Durand et al. 2011; Patterson et al. 2012). 

(A)

(B) (C)

P1 P2 P3

B B A A

O

BBA A

BA

BB A A

BA

BA

FIGURE 9.16 Basis for the D (or ABBA-BABA) test. (A) The species or population phy-
logeny with a concordant genealogy evolving within it. given the substitution from A→B 
shown, the site pattern is BBAA. Note that this is the same phylogeny as in Figure 9.15A, 
but now the outgroup is shown. (B) A discordant genealogy that is due to introgression 
from P3 into P2. in this case the resulting informative site pattern is ABBA. The same site 
pattern can also occur under either iLs (see Figure 9.15E) or introgression in the alter-
nate direction. (C) A discordant genealogy that is due to introgression from P3 into P1. 
in this case the resulting informative site pattern is BABA. The same site pattern can also 
occur under either iLs (see Figure 9.15D) or introgression in the alternate direction.
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Because there are already so many statistics that use the letter D, this test is 
alternatively known as either the ABBA-BABA test or Patterson’s D, as Nick 
Patterson is the first author of the section of the supplementary materials of 
the paper in which it is first described (Green et al. 2010). 

Following the same reasoning laid out above for counts of genealogies, 
migration between P3 and either P1 or P2 will disproportionately increase 
the frequency of BABA or ABBA site patterns, respectively, since the pair of 
taxa exchanging alleles should have relatively more shared derived (B) states 
(Figure 9.16B,C). Positive values of D indicate gene flow in either direction 
between P2 and P3, while negative values indicate gene flow between P1 and 
P3. Values of 0 do not provide any evidence of migration, though again, equal 
levels of gene flow in the two pairs can lead to D = 0. 

The D statistic has many similarities to f4 described earlier and is in fact 
testing the same null hypothesis (Patterson et al. 2012; Peter 2016). One 
distinction is that D only works with the asymmetric topology shown in 
Figure 9.16A or 9.12B and does not work with the symmetric topology shown 
in Figure 9.12A. The test based on D assumes that the outgroup cannot take 
part in any introgression and always represents the ancestral state. Though I 
have explained it here for a single sequence from each population or species, 
the D statistic can also be calculated using sample allele frequencies (Green  
et al. 2010; Durand et al. 2011; Patterson et al. 2012). As with f4, the significance 
of D is calculated by block jackknife or bootstrap. This calculation results in 
a genome-wide test statistic, though chromosome-wide values are also infor-
mative (e.g., Heliconius Genome Consortium 2012). One caveat is that values 
in smaller windows of the genome can simply reveal sorting of one or the 
other discordant topology locally; values different from 0 in these cases do 
not necessarily indicate introgression. Consider, for example, individual non-
recombining loci, which can only take on values of D = 1 (all ABBA), −1 (all 
BABA), or 0 (concordant genealogies with all BBAA sites). The expectation of  
D = 0 only holds across many loci averaged across the genome.

The D statistic makes a number of assumptions, though it is generally quite 
robust to many violations—for instance, it is unlikely that selection could ap-
preciably distort genome-wide site patterns. One important assumption is 
that there is no population structure in the joint common ancestor of P1, P2, 
and P3. If there is structure in this population, such that the lineages eventu-
ally leading to P3 were more likely to coalesce with either P1 or P2, a significant 
D value could result (Slatkin and Pollack 2008; Durand et al. 2011; Eriksson 
and Manica 2012). A second assumption is that there have not been multiple 
substitutions at a site, as these could also result in an excess of discordant site 
patterns. For this reason, the D test is generally only used for recent splits be-
tween lineages. Tests for exchange among more anciently diverging lineages 
should use the genealogy-based discordance test of Huson et al. (2005).

With more than four populations or species, additional analyses based on 
similar ideas can be performed. One useful approach when there are many 
different populations is to carry out the standard D-test with different subsets 
of four taxa. In this way, one can reason phylogenetically about where intro-
gression may have occurred on the internal branches of trees (e.g., Green et al. 



DEmogRAPHiC HisToRy  247

han39657_ch09_203-248.indd 247 02/26/18  06:47 PM

2010; Martin et al. 2013; Fontaine et al. 2015), though we can still never detect 
gene flow between sister branches. With five populations the f4-ratio can be 
calculated for certain phylogenies to estimate the proportion of the genome 
affected by introgression (Reich et al. 2009; Patterson et al. 2012). Finally, with 
four populations in a symmetrical topology (plus an outgroup), the related 
“DFOIL” statistics can additionally identify the direction of introgression be-
tween non-sister lineages (Pease and Hahn 2015).

CAVEATS TO INFERENCES OF DEMOGRAPHIC HISTORY

As was mentioned at the beginning of the chapter, inferences of demographic 
history come with several caveats. Most importantly, it is crucial to remem-
ber that our estimates of population history have also been affected by natu-
ral selection and other evolutionary forces—it is almost impossible to obtain 
“purely” demographic results. 

The estimates of Ne returned by all of the methods described here repre-
sent the size of a Wright-Fisher population that is undergoing an  equivalent 
amount of drift, but they in no way represent only demographic effects. 
Changes in Ne over time and among populations are due to many processes— 
demographic and selective—and should not be taken as numerical  estimates 
of census  population size of any kind (Chapter 1). As we will discuss 
 further in Chapter 10, disentangling selection and demography is very dif-
ficult, and modern computational methods based on beautiful theory do 
not avoid this difficulty. As an 
example, FIGURE  9.17 shows 
the effective population size in-
ferred by PSMC when there has 
been  a single selective sweep 
on a 15 megabase-long chromo-
some (Schrider, Shanku, and 
Kern 2016). Although the actual 
population size (census number 
of individuals) is constant 
throughout, selection produces 
nonequilibrium patterns of Ne. 
In a very real sense this view of 
the effective population size is 
correct: the effect of linked selec-
tion has been to reduce Ne for a 
period of  time and to increase 
the rate  of coalescence. But no 
change in demographic popula-
tion size has occurred.

Similarly, the meaning of the 
migration parameter m reflects 
the realized amount of intro-
gression, and not any biological 
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FIGURE 9.17 The effect of selection on demographic infer-
ence. PsmC is used to infer Ne when one selective sweep 
occurs in a population of constant size. Each of 100 replicate 
simulations are shown (thin gray lines), along with the median 
across all replicates (thicker blue line). The fixation time of 
the sweep is shown as a dashed vertical line. (After schrider, 
shanku, and Kern 2016.) 
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hybridization rate or number of migrant individuals. The “worst sin” in stud-
ies of migration across a landscape is to equate non-zero estimates of Nem 
between pairs of populations with the actual movement of migrants between 
these particular populations, rather than the movement of alleles via interven-
ing populations (Rousset 2007, pg. 956). Migration itself can be opposed by 
selection, but the dependence of many of our estimates on the joint parameter 
Nem also means that any processes affecting Ne can affect inferences of the 
population migration rate.

The fact that many of our inferences rely on joint parameters also means 
that decisions about one parameter can have large effects on conclusions about 
others. For instance, because we can often only estimate Nem, small changes in 
the value of the mutation rate used can greatly affect Ne. This in turn can affect 
estimated times of divergence, since these are often expressed in units of Ne 
generations (e.g., Sheehan, Harris, and Song 2013). To convert these units into 
absolute times, estimates of both the generation length and Ne are needed. 
Our estimates of absolute time can therefore be highly dependent on many 
parameters, including those affected by selection. All of this simply means 
that we must be careful to avoid placing too much weight on any particular 
numerical estimate from demographic inferences.
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In the previous chapters we learned about making inferences from 
DNA sequence data, largely focusing on the effects evolutionary forces 
have on patterns of variation at single loci. But the field of population 
genetics has very quickly been transformed into the field of population 
genomics, with whole-genome data being generated for many model 
and non-model organisms. In Drosophila, we have moved from one 
locus (Kreitman 1983), to two loci (Kreitman and Aguadé 1986), to  
20 loci (Begun and Aquadro 1992), to 105 loci (Glinka et al. 2003), to all 
loci (Begun et al. 2007; Sackton et al. 2009; Langley et al. 2012; Mackay 
et al. 2012). While this transformation has occurred at different rates in 
different taxa, we can be assured that the days of Sanger-sequencing a 
handful of loci in order to make meaningful evolutionary inferences 
are behind us.

So what exactly is population genomics, and how does it differ (if 
at all) from population genetics? To some extent, population genom-
ics is the ability to query and analyze all the data, one locus at a time. 
However, if population genomics were simply the capacity to carry out 
10,000 McDonald-Kreitman tests, I do not believe there would be so 
much excitement about it. While there are challenges in doing single-
locus population genetics writ large, this approach does not expand 
the types of inferences we can make. Instead, the most exciting aspect 
of population genomics is the promise of carrying out analyses that 
cannot be done on single loci or that are meaningless without genomic 
context. Often it is this context that provides the real insight when 
carrying out genome-scale analyses. We have seen a glimpse of these 
methods when using patterns of linkage disequilibrium to detect tar-
gets of selection (Chapter 8).

Population genomics also explicitly addresses the interaction be-
tween evolutionary forces, most significantly natural selection and 
nonequilibrium demographic histories. It has long been recognized 
that many selective and demographic processes can generate similar 
patterns of nucleotide variation, and one major justification for collect-
ing data from more loci has been the promise of disentangling these 
effects. In Chapter 9 we discussed multiple methods that use genome-
scale data for inferring demographic histories. Our goal here then is 

POPULATION 
GENOMICS 10
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to consider methods for identifying selective effects using genome-scale 
data, explicitly taking into account the possible complications contributed by 
nonequilibrium population histories. Although such problems are far from 
solved, even when using whole genomes, this is an active area of research in 
which many creative solutions have been proposed. 

We begin this chapter with a general discussion of approaches for detecting 
selected loci in population genomic data, followed by the description of sev-
eral specific methods for doing so. We end the book with a brief look at several 
areas of population genomics that promise to be especially active in the near 
future. These subfields span a range of questions and evolutionary forces—as 
well as different computational and experimental methods—that simply did 
not fit neatly into any previous chapter. Further anticipated revolutions in se-
quencing and computing power ensure that these predictions will necessarily 
remain only a small part of what molecular population genetics will become 
in the next decades. 

GENOME-WIDE SCANS FOR SELECTION

Motivating questions 
The availability of genome-wide data means that we can begin to ask ques-
tions about the effects of natural selection on genetic variation across the 
genome. There have already been many more than 100 studies that have con-
ducted genome-wide scans for selection in a wide variety of organisms (Haasl 
and Payseur 2016), addressing a large number of questions in biology and 
population genetics. 

Some of the more general questions revolve around the types of genes and 
types of mutations involved in adaptation. While it is no longer surprising to 
detect genes involved in immunity and pathogen response evolving under pos-
itive selection (e.g., Sackton et al. 2007; Obbard et al. 2009; Fumagalli et al. 2011; 
McTaggart et al. 2012; Enard et al. 2016; Early et al. 2017)—or genes in the major 
histocompatibility complex evolving under balancing selection (Hedrick 1998; 
Meyer and Thomson 2001)—we still do not know whether there are subsets of 
genes associated with particular functions predictably involved in other forms 
of adaptation across organisms. We would also like to know the specific types 
of mutations that are used during adaptation, whether they are nucleotide vari-
ants in coding regions or in noncoding regions (Hoekstra and Coyne 2007; Stern 
and Orgogozo 2008), copy-number variants in either type of region (e.g., Perry 
et al. 2007), or even the insertion of transposable elements (e.g., Schlenke and 
Begun 2004; González et al. 2008). We also expect that uncovering adaptively 
evolving genes will begin to tell us about the very species we are studying—the 
reverse ecology approach (Li, Costello, et al. 2008). By finding the genetic targets 
of selection, the hope is that the known functions of these loci will implicate the 
subtle phenotypic differences targeted by selection. One major caveat to this 
approach is the apparently limitless ability of scientists to tell stories about the 
possible phenotypes identified by genomic scans (Pavlidis et al. 2012). 

Regardless of the specific biological questions asked, the answers require 
the clear identification of the targets of selection. It is quite hard to pinpoint 
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specific mutations that are under selection—particularly if they have already 
fixed—and sometimes equally hard to know which of several genes or regula-
tory elements in a region are targeted, even when we do not need to know the 
precise mutations. For these reasons it is important to understand the spatial 
signature of linked selection, as this will enable us to determine whether we 
have detected the center or the shoulders of a sweep (cf. Hudson et al. 1994; 
Schrider et al. 2015). Individual tests applied to single loci often do not capture 
this spatial signal, so we turn to population genomics for more context and 
more resolution. Even so, the eventual “election” of candidate genes may re-
quire a range of further experimental approaches (Stinchcombe and Hoekstra 
2008; Pardo-Diaz, Salazar, and Jiggins 2015).

Among the questions that are the focus of population geneticists, those 
concerned with the frequency and type of natural selection acting across the 
genome are two of the most important. We would like to be able to estimate, 
for instance, the fraction of amino acid substitutions that have fixed via posi-
tive selection or the fraction or amino acid polymorphisms that are maintained 
by balancing selection. These questions have been the focus of sometimes 
acrimonious debate in the field for a long time (e.g., Kimura 1983; Gillespie 
1991). Further, of the alleles that do fix via positive selection (whether coding 
or not), what proportion were already polymorphic when selection started? In 
other words, is most adaptation driven by new mutation or standing polymor-
phism? Similarly, it is very important to understand the fraction of the genome 
affected by linked selection (see next section) and whether the effects are due 
to hitchhiking or background selection. Such questions require us to distin-
guish not only between selective and non-selective forces, but among selective 
models. New computational approaches and genome-wide datasets will both 
be required to answer these and many other questions in population genetics. 

Selection versus demography
In addition to the obvious biological differences between tests examining 
selection directly on genetic variants (Chapter 7) and those focusing on the 
neutral variation linked to selected variants (Chapter 8), the two types of ap-
proaches differ fundamentally in the manner in which the statistical tests are 
carried out. Tests of direct selection are almost always conducted by compar-
ing patterns at one type of variant (e.g., nonsynonymous) against the patterns 
at another type (e.g., synonymous). This comparison between sites—whether 
within a single gene or across the genome—ensures that any nonequilibrium 
population history will affect all variants equally. Because of this, tests of 
direct selection are generally robust to population demography. 

By contrast, tests of linked selection are often constructed as comparisons to 
a theoretical expectation (e.g., the shape of the allele frequency spectrum) and 
are therefore extremely sensitive to both the sampling scheme and the demo-
graphic history of populations. Even tests that appear to be making contrasts 
among different regions—and therefore might be more robust to nonequilib-
rium demography (like the HKA test)—are quite sensitive to the variance in 
levels of diversity among loci, which can be affected by population history. 
Levels of linkage disequilibrium are also affected by nonequilibrium histories 
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(Chapter 9), so tests using LD must also consider the demographic history of 
the population from which the data are drawn. Overall then, it is recognized 
that many of our tests use a constant-sized, randomly mating population to 
derive their expected (null) values. As a consequence, the tests are not simply 
asking whether the data reject a neutral model, but rather whether they reject 
a compound neutral-equilibrium model. Simply using this equilibrium null 
model will result in rejection under a wide variety of circumstances (Wares 
2010). Therefore, in order to identify true targets of selection, we need some 
way to separate the effects of nonequilibrium demography from the effects of 
natural selection.

A favorite aphorism in population genetics is that selection acts locally in 
the genome while demography acts globally (Lewontin and Krakauer 1973). 
The implication of this statement is that the patterns of variation found in 
the majority of the genome represent the demographic history of a popula-
tion, while any outlier loci represent the targets of selection (FIGURE 10.1A). 
Unfortunately, many forms of selection affect variation in the same way and 
are occurring throughout the genome. For instance, both background selection 
(Ewing and Jensen 2016) and hitchhiking (Schrider, Shanku, and Kern 2016) 
can have similar effects on levels of variation and therefore on demographic 
inference. If selection is common enough across the genome—and it appears 
to be in most eukaryotic organisms (Corbett-Detig, Hartl, and Sackton 2015)—
then the average pattern of variation represents the average effect of linked 
selection, not demography (FIGURE 10.1B).

This may be obvious from the previous discussion, but it should be stated 
explicitly: we cannot determine how much variation across the genome is af-
fected by linked selection by naïvely applying tests of selection that are sensi-
tive to demographic history. If we do so we will either overestimate this value 
(by ignoring nonequilibrium demography) or underestimate this value (by 
assuming that widespread deviations from the null are due only to demo-
graphic history; see below). Instead, the approach researchers have taken to 
determine the overall effects of linked selection is to test associated predic-
tions of the selection model. One such prediction is that levels of variation will 
be positively correlated with levels of recombination (Begun and Aquadro 
1992). Under neutrality, no relationship between levels of polymorphism and 
recombination is expected, as the number and frequency of neutral mutations 
is unaffected by recombination (Hudson 1983b). In the presence of selection, 
however, levels of polymorphism are reduced by an amount proportional to 
the strength of selection and the recombination rate (Kaplan, Hudson, and 
Langley 1989; Charlesworth, Morgan, and Charlesworth 1993; Barton 1998). 
This means that there will be less polymorphism in regions of lower recombi-
nation and more polymorphism in regions of higher recombination (which are 
more likely to escape the effects of linked selection). In fact, a positive relation-
ship between diversity and recombination now appears to be one of the most 
universal patterns in population genetics (Hahn 2008; Cutter and Payseur 
2013; Corbett-Detig, Hartl, and Sackton 2015), while alternative neutral expla-
nations for this relationship have been excluded (Begun and Aquadro 1992; 
McGaugh et al. 2012; Pease and Hahn 2013).
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The positive correlation between polymorphism and recombination across 
many species is striking for a number of reasons. First, these results imply 
that almost no loci are free from the effects of linked selection. Far from being 
limited to only the regions of lowest recombination, published patterns sug-
gest that all loci but those with the highest rates of recombination are affected 
by such selection—and even these loci may simply show the least effects of 
linked selection. Second, recall that in the absence of other forces, the reduc-
tion in variation caused by linked selection will rebound to equilibrium levels 
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FIGURE 10.1 Variation in levels of polymorphism: (A) the neutralist interpretation, and 
(B) a selectionist interpretation. The red line in both shows measured values of poly-
morphism (p) across D. simulans chromosome 3R (Begun et al. 2007). Arrows indicate 
hypothetical effects of linked selection in raising or lowering levels of polymorphism. 
The dashed line represents the expected mutation-drift equilibrium level of polymor-
phism under neutrality, given as the average value on chromosome 3R in (A) and as a 
hypothetical value unaffected by linked selection in (B). (From Hahn 2008.)
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relatively rapidly (Chapter 8). The fact that polymorphism is correlated with 
recombination implies that in almost every species examined, at almost every 
locus, there has recently been a selected allele nearby (whether advanta-
geous or deleterious) such that levels of polymorphism are not at mutation-
drift equilibrium. While there are limits to the rate of adaptive substitution 
(Weissman and Barton 2012), these data appear to be fundamentally incom-
patible with the view that demographic history is the main determinant of 
levels and patterns of variation. 

General approaches for identifying targets of selection
Discovering that linked selection likely affects a vast majority of the genome is 
cold comfort for researchers hoping to identify individual loci under selection. 
In fact, in many ways these two goals act counter to one another: “Ironically, 
the ability to detect individual instances of selection can decrease as the frac-
tion of the genome affected by linked selection grows” (Haasl and Payseur 
2016, pg. 9). While in some cases it may be of interest simply to ask whether 
a dataset shows signs of any linked selection (e.g., Wright et al. 2005; Caicedo 
et al. 2007), the goal of many researchers is to find the targets of selection. 
So how do we identify specific loci affected by positive or balancing selec-
tion against a background of rampant linked selection and nonequilibrium 
population histories? There are two main methods: model-based and outlier 
(“empirical”) approaches.

Model-based approaches generally follow the view that a population’s 
true demographic history can be known, and that we can identify selected 
loci as those that do not fit this history in some manner. The first step in such 
an approach is therefore to estimate demographic history, either by using 
all the data or by using a subset of the data believed to be less affected by 
selection (e.g., Gazave et al. 2014); alternatively, statistical models without ex-
plicit demographic parameters can also be fit to the data (e.g., Whitlock and 
Lotterhos 2015). Because learning demographic histories is difficult for many 
reasons other than the presence of selection (Chapter 9), some authors have 
also used a range of possible histories that have been previously proposed 
for their species (e.g., Akey et al. 2004). In order to determine the signifi-
cance of a gene in the tail of the distribution for some statistic (e.g., Tajima’s 
D), most model-based approaches simulate data under the inferred demo-
graphic model. A large number of simulated loci generated under this model 
can be turned into a two-tailed P-value by finding the index of the observed 
statistic among the simulated values (i) and applying the following formula 
(Voight et al. 2005):

 P = 1 - 2 ∗ |0.5 - i| (10.1)

For example, if the observed value is the second-highest out of 10,000 simulated 
values, then i = 1/10,000 and P = 0.0002. Likewise, if it is the  second-lowest 
value (i = 9,999/10,000), the P-value will be the same. However, because pop-
ulation genomics often involves testing a large number of loci, these are only 
nominal P-values. Care must be taken to correct or account for large numbers 
of tests (BOX 10.1).
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■ BOX 10.1

Multiple-testing issues in population genomics
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BOX FIGURE 10.1 Distributions of P-values. (A) The distribution of P-values expected when the 
null hypothesis is true. The dashed line shows the expectation if all tests follow the null. (B) The dis-
tribution of P-values when there are true positives in the dataset. (B uses data from Hedenfalk et al. 
2001; after storey and Tibshirani 2003; copyright 2003 national Academy of sciences, usA.)

one feature common to population genomic 
studies is the calculation of many test statistics, 
and consequently the carrying out of many sta-
tistical tests. While there is an ongoing debate 
over the merits of frequentist versus Bayesian 
methods in statistics, there is no doubt that fre-
quentist approaches continue to be important in 
population genetics. As a result, it is still neces-
sary to use P-values and associated concepts in 
order to justify claims regarding loci of interest.

P-values represent the probability of obtain-
ing data as extreme, or more extreme, than 
observed if the null hypothesis is true. it is 
common to use a P-value cutoff of 0.05 as the 
threshold for assigning significance to a result. if 
we carry out only a single test, then this thresh-
old corresponds to a probability of a = 0.05 
that we have rejected the null hypothesis when 
it is actually true; these are false positives or 
type I errors. A problem arises when we carry 
out more than one test: in this case the P-value 
cutoff is no longer the same as the value of a. 
That is, if we want to continue to have a 5% 

chance of observing a single false positive, our 
P-value cutoff must change.

To better understand the problem of multiple 
testing, it is useful to consider the distribution of 
P-values when the null hypothesis is true (i.e., 
when there are no true positives). under the 
null hypothesis, P-values are uniformly distrib-
uted (Box Figure 10.1A). if we have carried out 
1,000 tests, we expect 50 of them to have  
P < 0.05. (note that this expectation is itself  
binomially distributed with n = 1,000 and  
p = 0.05.) But we also expect 50 of these tests 
to have 0.35 < P < 0.40 (or any similar inter-
val). This implies that when we carry out 1,000 
tests, even if our null hypothesis is true, we are 
almost guaranteed to have “significant” results 
with P < 0.05. it would be much more surprising 
if we did not observe tests with P-values this low.

How then do we ensure that we maintain a 
probability a of a single false positive when 
we are carrying out multiple tests? if we think 
of drawing random numbers from the P-value 
distribution under the null, our task is to find a 

(Continued)
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new P-value cutoff (call it a*) so that we again 
have only a 5% chance of choosing a value 
as low or lower given n such draws. There are 
two commonly used methods for doing this. The 
simplest is called a Bonferroni correction, and 
it was popularized in evolutionary biology by 
Rice (1989). The Bonferroni-corrected P-value 
cutoff when conducting m tests is:

 
m

α
α

=∗  

This new cutoff means that individual tests must 
achieve a P-value of less than a* to be considered 
significant. The Bonferroni correction is in fact 
overly conservative and results in a false positive 
rate of less than a. A more accurate method uses 
the Šidàk (or Dunn-Šidàk) correction (Šidàk 1967):

 1 (1 )1/α α= − −∗ m  

Both the Bonferroni and Šidàk corrections are 
regularly used in population genomics.

The above approach to dealing with multiple 
tests is good at preventing a single false positive 
but can be overly restrictive. For instance, if we 
have carried out 1,000 tests, then the standard 
Bonferroni correction would require any single 
test to have a P-value of less than 0.00005 in 
order to be significant at a = 0.05. For some  
experiments it may be difficult to reach this value, 
even when there are true positives in the data-
set. Rather than have no or only a small number 
of significant results after correcting for multiple 
tests, researchers may instead be willing to 
accept a few false positives if the set of signifi-
cant tests includes a large number of true posi-
tives. An approach that accomplishes this task is 
to control the false discovery rate (FDR) instead 
of the probability of a single false positive.

The false discovery rate is defined as the ratio 
of the expected number of false positives to the 

observed number of tests significant at a specific 
P-value (Benjamini and Hochberg 1995). While we 
cannot determine which tests are false positives, 
we have already seen that under the null we can 
easily establish the number of expected false posi-
tives at any particular P-value: this is just the total 
number of tests (m) times the P-value. With m = 
1,000 we expect 50 false positives at P < 0.05, 
10 false positives at P < 0.01, and so on. under 
the null hypothesis we should observe as many sig-
nificant tests as are expected, at all P-values, and 
therefore the FDR should be 1.0 at all P-values.

When there are true positives in a dataset, we 
should see more significant tests than expected 
(Box Figure 10.1B). For example, if we observed 
200 tests with P < 0.01 and m = 1,000, then the 
false discovery rate would be 0.05 because we 
expected 10 significant tests at this P-value but 
observed 200 (=10/200). We have observed 
20 times more significant results than expected by 
chance, and of all 200 significant tests we expect 
that only 10 of them will be false positives. We 
still do not know which are the false positives, 
but using the FDR has provided us with a list that 
includes approximately 190 true positives. 

The FDR can be used in multiple different ways, 
and there are slightly different ways of defining 
it (Benjamini and Hochberg 1995; storey 2002; 
storey and Tibshirani 2003). starting with a pre-
determined P-value threshold for a dataset, we can 
report the FDR at this threshold. Alternatively, we 
can choose an FDR threshold a priori, finding the 
false discovery rate associated with each of our tests 
in a ranked list of P-values and accepting only those 
tests with an FDR lower than our threshold. The mini-
mum false discovery rate associated with each test is 
called its q-value (storey 2002), which is a measure 
of significance in terms of FDR. many studies in pop-
ulation genomics will use a q-value cutoff of 0.05, 
but even cutoffs of 0.2 or 0.3 may be used in order 
to amass a large set of true positive tests.

There are several issues with model-based approaches. The main one is that 
they assume selection is rare, and that the average signal in the data reflects 
demographic history. Consider data collected from a population at demo-
graphic equilibrium but with high rates of adaptive natural selection: because 
hitchhiking results in an excess of low-frequency mutations, model-based 

■ BOX 10.1 (continued )
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approaches would lead us to infer that a population expansion or bottleneck 
had occurred, as many loci will show this excess. To find the targets of selec-
tion we would then “re-center” the distribution of test statistics by simulating 
neutral data under the inferred demographic history, whether or not there is 
any independent (non-molecular) data supporting such a history. Complex 
models of demographic history that include multiple successive bottlenecks 
or extra migration parameters may in fact explain all of the variance in our 
observed test statistics. As might be imagined, this procedure will cause us 
to miss many or most of the genes undergoing adaptive natural selection, 
or even to reject those with strong evidence simply because they are in the 
middle of the distribution. It can therefore be considered an extremely low-
powered method for detecting selection. 

The alternative outlier approach does not depend on inferring a specific 
demographic model, though it implicitly makes the same main assumption: 
that selection is rare. Instead of fitting a particular demographic or statistical 
model, the outlier approach simply says that the loci in the 1% tails (or some 
other arbitrary percentile) of the empirical distribution of observed values are 
targets of selection. There are multiple reasons an outlier approach—often 
called an empirical outlier approach—is used. The main one is that sometimes it 
is difficult to fit a realistic demographic model, either because of ascertainment 
bias in the sample (e.g., Akey et al. 2002; Kelley et al. 2006) or simply because 
the suspected history is more complex than the data allow one to estimate 
(e.g., Kolaczkowski et al. 2011). An outlier approach can also be much more 
transparent than model-based approaches, in which P-values are exquisitely 
dependent on model parameters and choices made during simulation. In the 
outlier approach there cannot be a shift in the rank of individual loci because 
of (for instance) the recombination rate used in the demographic simulations.

There are obvious issues with outlier approaches. If there is no natural 
selection affecting the sampled loci, then outlier approaches will generate 
false positives. Fortunately, there is now little doubt that selection is affect-
ing large amounts of all genomes, so the assumption that the tails represent 
selection may not be too erroneous. Conversely, the outlier approach limits 
us to detecting only a very small percentage of all genes affected by selec-
tion, with the number determined by our chosen cutoff value. Even if 50% 
of genes are targets of positive selection, using the 1% tails ensures that we 
will find at most 2% of them (though these genes may represent the most 
extreme cases). There is also ambiguity in assigning modes of selection to our 
outliers, especially if the mean of the observed distribution does not repre-
sent the average effect of demography (cf. Cavalli-Sforza 1966; Lewontin and 
Krakauer 1973). If positive selection is rampant in the data—and there is no 
balancing  selection—then the lower tail of Tajima’s D values may represent 
these selected loci, while the upper tail may represent the loci least affected 
by selection (and not the targets of balancing selection). As a result, care must 
be taken in assigning the tails of the observed distribution to specific modes 
of selection. However, when there is selection in a dataset, outlier approaches 
can be a powerful way to detect important loci (Kelley et al. 2006; Teshima, 
Coop, and Przeworski 2006).
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METHODS FOR CARRYING OUT GENOME-WIDE SCANS 
FOR SELECTION

As has been described throughout the book, methods for detecting selection 
can use a variety of sampling schemes. One of the most fundamental divisions 
between approaches involves whether samples come from a single population 
(often including an outgroup species) or multiple populations. Population ge-
nomic studies using multiple populations appear to have been more common 
in the field thus far (Haasl and Payseur 2016). The reason why such studies are 
more popular is unclear, but it could be both because they can use non-ideal 
datasets—i.e., those affected by ascertainment biases (e.g., Akey et al. 2002) 
or based on older genomic technologies (e.g., Turner, Hahn, and Nuzhdin 
2005; Turner et al. 2008)—and because multiple-population approaches do 
not  require the genome sequence of a related species. No matter the reason for 
differences in popularity, I discuss specific methods used in conjunction with 
the two sampling schemes separately.

Detecting selection using a sample from a single population
Many population genomics methods using single populations do not differ at 
all from their single-locus counterparts. These methods were some of the first 
to be applied to population genomic datasets. Because the first such datasets 
often did not have genomes from outgroups, researchers used methods that 
did not require divergence data or polarized mutations. These methods in-
clude Tajima’s D (e.g., Glinka et al. 2003; Akey et al. 2004; Nordborg et al. 2005; 
Stajich and Hahn 2005) and D-like statistics that can be applied to microsatel-
lites (e.g., Payseur, Cutter, and Nachman 2002), as well as methods based on 
haplotype homozygosity that are also robust to ascertainment bias (e.g., Sabeti 
et al. 2002; Voight et al. 2006). With the sequencing of high-quality reference 

genomes from closely related species came 
the ability to use methods that  incorporate di-
vergence, including the McDonald-Kreitman 
test (e.g., Bustamante et al. 2005; Shapiro 
et al. 2007; Li, Costello, et al. 2008), Fay and 
Wu’s H (e.g., Carlson et al. 2005; Ometto et 
al. 2005), and the HKA test (e.g., Begun et al. 
2007). Other than the caveats discussed earlier 
that are common to all population genomic 
datasets (e.g., the problem of multiple test-
ing), the implementation and interpretation of 
these statistics remain the same as in smaller 
datasets.

In order to take genomic context into ac-
count, Kim and Stephan (2002) created a test 
based on the expected “valley” of polymor-
phism around recently fixed advantageous 
alleles (FIGURE  10.2). These valleys highlight 
several important features of selective sweeps. 

Chromosomal position

π

FIGURE 10.2 Effect of hitchhiking on levels of 
diversity. The expected value of p calculated 
using equation 13 from Kim and stephan 
(2000), with 2Ns = 400 and r = 0.0004 for 
the entire region. The sweep ended 0.005N 
generations before sampling. The vertical 
dashed line marks the position of the selected 
site. (After Kim and stephan 2002.)
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They generally contain a region of much reduced polymorphism surrounding 
the fixed allele, with less reduction as we move away from the selected site. 
As mentioned earlier in the book, the extent of reduced polymorphism is pro-
portional to s/c, with stronger selection and lower recombination resulting in 
larger areas lacking variation. The allele frequency spectrum also shows spa-
tial patterning, with an excess of low-frequency derived alleles surrounding 
the selected site and an excess of high-frequency derived alleles adjacent to the 
selected site (e.g., Figure 8.7). Although there can be much more stochasticity 
in individual realizations of this process than are shown in Figure 10.2 (see 
FIGURE 10.3), these general patterns can be used to create a test of neutrality.

The test designed by Kim and Stephan—which is usually referred to as 
the CLRT, for composite likelihood ratio test—compares the likelihood of two 
models: one of hitchhiking and one of neutrality. The hitchhiking model 
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FIGURE 10.3 Example patterns of diversity generated by hitchhiking. (A) Patterns  
of diversity measured by p when the sweep ended 0.02N generations ago  
(top row) and 1.28N generations ago (bottom row). (B) Patterns of diversity mea-
sured by Tajima’s D when the sweep ended 0.02N generations ago (top row) and 
1.28N generations ago (bottom row). Each panel in (A) and (B) represents an inde-
pendent simulated dataset, with the vertical dashed line marking the position of the 
selected site. The parameters used in the simulation are g = 1000 and r = 2100 for 
the entire region. (From schrider et al. 2015.)
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describes the expected allele frequency spectrum of linked neutral polymor-
phisms at different distances from the fixed selected allele. The expected 
number of derived alleles in the frequency interval [p, p + dp] in a region 
linked to a hitchhiking event is:

 φ

θ θ
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− < <
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where the parameter C depends on both the strength of selection, g = 2Nes, 
and the recombination distance between a neutral polymorphism and the se-
lected site, c (Kim and Stephan 2002). 

The neutral model describes the allele frequency distribution in an equi-
librium population without linked selection. In the neutral model there is 
no dependence on distance, so the allele frequency distribution is given by 
(Kimura 1971):

 φ
θ

=p dp
p

dp( )0  (10.3)

This is the continuous analog of the discrete allele frequency spectrum given 
by Equation 6.8.

The probability of the data under both models is obtained by binomial sam-
pling using the appropriate allele frequency distribution—either the hitchhik-
ing or neutral model (i.e., either φA or φ0 ). In order to obtain likelihoods across 
a region the CLRT multiplies the likelihoods for all sites together (resulting  
in a composite likelihood; Chapter 9), and the two models can be compared 
via a likelihood ratio test. The hitchhiking model can also be used to esti-
mate the value of g. The original implementation of the test calculates this 
likelihood ratio for the data centered on a candidate target of selection, with 
P-values generated via neutral simulations. This procedure can be repeated 
moving along the genome, treating each window or stretch of sequence as the 
candidate target of selection.

As described, there are several limitations to Kim and Stephan’s CLRT. The 
method assumes both that mutation and recombination rates are known (or 
can be estimated, usually via q and r in background regions) and that the 
null model is a neutral-equilibrium model. The method is therefore sensitive 
to variation in mutation and recombination, as well as nonequilibrium de-
mographic histories. In fact, Jensen, Kim, and colleagues (Jensen, Kim, et al. 
2005) have shown that the CLRT has a very high false-positive rate under a 
wide range of nonequilibrium histories. There are multiple ways to account 
for the assumption of equilibrium populations when carrying out the CLRT 
(see Pavlidis, Hutter, and Stephan 2008 for an in-depth review). Jensen, Kim,  
et al. (2005) proposed a goodness-of-fit test, comparing the fit of the data 
under the hitchhiking model to the fit under a model of arbitrary complexity 
without the same spatial patterning as the hitchhiking model. A better fit to 
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the hitchhiking model implies that it is favored over nonequilibrium histories 
and should still be sensitive to true selective events. 

A related method is implemented in the program SweepFinder (Nielsen  
et al. 2005). SweepFinder carries out the composite likelihood ratio test of Kim 
and Stephan (2002) by comparing a hitchhiking model to a “background” 
model in which the allele frequency spectrum is estimated from the whole 
genome, rather than assuming a neutral-equilibrium model (this is referred to 
as “test 2” in Nielsen et al. 2005). Essentially, the test replaces φ0 with a distribu-
tion estimated from the data. The same background allele frequency spectrum 
is used in the CLRT for every region tested, so that regions with unusually 
large and significant values can be identified. As with other model-based ap-
proaches described above, SweepFinder controls for demographic history by 
effectively re-centering the distribution of allele frequencies such that targets 
of selection strongly differ from the genomic average. Because SweepFinder 
uses this genomic background model it can be quite robust to nonequilibrium 
demographic histories. However, simulations are still required to calculate the 
significance of individual values of the CLRT; a high rate of false positives may 
still occur if these simulations are carried out using an incorrect demographic 
model (Pavlidis, Jensen, and Stephan 2010; Crisci et al. 2013; Huber et al. 2016).

The original version of SweepFinder controlled for variation in the muta-
tion rate by only considering polymorphic sites. Both the folded and unfolded 
frequency spectrum could be used, meaning that no outgroup genome was 
necessary, and various ascertainment schemes could be accommodated. 
However, not including invariant sites results in reduced power to detect se-
lection (Nielsen et al. 2005), as one of the major effects of a sweep is to remove 
all variation. The problem with including this information is that regions may 
also lack variation because they have a low mutation rate. In order to ad-
dress this issue, SweepFinder2 (DeGiorgio et al. 2016; Huber et al. 2016) has 
the ability to include sites that are invariant but that represent fixed differ-
ences from a closely related outgroup. Related software (SweeD) that can 
apply the SweepFinder CLRT to thousands of individuals—and with arbitrary 
background demographic models—can also use invariant sites (Pavlidis  
et al. 2013). Including such sites greatly increases the power of the test without 
generating false positives as a result of regions of low mutation.

The hitchhiking model described here is one of a hard sweep (Chapter 8), 
with sequences collected very soon after fixation of the advantageous allele. If 
partial or soft sweeps have occurred—or a longer time has passed since fixation, 
even for a hard sweep—there may be both reduced power to detect selection 
and possibly misidentification of the selected site using the CLRT and related 
methods. It should be clear why partial and soft sweeps could cause us to miss 
selective events: the skew in the allele frequency spectrum may be much less 
severe with such events than with completed hard sweeps (Przeworski, Coop, 
and Wall 2005; Pennings and Hermisson 2006b). We may therefore have little 
power to reject neutrality, especially when there is a nonequilibrium history. 
Although significant overlap has been observed between the targets of selec-
tion identified by SweepFinder and the iHS test (Williamson et al. 2007), it is not 
clear whether this occurs because the same partial sweeps identified by iHS 
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are also identified by SweepFinder, because the same loci are hit repeatedly by 
multiple selective events, or because the signatures of partial sweeps are really 
just the shoulders of the completed sweeps (Schrider et al. 2015).

The theoretical expectations of the patterns generated by a hitchhiking 
event—with the lowest levels of diversity always directly at the site of se-
lection and a nice symmetry to the recovery of diversity (Figure 10.2)—do 
not always hold. The shape of these valleys of diversity can vary quite a bit 
as a result of the stochasticity of the coalescent process and recombination 
during the sweep (Kim and Stephan 2002). If the region surrounding the se-
lected substitution is not always the one with the lowest diversity, we may 
be misled as to the selected site. Two factors play a major role in determin-
ing whether the target of selection is correctly identified. First, the less time 
that has passed since a sweep has ended, the more accurate our inferences 
will be (Figure 10.3). If variation was assayed 0.00125N generations after the 
completion of a sweep, p reaches its minimal value in the window directly 
around the advantageous allele 95.8% of the time, which would likely result 
in  accurate identification of this site (Schrider et al. 2015). If instead the data 
are collected 1.28N generations after the sweep has ended, p reaches its mini-
mal value in this window only 61.9% of the time (Figure 10.3A). The accuracy 
of such measures goes down as more time passes and can be worse at all 
time points for measures of the allele frequency spectrum such as Tajima’s D 
(Figure 10.3B). The second major factor determining the accuracy of our infer-
ence is the demographic history of populations: against the background of a 
nonequilibrium population history, accuracy is again much lower. Pavlidis, 
Jensen, and Stephan (2010) found that SweepFinder has very low precision in 
predicting the target of selection when a sweep takes place during a popula-
tion bottleneck. This low level of precision is due to the variability in genealo-
gies introduced by the bottleneck, which effectively obscures both the signal 
of the hitchhiking event and the location of the selected site.

Detecting selection using samples from multiple populations
Genome-wide scans for selection are easy to carry out using data from mul-
tiple populations and do not require the sequence of a closely related out-
group species. There are two main approaches to detecting selection from 
multiple-population samples (Storz 2005): those using differences in allele (or 
haplotype) frequencies and those based on comparisons of levels of diversity. 
Most methods take advantage of differences in allele frequencies at individual 
sites, with the expectation that directional selection in one subpopulation will 
increase differences, while balancing selection across subpopulations will de-
crease differences (Chapter 5). One of the reasons these methods have become 
so popular is that many types of data can be used with them, including geno-
typing platforms (e.g., Eckert et al. 2010), pooled sequencing (e.g., Turner et al. 
2010), and RAD-seq (e.g., Hohenlohe et al. 2010). Methods comparing levels of 
variation at a locus between multiple populations can also uncover selective 
sweeps confined to single subpopulations, but are much less reliable when 
using previously ascertained markers. I discuss these approaches in turn.
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The most common approach to genome-
wide scans for selection involves calculating FST 
or FST-like statistics among populations. Such 
analyses can be performed pairwise or using all 
populations at once and are relatively straight-
forward to carry out and interpret. Viewing the 
genome-wide spatial distribution of FST makes 
it easy to identify extreme values in individual 
polymorphisms or regions (FIGURE 10.4). Outlier 
approaches using FST were some of the first 
genome-wide scans conducted (e.g., Akey et al. 
2002) and are still regularly used to identify tar-
gets of selection. 

The first model-based attempt to detect selec-
tion on individual loci with FST used data from 
five human populations but only 100 mark-
ers (Bowcock et al. 1991). Loci under selection 
were identified by simulating neutral markers 
on the tree relating the populations, keeping 
the average FST in the simulated data equal to 
the observed value. Outliers appeared as loci 
with values of FST higher or lower than the 
95th or 5th percentile, respectively, given their 
allele frequency (FIGURE 10.5). The dependence 
on allele frequency is key, as the range of FST is 
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FIGURE 10.4 Genome-wide scan for selection using FsT. Polymorphism data from 
two populations of the butterfly Heliconius melpomene were used to calculate FsT. 
significant outlier loci were identified using BayeScan (Foll and Gaggiotti 2008). 
The major peaks of outlier markers on chromosomes 18 and 15 correspond to  
regions known to control wing-pattern variation between populations. (From nadeau 
et al. 2014.)
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FIGURE 10.5 identifying FsT outliers. 
Polymorphism data from 100 loci in five 
human populations are shown. Curves rep-
resent the 95% and 5% cutoffs of FsT values 
observed in neutral simulations conducted 
across the population tree, starting from 
different initial minor allele frequencies. 
(After Bowcock et al. 1991.)
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constrained by this value (Jakobsson, Edge, and Rosenberg 2013). In order to 
deal with this dependence, simulated datasets with many different starting 
allele frequencies in the ancestral population were generated. Although these 
simulations were still highly simplified—for instance, all populations had the 
same constant effective population size—they suggested that a substantial 
fraction of loci are affected by either positive or balancing selection.

A popular set of model-based methods use a similar approach to Bowcock 
et al. (1991) but simulate data under an island model rather than a phylo-
genetic tree. The original such approach was introduced by Beaumont and 
Nichols (1996). Their approach was analogous to that of Bowcock et al. (1991), 
with two differences: an island model with 100 populations was used for the 
simulations, and FST outliers were identified as a function of expected hetero-
zygosity rather than allele frequency. The original software running these sim-
ulations, FDIST, has been parallelized in the newer program, LOSITAN (Antao 
et al. 2008), which automates many of the tedious steps involved. LOSITAN 
can also iteratively remove outlier loci in order to re-run simulations that may 
better approximate the expected neutral distribution. Further elaborations on 
this basic model have been made. One of the most significant has been the 
introduction of a Bayesian approach to identifying outlier loci (Beaumont and 
Balding 2004; Foll and Gaggiotti 2008; Riebler, Held, and Stephan 2008). The 
most popular implementation of this model (in the program BayeScan; Foll 
and Gaggiotti 2008) estimates locus-specific selection parameters in order to 
identify the targets of selection. (This program was used to identify the targets 
of selection in Figure 10.4.) 

One very important issue with using the island model is that it ignores the 
hierarchical relationships among populations that exist in a phylogenetic tree. 
This problem is in fact the same one faced by the original Lewontin-Krakauer 
test (Lewontin and Krakauer 1973; Nei and Maruyama 1975; Robertson 1975) 
and can lead to many false positives in scans for selection (Meirmans 2012; 
Vilas, Pérez-Figueroa, and Caballero 2012; Bierne, Roze, and Welch 2013; 
Fourcade et al. 2013; Lotterhos and Whitlock 2014). One obvious solution is 
to simulate the phylogenetic relationships among populations (as in Bowcock 
et al. 1991), but other solutions include using a hierarchical island model 
(implemented in Arlequin; Excoffier, Hofer, and Foll 2009), using only two 
populations at a time (implemented in DetSel [Vitalis, Dawson, and Boursot 
2001] and XP-CLR [Chen, Patterson, and Reich 2010]), or finding the best-
fitting c2 distribution of FST values (implemented in OutFLANK; Whitlock and 
Lotterhos 2015). Note that all of these model-based methods assume that loci 
are unlinked from one another, which can be a problem when single selective 
events affect multiple polymorphic sites (see below).

The tests described thus far, with the exception of DetSel and XP-CLR, are 
generally carried out by calculating FST using all populations at once when 
there are more than two populations. This means that one cannot immediately 
determine which population(s) might be responsible for significant results 
and therefore which one contains the signal of selection. FST can be calculated 
in a pairwise fashion, and from these pairwise distances one could determine 
which populations are driving the pattern at outlier loci. Multiple methods 
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have been proposed to do this by explicitly identifying outlier branches on a 
population tree, allowing researchers to quickly identify which population is 
the target of selection. 

The two most popular methods for doing such a calculation only work for 
datasets with three populations, largely because there is only one unrooted 
tree describing these relationships (FIGURE 10.6). Given three populations, 
P1, P2, and P3, we can use pairwise FST values to estimate population- 
specific  branch lengths for any locus in the genome. If we  denote the 
pairwise FST value between P1 and P2 as F12, that between P1 and P3 as 
F13, and that between P2 and P3 as F23, and the branch lengths leading to 
each population as x1, x2, and x3 (Figure 10.6), then these branch lengths  
can be estimated by:
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This method is used to calculate locus-specific branch lengths, or LSBLs (Shriver 
et al. 2004). The same calculations can be made in every window of the genome, 
and therefore these summary statistics can be used to identify outlier regions 
specific to individual populations. Similarly, Yi et 
al. (2010) defined a population branch statistic (PBS) 
that uses the same approach as LSBLs but log-
transforms the FST-values before carrying out the 
calculations in Equation 10.4.

LSBLs and PBSs are limited to comparisons 
among three populations. One additional method 
that can deal with more than three populations 
builds population trees based on allele frequen-
cies and models change in frequencies via drift 
(Chapter 9). A background tree can be calculated 
using the whole genome (similar to the approach 
used by SweepFinder) or with a set of pre-selected 
markers thought to be unaffected by selection 
(e.g., Rockman et al. 2003). A likelihood-ratio test 
can then be conducted by building a tree for every 
region of the genome and constraining the topology 
to be the same but allowing branch lengths to vary. 
Loci under selection will have branch lengths that 
substantially differ from those of the background 
tree, resulting in a significant likelihood-ratio test 
(Rockman et al. 2003). The effects of individual 
populations can be explored by removing each in 
turn and recalculating the test.
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FIGURE 10.6 locus-specific branch 
lengths. Given pairwise measures of FsT 
between three populations, P1, P2, and P3, 
we can estimate the length of the branches 
leading to each population: x1, x2, and 
x3 (Equation 10.4). While one population 
may have longer branches overall as a 
result of increased genetic drift, locus- 
specific outliers can help to identify the 
targets of selection.
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Genome-wide scans using multiple populations can also use levels of varia-
tion to identify population-specific sweeps as those regions with low diversity 
in only a single population. This can be done using p and measures of nucleo-
tide diversity (e.g., Schlenke and Begun 2004; Stajich and Hahn 2005; Oleksyk 
et al. 2008; Montague et al. 2014), though such an approach has more often 
been used with microsatellites (e.g., Kohn, Pelz, and Wayne 2000; Harr, Kauer, 
and Schlötterer 2002; Payseur, Cutter, and Nachman 2002; Kauer, Dieringer, 
and Schlötterer 2003; Kayser, Brauer, and Stoneking 2003; Storz, Payseur, and 
Nachman 2004). The comparisons are usually done between pairs of popula-
tions in which some form of parent-daughter relationship exists, such that the 
daughter populations are thought to be the ones undergoing more selection. 
Examples include African and non-African humans and flies (both of which 
originated in Africa) and populations of rat that have recently become resis-
tant to rodenticides (Kohn, Pelz, and Wayne 2000).

A popular approach for carrying out such comparisons at microsatellite 
loci uses the variance in repeat number (V ) in each of two populations. Recall 
that V is an estimate of the population mutation parameter (Equation 3.23) 
and is therefore a natural statistic with which to measure levels of variation. 
Using the ratio of the variance in repeat number (RV ) in two populations, 
Schlötterer (2002) proposed taking the log of this value as a test statistic:
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The advantage of using ln(RV) rather than RV itself is that the log-transformed 
values are expected to follow a normal distribution when there is no selec-
tion. This makes hypothesis testing quite straightforward, and the normal-
ity of ln(RV) is robust under both a wide range of population histories and 
variation in mutation rates and mutation models (Schlötterer 2002). A related 
statistic, ln(RH), uses the ratio of microsatellite heterozygosity in two popula-
tions (Kauer, Dieringer, and Schlötterer 2003). This statistic is also expected to 
be normally distributed when there is no selection, making it easy to identify 
outlier loci.

CAVEATS ABOUT NON-INDEPENDENCE  
IN POPULATION GENOMICS

Population genomic datasets, and genome-wide scans for selection in particu-
lar, are prone to problems because of the lack of independence among test sta-
tistics. A lack of independence results in many issues, from false positive tests to 
biased parameter estimates. The most widespread problem may simply be that 
correlation among measures leads to pseudoreplication of patterns present in 
only a small fraction of observations. These non-independent pieces of evidence 
can then be interpreted as stronger support for a result than actually exists. 

There are multiple causes of non-independence, some biological and some 
methodological. An obvious methodological cause is the use of sliding win-
dows in genome-wide analyses. In sliding window analyses a summary 
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statistic is calculated for a specific region of the genome, with the same statis-
tic calculated in constant-sized partially overlapping windows moving along 
the chromosome. Because each window contains some of the same data as the 
last window, however, the individual measures are non-independent. Using 
these measures will lead to underestimated standard errors and hence tests 
that are too liberal (Hahn 2006). At a minimum, non-overlapping windows 
must be used. 

A second cause of non-independence—partially methodological and 
partially biological—arises from the fact that many different summary sta-
tistics in population genetics use the same underlying features of the data. 
For example, both Tajima’s D and FST are affected by allele frequencies, as is 
captured in the statistic p. While they are not perfectly correlated, this depen-
dence on a shared variable means that extreme values of both statistics in a 
genomic region should not be taken as independent support for natural selec-
tion. Later in this chapter we will discuss statistically rigorous ways to com-
bine correlated measures, but for now it is important to point out that these 
sorts of dependencies are common in population genetics and can be quite 
insidious. A non-obvious example comes from studies that first carry out a 
divergence-based comparison between species and then conduct population 
genetic analyses within species. As pointed out by Kern (2009), the selection of 
candidate regions based on levels of divergence creates an ascertainment bias 
that affects the derived allele frequency spectrum of polymorphisms. To see 
why this is, consider the choice of a single sequence from a natural population 
as a reference genome (the last section of Chapter 6 presents a similar issue). 
If in comparisons with reference genomes from other species we observe very 
few nucleotide differences in a particular region, this observation itself im-
plies that the region contains only low-frequency derived polymorphisms, 
and likely very few of them. Conversely, between-species comparisons that 
reveal a large number of differences imply a large number of high-frequency 
derived alleles. Therefore, a skewed frequency spectrum in regions identified 
first through comparisons between species cannot be used as independent 
evidence for inferences regarding natural selection, unless a correction for the 
ascertainment step is applied (Kern 2009).

Other forms of non-independence arise because nearby loci share both ge-
nealogical histories and underlying mutation rates. As a consequence, non-
overlapping and even non-adjacent nearby loci are likely to have correlated 
levels of polymorphism, levels of divergence, allele frequency spectra, and 
other measures of variation (Hahn 2006). Thornton and Jensen (2007) showed 
how an ascertainment bias can arise when a small number of windows are 
chosen because they have low levels of diversity, and then flanking windows 
are subsequently sequenced in order to carry out neutrality tests. The act of se-
lecting only outlier regions as a follow-up induces a bias in these tests because 
the flanking windows share a genealogical history with the original window 
and therefore do not represent independent evidence for selection. While this 
exact procedure is not used very much anymore, similar situations arise even 
with whole-genome data. The fact that many of our analyses assume that each 
of our observations is independent means that we may be misled as to the 
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strength of signal in the data. Single selective events can cause very large re-
gions of the genome to have extreme summary statistics (e.g., Tishkoff et al. 
2007), and severe demographic events may do the same (e.g., Gray et al. 2009). 
If we count each gene or window in these large regions as an independent 
observation, the significant results present in a small subset of the data will 
be pseudoreplicated—it will not be clear whether a group of outliers repre-
sents the same event or multiple events in the same genomic region. As a 
consequence, there may be more outliers observed than expected by chance 
(e.g., Akey et al. 2004; Stajich and Hahn 2005). In the next section of the book 
I discuss newer methods for dealing with spatial correlation in measures of 
variation.

FUTURE APPROACHES

In this last part of the book I discuss several areas of research in molecular 
population genetics that are just taking off but seem likely to be very impor-
tant in the coming years. This is by no means meant to be an exhaustive list—it 
is simply a short list of four areas that have captured my imagination. The 
areas reflect the opportunities created by increases in both computational 
and sequencing power. As the cost of both continues to fall, and as sequenc-
ing technologies produce new kinds of data, it is also easy to predict that ap-
proaches that do not even exist today will be important in the near future. 
A discussion of these areas will have to await future editions of the book.

The application of machine learning to population genetics
Machine learning is an active area of research combining methods from com-
puter science and statistics in order to identify patterns in messy data. As 
population genetics is filled with such data, it seems almost inevitable that 
the tools from machine learning would be applied here. The basic idea behind 
the use of machine learning tools is to learn the underlying state or parameter 
values in our data using algorithmic models. We are familiar with many of the 
population genetic parameters we would like to learn: Ne, q, g, and so on. The 
underlying states correspond to a similarly wide variety of relevant labels for 
different loci, including constrained/unconstrained, hard/soft sweeps, and 
high/medium/low gene flow. Given the stochasticity of the evolutionary pro-
cess, machine learning methods allow us to make more accurate inferences 
regarding these values.

Machine learning approaches can be usefully divided into unsupervised 
and supervised methods. The distinction between unsupervised and super-
vised methods will become clearer below when I explain supervised meth-
ods, but for now suffice it to say that unsupervised methods are used in 
cases in which we do not assign the true states or parameters. In Chapter 9 
we briefly discussed one popular method that is often used for unsupervised 
learning—hidden Markov models (see Durbin et al. 1998 for a detailed de-
scription). HMMs model a dataset as having been indirectly generated by a 
Markov chain with varying states, and therefore naturally deal with the cor-
relations among adjoining regions of the genome. If our dataset consists of 
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polymorphism along a chromosome, we imagine that at each position the 
Markov chain has some unknown (hidden) state. In each hidden state a dif-
ferent set of parameters is used to produce the observed sequence data. As 
an example, if the states correspond to different TMRCAs (e.g., Li and Durbin 
2011), then different numbers of polymorphisms will be “emitted” when the 
TMRCA is recent versus long ago; if the states correspond to regions experienc-
ing different forms of selection (e.g., Kern and Haussler 2010), different allele 
frequency spectra will be emitted in each.

One use of HMMs is to segment the genome into regions with different 
labels (states), and to do so without determining a single window size to use 
for analysis ahead of time. The first HMM used in biological sequence anal-
ysis segmented the genome into regions of differing GC content (Churchill 
1989), and HMMs have been applied in phylogenetics for quite a while (e.g., 
Felsenstein and Churchill 1996; Siepel and Haussler 2004b). In population ge-
netics HMMs have found a number of uses, being employed to identify re-
gions of the genome that are constrained or unconstrained (Schrider and Kern 
2014), to label regions of different population ancestry along a chromosome 
(Falush, Stephens, and Pritchard 2003; Lawson et al. 2012; Brandvain et al. 
2014), to uncover regions of higher or lower gene flow between populations 
(Turner, Hahn, and Nuzhdin 2005; Hofer, Foll, and Excoffier 2012), to iden-
tify regions affected by selective sweeps (Boitard, Schlötterer, and Futschik 
2009), to determine the form of selection acting on different regions (Kern and 
Haussler 2010), and to learn demographic histories (discussed in Chapter 9).

Supervised machine learning methods are applied first to training data for 
which two or more classes of data have known states (labels) in order to learn 
an optimal classification scheme. In population genetics the training data are 
often simulated under a variety of known selective and demographic param-
eters. The methods are then used to classify observed data that are not labeled, 
thus learning what the underlying states are. In addition to the training step, 
supervised methods differ from commonly used unsupervised methods in 
being able to combine many summary statistics of the data, even when they 
are correlated. Whereas the hidden states of an HMM often only generate one 
aspect of the data at a time (such as the allele frequency spectrum), supervised 
methods can be applied to an assembly of measures, each of which captures a 
slightly different signal in the data. For instance, Pavlidis, Jensen, and Stephan 
(2010) used a supervised learning approach to show that combining signals 
from the allele frequency spectrum and linkage disequilibrium resulted in 
more accurate and powerful detection of selective sweeps than using either 
statistic alone. The use of many more pieces of data for each region of the 
genome means that supervised methods can be highly accurate, though the 
size of the regions considered must be specified a priori.

There are many different supervised methods that have been used in popu-
lation genetics, but almost all have been applied to the problems of detecting 
regions under positive selection or determining what form of positive selec-
tion has been acting (or whether regions are constrained; Schrider and Kern 
2015). Support vector machines (SVMs) and boosting are two methods that have 
been used to distinguish regions affected by selective sweeps from those that 
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have not been affected (e.g., Pavlidis, Jensen, and Stephan 2010; Lin et al. 2011; 
Ronen et al. 2013; Pybus et al. 2015). SVMs have further been used to clas-
sify regions where sweeps have occurred into those affected by hard sweeps 
or soft sweeps (Schrider et al. 2015), though even higher accuracy has been 
achieved in this area using a supervised method known as an extra-trees clas-
sifier (Schrider and Kern 2016). Finally, deep learning methods, based on neural 
networks, have recently been applied to the task of jointly estimating demog-
raphy and selection while still determining the form of selection acting on 
each region of the genome (Sheehan and Song 2016). The application of these 
and other powerful tools to population genomic data are sure to further trans-
form the way inferences are made in the future. 

Ancient DNA and genetic variation through time
One of the most exciting areas opened up by advances in genome sequencing 
has been the field of ancient DNA, or paleogenetics. Sequences from preserved 
samples were first obtained in the mid-1980s (Higuchi et al. 1984; Pääbo 1985), 
but the degradation of ancient DNA combined with large amounts of bacterial 
contamination meant that early studies focused on high-copy-number loci in 
the mitochondrial or chloroplast genomes. The massive drop in costs that ac-
companied the first wave of next-generation sequencing technologies meant 
that large amounts of nuclear sequence could be obtained, even after discard-
ing microbial DNA. 

The first large-scale ancient DNA datasets included 40,000-year-old extinct 
cave bears (Noonan et al. 2005), a woolly mammoth (Poinar et al. 2006), and 
Neanderthals (Green et al. 2006; Noonan et al. 2006). Whole genomes were 
soon sequenced for an ancient human (Rasmussen et al. 2010), a Neanderthal 
(Green et al. 2010), and an ancient hominin from a previously unknown group 
now referred to as Denisovans (Reich et al. 2010). Genome sequences are cur-
rently available from hundreds of ancient humans (reviewed in Slatkin and 
Racimo 2016)—as well as from many other species (e.g., Ramos-Madrigal et al.  
2016)—with more being produced all the time (Shapiro and Hofreiter 2014).

While these ancient sequences are interesting for many different reasons, 
from a population genetics perspective they present new challenges. The field 
of paleopopulation genetics (Wall and Slatkin 2012) must deal with samples that 
existed at many different points in time, possibly spread across a geographic 
region, and without always having clear assignment to known extant or ex-
tinct species. Population geneticists have in fact been dealing with such serial 
samples for some time. Often these datasets have come from viruses sampled 
within a single individual (e.g., Holmes et al. 1992; Wolinsky et al. 1996), from 
a small number of samples taken from species of conservation or economic 
importance (reviewed in Schwarz, Luikart, and Waples 2007), or from mito-
chondrial sequences in ancient samples (e.g., Hofreiter et al. 2002; Lambert  
et al. 2002; Orlando et al. 2002; Shapiro et al. 2004). The first methods using such 
serial samples were able to estimate Ne from allele frequencies taken at two  
time points (Krimbas and Tsakas 1971; Pamilo and Varvio-Aho 1980; Nei and 
Tajima 1981b; Waples 1989), the change in Ne from similar data (Williamson 
and Slatkin 1999; Anderson, Williamson, and Thompson 2000), or the joint 
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history of Ne and migration (Wang and Whitlock 2003). When two or more 
samples are available, a modification of the standard coalescent model that 
deals with non-contemporaneous sequences becomes useful (Rodrigo and 
Felsenstein 1999). There are now a number of genealogically based methods 
that can be applied to serial samples to estimate changes in Ne over time (e.g., 
Fu 2001; Berthier et al. 2002; Drummond et al. 2002; Beaumont 2003; Anderson 
2005), the generation time of sampled populations (e.g., Rodrigo et al. 1999), 
and the mutation rate (e.g., Rambaut 2000; Drummond et al. 2002), even after 
accommodating the DNA damage that occurs with ancient samples (e.g., 
Rambaut et al. 2009; Racimo, Renaud, and Slatkin 2016). Coalescent simu-
lators also exist that can generate data that come from many different time 
points (e.g., Anderson et al. 2004; Kern and Schrider 2016). 

With the availability of much larger serially sampled datasets has come 
a focus on detecting the targets of selection over time. General statements 
about selection in genes known to be involved in important phenotypes can 
be made from patterns of allelic diversity in ancient samples (e.g., Jaenicke-
Despres et al. 2003). But the first method that could estimate g = 2Nes from 
temporal datasets and presented a test for selection was provided by Bollback, 
York, and Nielsen (2008). Application of this method revealed loci under se-
lection during the domestication of horses (Ludwig et al. 2009) but found 
that a gene thought to be selected in human history had a pattern of allele 
frequency change consistent with s = 0 (Bollback, York, and Nielsen 2008). 
There are now a number of methods for estimating g being applied to an ever-
expanding set of temporal data (e.g., Malaspinas et al. 2012; Mathieson and 
McVean 2013; Steinrücken, Bhaskar, and Song 2014; Foll, Shim, and Jensen 
2015; Gompert 2016; Jewett, Steinrücken, and Song 2016; Malaspinas 2016; 
Schraiber, Evans, and Slatkin 2016). Importantly, increased sampling in extant 
population across seasons or years (e.g., Mueller, Barr, and Ayala 1985; O’Hara 
2005; Bergland et al. 2014) means that these methods will be applicable to a 
wide range of organisms in the near future.

Populations of whole assembled genomes
Within the broad field of population genomics, almost all sequencing and 
analysis has been carried out using short sequencing reads mapped against a 
common reference genome (Chapter 2). Whether samples are sequenced indi-
vidually or in pools, this strategy by necessity means that most of the variation 
being studied must be present in this reference genome. The current approach 
to sequencing does not allow us to query nucleotide variants in unassembled 
regions, in regions that are not present in the individual sequenced to gener-
ate the reference (e.g., Kidd et al. 2008), or in regions where non-reference 
sequences are exceptionally divergent (e.g., Raymond et al. 2005). Even when 
copy-number variants can be found, most methods only allow us to detect 
additional copies of sequences found in the reference genome, and this as-
certainment bias can affect inferences about the allele frequency spectrum of 
CNVs (Emerson et al. 2008). In addition, reads from highly repetitive regions 
often cannot be uniquely mapped, which means that it is difficult to assess 
variation either in the number of repeats present or in the sequences of these 
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repeats. As a consequence, there are many limitations to current sequencing 
approaches for studying multiple types of genetic variation, including inver-
sions, insertions, and repeats (Chaisson, Wilson, and Eichler 2015). 

Fortunately, next-generation sequencing methods have made it possible to 
collect populations of whole genomes, each representing a uniquely assembled 
individual. Single-copy regions not present in the reference, as well as highly 
diverged haplotypes, have been uncovered by sequencing and assembling 
a population sample of genomes using standard Illumina technologies (e.g., 
Gan et al. 2011). However, the most promising approach for  understanding 
more complex variation is to use long-read sequencing technologies. These new 
 technologies—sometimes referred to as third-generation sequencing— produce 
contiguous sequences many kilobases in length. At the moment two com-
panies are producing this type of data for general use: Pacific Biosciences 
(“PacBio”) and Oxford Nanopore Technologies. The platforms produced by 
these companies generate very long sequences that can be used to assemble 
whole genomes or previously recalcitrant regions of “finished” genomes (e.g., 
English et al. 2012; Huddleston et al. 2014; Quick, Quinlan, and Loman 2014; 
Ashton et al. 2015; Chaisson et al. 2015; Jain et al. 2015; Chakraborty et al. 2016) 
or to discover and genotype CNVs (e.g., Ritz et al. 2014; Rogers et al. 2014). 
Other approaches use modifications of short-read sequencing technology to 
produce “synthetic” long reads and have also successfully been able to resolve 
highly repetitive elements (e.g., McCoy, Taylor, et al. 2014). Regardless of which 
platforms are used to construct genome assemblies, it is clear that population 
samples of such assemblies will soon exist for many species.

Samples of assembled genomes will present many challenges not only to 
population genetics, but also generally to the computational analysis of se-
quence variation. There are many questions raised when we have multiple 
assembled genomes, for which there are currently few clear answers. For in-
stance, a reference genome provides a common set of genomic positions to 
which all researchers can refer, as well as a common set of gene annotations. 
But when we collect a sample of separately assembled genomes, what coor-
dinate system should we use? If we assign a single genome as the reference, 
what coordinates should we use to refer to the many megabases of sequence 
present only in non-reference individuals? One partial solution recently ad-
opted in the representation of the human genome is to include “alternate” 
reference sequences for several regions that are known to be highly divergent 
from the reference genome (e.g., MHC). In these regions multiple haplotypes 
are represented in the reference, which allows reads from individuals carrying 
the alternate haplotypes (relative to the arbitrary one present in the reference) 
to be mapped. Another solution is to use a population reference graph (Dilthey 
et al. 2015), a graph structure that contains many possible variants—small and 
large—present in a population. Such graph structures solve many problems in 
reference-based mapping (reviewed in Paten et al. 2017). A further alternative 
solution might appear to be to generate an alignment of all of our genomes and 
to use positions in the alignment as a shared set of coordinates. However, this 
solution ignores several important issues with alignments. First, every new 
genome added will change our alignment, and therefore our coordinates—an 
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unwanted feature in a method intended to allow clear communication about 
genomic positions. Second, genome alignment is a very challenging compu-
tational problem (e.g., Earl et al. 2014), one that is largely avoided by current 
short-read approaches (which generate the alignment as reads are mapped to 
the reference). So even after long-read technologies make issues of genome 
assembly moot—if we imagine that whole chromosomes will come out of se-
quencing machines one day—this will simply shift the computational burden 
onto genome alignment.

An additional challenge comes from the diploid nature of eukaryotic sam-
ples. Right now the reference genome for most eukaryotic species consists of 
a haploid representation of the sequence of either a single inbred line, a single 
diploid individual, or multiple diploid individuals. One reason for using a 
haploid sequence as the reference is that it is quite hard for assembly methods 
that have been applied to short sequences to construct a diploid assembly—
such assemblies require that every chromosome be represented twice, with 
haplotypes phased correctly. Some researchers have been able to construct 
diploid assemblies using clone-based sequencing coupled with shorter reads 
(e.g., Levy et al. 2007; Kitzman et al. 2011), but long-read sequencing will make 
this approach much more prevalent (e.g., Chin et al. 2016). This means that for 
every individual we will get two assemblies—one for each chromosome. As 
there is no further information contained in a single individual as to how to 
sort the different chromosomes into haploid complements (i.e., into maternal 
and paternal sets of chromosomes), it is not clear how we will represent even 
a single assembly. While advances in sequencing promise many new biologi-
cal insights, these will almost certainly come with their own logistical and 
computational issues. 

Deep population sequencing
The low cost of DNA sequencing has made it possible to collect over 1,000 
genomes from several model species (1001 Genomes Consortium 2016; Lack 
et al. 2016) and hundreds of genomes from others (e.g., Cook et al. 2017; Zhu, 
Sherlock, and Petrov 2017). The scientific and medical importance of studies 
in humans means that we quickly went from 1,000 genomes (1000 Genomes 
Project Consortium 2012) to 10,000 genomes (Telenti et al. 2016). The increase 
has been even steeper for human exome sequencing, moving from studies 
with over 2,400 individuals (Tennessen et al. 2012) to those with over 60,000 
individuals (Lek et al. 2016). While these initial efforts often had more modest 
sample sizes within each global subpopulation, this was not always the case: 
in Iceland alone 2,636 people were sequenced (Gudbjartsson et al. 2015).

Deep sequencing projects—those with very large sample sizes—present 
new opportunities as well as challenges for population genetics. As briefly 
mentioned in Chapter 9, deep sequencing makes it possible to study very 
rare alleles and therefore to understand very recent demographic history 
(e.g., Keinan and Clark 2012). Other methods have been developed to infer 
the strength of selection at loci undergoing selective sweeps using deep 
population samples (e.g., Messer and Neher 2012). By far the most common 
use of deep sequencing has been to make inferences about the rate and 



274  CHAPTER 10

han39657_ch10_249-274.indd 274 02/27/18  03:09 PM

patterns of mutation (e.g., Messer 2009; Nelson et al. 2012; Schaibley et al. 
2013; Harpak, Bhaskar, and Pritchard 2016; Lek et al. 2016; Zhu, Sherlock, 
and Petrov 2017). Low-frequency variants are the most likely to reflect un-
derlying mutational processes—having not yet been subject to many gen-
erations of natural  selection—and therefore offer a straightforward way to 
understand  mutation itself. 

There are also of course multiple challenges in making inferences from 
deep samples. While the advantages of this type of data largely come from 
extremely rare variants, this is also the category of variation most affected 
by sequencing error. These errors must be taken into account when estimat-
ing mutation rates (Messer 2009) or demographic history (Keinan and Clark 
2012). We also have to be concerned with recurrent mutation, as the frequency 
spectrum of very rare alleles will be disproportionately affected by this pro-
cess (Harpak, Bhaskar, and Pritchard 2016). Most important, however, may be 
the concern that methods for population genetic inference based on the stan-
dard coalescent—which assumes that n << Ne—will be misleading for sample 
sizes that approach the effective population size or even the census population 
size (Wakeley and Takahashi 2003). Fortunately, there are a number of new 
approaches for dealing with very large sample sizes (e.g., Fu 2006; Bhaskar, 
Clark, and Song 2014; Chen, Hey, and Chen 2015; Kelleher, Etheridge, and 
McVean 2016).

As samples grow larger, we also have to be concerned about the underlying 
population pedigree—that is, the actual familial relationships among individ-
uals. At small sample sizes our coalescent approximations are not affected by 
this pedigree; however, with large sample sizes our standard expectations may 
not be correct (Wakeley, King, and Wilton 2016). Knowledge of population 
pedigrees also offers many interesting opportunities for evolutionary studies. 
In small, isolated populations, every individual across multiple generations 
can be included in a pedigree and can be genotyped or sequenced (reviewed 
in Pemberton 2008). Such pedigrees regularly include thousands of individu-
als, as in those produced for Soay sheep on the island of St. Kilda (n = 5,805; 
Johnston et al. 2016), for Florida scrub-jays (n = 3,984; Chen et al. 2016), or for 
humans from Iceland (n = 104,220; Gudbjartsson et al. 2015). The information 
carried by pedigrees can be used to make unique types of inferences about 
the direct fitness advantages of specific genetic variants (e.g., Stefansson et al. 
2005; Johnston et al. 2013), meiotic recombination rates (e.g., Johnston et al. 
2016), and even the per-generation mutation rate (Kong et al. 2012). As pedi-
grees grow in size to encompass even whole species, population genetics will 
transition from being sample-based to truly population-based, with the ability 
to track the history of every genome in the population.
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191, 192, 194, 195

measures of variation, 57–58
observed haplotype 

homozygosity, 193
relative extended haplotype 

homozygosity (REHH) 
test, 197, 198, 200

repulsion phase of 
haplotypes, 60–61

unstandardized integrated 
haplotype score (iHS), 
198–200, 261–262

hard selective sweeps,  
168, 176

Hardy-Weinberg equilibrium 
(HWE), 17–18, 80–81, 82, 
90, 105–106

Hardy-Weinberg  
model, 17–18

Heliconius melpomene, 263
heterozygosity

decline in Wright-Fisher 
model, 4–5

definition, 4
expected amount in 

randomly mating 
population, 4

H (expected haplotype 
heterozygosity), 190, 194

haplotypes, 58
in Moran model, 5
sample (expected) 

heterozygosity (h), 44
sum of site heterozygosities 

(p or qp), 44–45, 50, 51, 
85, 120

variance in p [Var(p)] under 
neutral-equilibrium 
model, 45–46, 47

heterozygote advantage (or 
overdominant selection), 
13, 149, 179

hidden Markov models 
(HMMs), 31, 220, 240, 243, 
268–269

Hill-Robertson effect 
(Hill-Robertson 
interference), 170–171

hitchhiking
demographic inference and, 

252, 257
divergence and, 170
effect on levels of 

diversity, 258
hitchhiking model of 

molecular evolution, 24, 
54, 259–262

selective sweeps and,  
165–166, 259–262

See also linked selection
HKA test

assumptions, 175
coalescent simulations, 

172, 175
experimental design, 

172–173
interpreting the HKA test, 

173–175, 187
overview, 171–172
variance in, 159, 172–173
See also linked selection; 

polymorphisms
homozygosity

extended haplotype 
homozygosity (EHH) test, 
196–200

F (expected haplotype 
homozygosity),  
189–190, 191, 192, 193, 
194, 196–197

haplotypes, 58
identical-by-descent (IBD) 

sequences, 213–214
identical-by-state (IBS) 

sequences, 91, 213–214
inbreeding and, 18
integrated haplotype 

homozygosity (iHH), 
197–200

microsatellites, 56
observed haplotype 

homozygosity, 193
relative extended haplotype 

homozygosity (REHH) 
test, 197, 198, 200

runs of homozygosity, 213

H test (Fay and Wu), 181, 183, 
185–186, 189

Hudson’s haplotype test 
(HHT), 194–195

humans
allelic variation at 

microsatellite loci, 56
ancient DNA, 270
deep population 

sequencing, 273
exome sequencing, 273
LCT locus, 193
MMP3 locus, 192, 195
neutrality index  

(NI), 162
pairwise linkage 

disequilibrium, graphical 
representation, 64, 65

principal components 
analysis on allele 
frequencies across 
Europe, 236

scarcity of triallelic and 
quadrallelic sites, 50

TRPV6 gene, 187
HyPhy (software), 139

I
IBD (identical-by-descent) 

sequences, 213–214
IBD (isolation by distance), 16, 

234–236, 238
identical-by-descent (IBD) 

sequences, 213–214
identical-by-state (IBS) 

sequences, 91, 213–214
iHS (unstandardized 

integrated haplotype 
score), 198–200,  
261–262

Illumina sequencing, 32, 33, 35, 
36, 272

See also next-generation 
sequencing

IM (software), 98–100, 229
IMa2 (software), 98, 229
inbreeding, 18, 106
inbreeding coefficient (F), 18
incomplete lineage sorting 

(ILS), 225, 240, 241,  
242–243, 244–245
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indels (insertion/deletion 
polymorphisms)

definition, 3
effect on chromatograms, 30
ignored in analyses, 3, 45
NGS sequencing errors 

and, 35, 36
treated as missing data, 3, 45

infinite alleles model of 
mutation, 8, 10, 57, 211

infinite island models of 
migration, 15–16, 84, 
94, 234

infinite sites model of 
mutation

assumptions, 8, 9, 10, 50
estimators of q for SNPs, 

44–50, 54–55
four-gamete test and, 68
sum of site heterozygosities 

(p), 44–45, 50
variance in p [Var(p)] under 

neutral-equilibrium 
model, 45–46

variance in segregating sites 
[Var(S)], 46

Watterson’s theta (qW), 46, 
47, 49–50

insertion/deletion (indel) 
polymorphisms. See indels

integrated haplotype 
homozygosity (iHH), 
197–200

interlocus gene conversion, 12
internal branches on 

genealogies, 121–122
intralocus gene conversion, 12
introgression

definition, 231
D statistic (ABBA-BABA 

test or Patterson’s D), 233, 
245–247

effect on patterns of 
linkage disequilibrium, 
102–104, 109

inferred from gene tree 
discordance, 244–247

simulation methods for 
detecting, 100–101

site patterns and, 244–246
See also admixture; migration

introns, 27, 28
island models of migration, 

15–16, 264
isolation by distance (IBD), 16, 

234–236, 238
isolation model of population 

differentiation, 94, 95, 
96–97, 98

isolation-with-migration 
model, 97–100

J
Jaatha (software), 228
janus-ocnus locus, 187
Jensen’s inequality, 162
joint allele frequency 

spectrum, 227–228
joint site frequency spectrum 

(JSFS), 99, 227
Jukes-Cantor correction, 9, 51, 

136–137

K
K (observed number of  

unique haplotypes), 69, 
74, 189–190, 191, 194, 200

k (substitution rate of new 
alleles), 131–132, 134

Kimura, Motoo, 18–19, 20, 
21, 137

L
Lander-Waterman  

model, 36
landscape genetics, 234–238
LCT locus, 193
LDhat (software), 75
Ldh-B locus, 160
LDhelmet (software), 75
LFMM (software), 238
likelihood methods

approximate likelihood 
methods, 72, 73–74, 216, 
219, 228

calculating dN and dS,  
139–140, 143

CLRT (composite likelihood 
ratio test), 259–261

composite likelihood 
methods, 75–77, 216–218, 
228, 259–261

in demographic inference, 
215–217, 218, 219, 228, 
239, 243

diversity at a microsatellite 
locus, 55

estimating q, 43, 55
estimating r, 72, 73–75
inferring the phase of 

alleles, 31
maximum likelihood 

estimates (MLEs), 216
maximum likelihood (ML) 

methods for a, 162
lineage sorting, 240, 241, 242
linkage

definition, 59, 60
linkage disequilibrium (LD), 

59–68
ascertainment bias, 63
average r2 value (ZnS), 63, 

190, 195, 200
calculating significance 

of, 62
changing population size 

effect on, 210
complete LD, 62, 64, 126
coupling phase of 

haplotypes, 60–61
decay across the genome, 

65–66, 71
definition, 60
detecting selection using 

haplotype summary 
statistics and, 194–195

detecting selection using 
patterns of linkage 
disequilibrium, 189–201

effects of balancing 
selection, 189–190

effects of evolutionary 
processes, 70

effects of positive selection, 
190–194

extended haplotype 
homozygosity (EHH) test 
and, 196–200

gametic linkage 
disequilibrium, 67

genotypic linkage 
disequilibrium, 67–68

global views, 63, 65
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linkage disequilibrium (cont.) 
haplotype frequencies 

(gij), 60
haplotype homozygosity for 

measures of pairwise LD, 
196–200

haplotype summary 
statistics for measures of 
pairwise LD, 195–196

Hudson’s haplotype test 
(HHT) and, 194–195, 
199–200

integrated haplotype 
homozygosity (iHH) and, 
197–200

interpreting tests based on 
haplotype structure and 
LD, 200–201

linkage disequilibrium 
coefficient (D), 60–61, 66

local or regional views, 
63–65

measuring linkage 
disequilibrium, 59–68

migrant tracts or admixture 
chunks, 104, 109–110

migration effect on patterns 
of LD, 102–104

missing data, effect on 
calculations, 62–63

mixture LD, 106, 109
multi-locus Wahlund effect, 

106–107, 226
multiple alleles and, 66
multiple loci and, 67
normalized linkage 

disequilibrium coefficient 
(D′), 61–63, 64, 68, 85, 126

w statistic, 195–196
pairwise linkage 

disequilibrium, graphical 
representation, 63–64, 65

pairwise linkage 
disequilibrium, measures 
of, 61–63

pairwise linkage 
disequilibrium, 
summarizing, 63–66

perfect LD, 62, 106, 126
r2 statistic (squared 

correlation of alleles at 

two loci), 61–63, 65–66, 
68, 71, 126

relationship to 
recombination, 71, 126

relative extended haplotype 
homozygosity (REHH) 
test and, 197, 198, 200

repulsion phase of 
haplotypes, 60–61

in shoulders of selective 
sweeps, 191, 196, 251

three-locus 
disequilibrium, 67

unstandardized integrated 
haplotype score (iHS) and, 
198–200, 261

See also recombination
linkage equilibrium, 60
linked selection, 165–202

background selection, 
169–170

balancing selection effect on 
polymorphism, 153

balancing selection effects 
on levels of linked neutral 
variation, 168–169, 186–187

caveats to tests of linked 
selection, 201–202

definition, 54–55
demographic histories and, 

171, 175, 201–202, 251–252
detection using allele 

frequency spectrum, 
175–189

detection using patterns of 
linkage disequilibrium, 
189–201

detection using 
polymorphism, 165–175

effect on estimates of FST, 87, 
93–94

effects on variation across 
genome, 252, 253, 254

Hill-Robertson effect (Hill-
Robertson interference), 
170–171

hitchhiking, 165–166, 170, 251
models of linked selection, 

54–55
no effect on neutral 

divergence, 170–171

population differentiation 
and, 93–94

positive selection effects on 
levels of linked neutral 
variation, 165–168

recombination rates 
correlation with levels 
of variation, 53–54, 87, 
186–187

reduced polymorphism 
and, 24, 54

strongly deleterious alleles 
effects on levels of linked 
neutral variation, 169–170

See also HKA test
ln(RV), log of ratio of variance 

in repeat number between 
populations, 266

locus, definition, 2
locus-specific branch lengths 

(LSBLs), 265
long-read sequencing 

technologies, 272
LOSITAN (software), 264

M
M (frequency of most common 

haplotype), 190, 191, 192, 
194, 195

machine learning, application 
to population genetics, 
268–270

major histocompatibility 
complex (MHC), 149, 250

Mantel test, 235
mapping quality scores, 35, 36
marginal genealogies, 126, 127
Markov chain Monte Carlo 

(MCMC) methods, 73, 75, 
98, 105, 107, 216, 229

mating, models of, 17–18
maximum likelihood estimates 

(MLEs), 216
maximum likelihood (ML) 

methods for a, 162
Maynard Smith, John, 131
McDonald-Kreitman test (MK 

test), 149–163
assumptions, 22, 151–152, 

153–154, 156–159, 160, 
173, 201
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biological extensions of the 
MK test, 159–160

contingency tables, 150, 152, 
154, 155, 173

excess of nonsynonymous 
fixed differences, 152, 
153–154, 158, 161

expected levels of 
polymorphism and 
divergence, 151–152, 
156, 157

experimental design, 
149–151

interpreting the McDonald-
Kreitman test, 152–154

methodological extensions 
of the MK test, 154–156

neutrality index (NI), 
161, 162

in noncoding regions, 160
overview, 149
polymorphism and 

divergence in regulatory 
sequences, 159–160

population genomics, 258
population size and, 156–157
preferred and nonpreferred 

synonymous 
substitutions, 159

summarizing selection 
across the genome, 
160–163

See also direct selection; DNA 
sequence divergence; 
polymorphisms

MCMCcoal (software),  
229, 243

measuring population 
differentiation, 81–91

absolute measures of 
differentiation, 87–88

alternative measures of 
population differentiation, 
86–89

ascertainment bias, 88–89
da (net nucleotide 

differences between 
populations), 88, 89

df (fixed differences 
between populations or 
species), 88, 89

differences between 
measures, 88, 89

dXY, 87–88, 89, 132, 173
E(FST), 94, 96
FST, 82–86, 87, 91, 92, 93–94, 

201, 263–265
gST, 85–86, 86
GST, 84–85
G′ST, 85
Nei’s D, 86–87
NST, 86
fST, 86
relative measures of 

differentiation, 87-88
RST, 85
See also population 

differentiation
Medicago trunculata, 65, 66
microsatellites

definition, 10
estimators of q, 55–57, 85
homozygosity, 56
ln(RV), log of ratio of 

variance in repeat  
number between 
populations, 266

measures of variation, 55–57, 
85, 266

mutation via polymerase 
slippage, 10

population differentiation 
(RST), 85

stepwise mutation model, 
10, 55–57, 85

V (variance in repeat 
number), 56–57, 266

migrant tracts, 104
migration

admixed individuals in 
populations, 105, 107, 
108–109

analysis of multiple 
populations in space, 
234–238

continent-island model, 16
continuum models, 16–17, 

234–235
effect on allele frequency 

spectrum, 225, 227–228
effect on patterns of linkage 

disequilibrium, 102–104

estimated effective 
migration surfaces 
(EEMS), 237, 238

finite island models, 15, 16
Gmin for detecting, 102
infinite island models, 

15–16, 84, 94, 234
island models, 15–16, 264
isolation-with-migration 

model, 97–100
migrant tracts or admixture 

chunks and, 104, 109–110
migration model of 

population differentiation, 
94–96, 97, 98

migration rate (m) 
parameter, 14–16, 98, 203, 
222, 223–224, 247–248

minimum distance methods 
for detecting, 101–102

models of migration,  
14–17

outlier approaches, 100
population structure and, 

223–225
relative node depth (RND) 

methods for detecting, 
101–102

RNDmin for detecting, 102
sequence statistics methods 

for detecting, 100–101
stepping-stone model of 

migration, 15, 16, 227, 234
two-dimensional 

stepping-stone model of 
migration, 15, 16

two-island model, 16
See also introgression

minor allele frequency (MAF), 
47–48, 49

MixMapper (software), 231–232
mixture LD, 106, 109
MMP3 locus, 192, 195
models of evolution, 1–24

model-based approaches 
to population genomics, 
254–257, 263–265

models of mating, overview, 
17–18

models of migration, 
overview, 14–17
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models of evolution (cont.)
models of mutation, 

overview, 7–11
models of natural selection, 

overview, 12–14
models of populations, 

overview, 3–6
models of 

recombination, 11–12
models of molecular evolution

advantageous mutation 
model, 23, 24

alternative models 
of molecular 
evolution, 23–24

background selection model, 
24, 54, 169–170, 176, 
251, 252

balanced mutation model, 
23–24

deleterious mutation 
model, 23, 24

hitchhiking model, 24, 54, 
259–261

nearly neutral theory of 
molecular evolution, 24

overview, 18–24
See also neutral theory of 

molecular evolution
models of mutation

generalized stepwise 
models, 10, 57

infinite alleles model, 8, 10, 
57, 211

overview, 7–11
stepwise mutation model, 8, 

10–11, 55–57, 85
two-allele model, 8–9
See also finite sites model 

of mutation; infinite sites 
model of mutation

models of populations
Cannings model, 5–6
Moran model, 5, 7
overview, 3–6
See also Wright-Fisher model

molecular population genetics
definition, 1
future approaches, 268–274
history, 1–2
See also specific topics

Moran model, 5, 7
most recent common ancestor 

(MRCA)
average time to MRCA 

(genealogy height), 120, 
129, 135, 166, 222

coalescent genealogies and, 
114, 115, 120, 130, 166

MSMC (software), 220, 229
multiallelic balancing 

selection, 14, 149, 153
multi-locus Wahlund effect, 

106–107, 226
multiple sequential Markovian 

coalescent (MSMC) 
model, 220

multiple-testing issues in 
population genomics, 
255–256, 258

multi-population allele 
frequency spectrum, 99

multispecies coalescent
ancestral parameters 

inferred from gene tree 
discordance, 240–244

ancestral parameters 
inferred from two species, 
239–240

estimating ancestral 
effective population size 
(NA), 239–240

incomplete lineage sorting 
(ILS), 240, 241, 242–243, 
244–245

introgression inferred from 
gene tree discordance, 
244–247

See also coalescent process; 
demographic history

mutation
on coalescent genealogies, 

115, 116–118, 121–122
definitions of, 3
gain-of-function 

mutations, 175
MRCA and fixed 

mutations, 129
nearly neutral 

mutations, 133
population differentiation 

and, 91

probability of fixation, 
132–133

proportion of mutations on 
any single chromosome, 
129, 130

selection coefficient (s) of a 
mutation, 12

terminology, 12–13
See also advantageous 

mutations; deleterious 
mutations; models 
of mutation; neutral 
mutations

mutation rate (m)
coalescent process and, 

120–121
at CpG sites, 7
effect on rate of nucleotide 

substitution, 132–133
in eukaryotes, 8
nucleotide transition 

mutations, 7, 137
nucleotide transversion 

mutations, 7
See also neutral mutations

Myers-Griffiths algorithm, 
69–70

N
natural selection

adaptive natural selection, 
152, 156, 157, 162, 163, 
256–257

directional selection, 14, 
160, 262

disruptive selection, 14
effects on population 

differentiation, 91–93
models of natural 

selection, 12–14
on quantitative traits, 14, 21
stabilizing selection, 14
See also balancing selection; 

detecting selection; direct 
selection; linked selection; 
negative (or purifying) 
selection; positive 
selection

nearly neutral theory of 
molecular evolution, 24

negative assortative mating, 17
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negative frequency-dependent 
selection, 13, 149, 179, 191

negative (or purifying) 
selection

dN/dS, 139, 141–145, 149, 
150, 153

on functional (protein-
coding) sites, 13, 23

overview, 12–13
pN/pS, 148–149
strong negative selection 

and population 
differentiation, 91

variable strength of, 19
weak negative selection 

and population 
differentiation, 91–92

Nei and Gojobori method for 
counting sites, 138–139

Nei’s D, 86–87
neutrality index (NI), 161, 162
neutral locus, 22–23, 166–167
neutral model. See neutral 

theory of molecular 
evolution

neutral mutations
allele frequency 

spectrum, 146
definition, 8, 22
neutral mutation rate (m), 19
probability of, 133
rates at degenerate sites, 19
selection coefficient of, 12
time to fixation, 166
variable strength of negative 

selection, 19
neutral theory of molecular 

evolution
different levels of selective 

constraint and, 19
misunderstanding and 

misuse of, 21–23
mutation-drift 

equilibrium, 20, 21
neutral-equilibrium 

model, 21, 45–46, 47
neutral locus or site as 

shorthand or misused 
term, 22–23

null model and, 21
overview, 18–21

rate of neutral mutations (m) 
and, 19

strong version of neutral 
theory, 21

variation in levels 
of nucleotide 
polymorphism, 19–20

weak version of neutral 
theory, 20–21, 23

neutral theory of phenotypic 
evolution, 21–22

next-generation sequencing 
(NGS), 31–40

ABI SOLiD sequencing-by-
ligation, 32

Affymetrix sequencing 
microarrays, 32, 41

array sequencing, 32
base quality scores, 35, 36, 51
Complete Genomics 

nanoball sequencing, 32
consensus quality 

scores, 35–36
coverage values, 36, 50
exome sequencing, 37, 38
experimental designs, 36–40
454 pyrosequencing, 32
genotyping-by-sequencing 

(GBS) methods, 39, 41
high error rates, 32, 

35–36, 40, 50
Illumina sequencing, 32, 33, 

35, 36, 272
long-read sequencing 

technologies, 272
mapping quality scores, 

35, 36
mapping reads to an 

existing genome, 33, 34–35
paired-end reads, 33, 35
polymorphisms found by 

comparing to reference 
genome, 34–35, 37

polymorphisms supported 
by multiple sequence 
reads, 34, 35

pooled sequencing, 37, 39–40
populations of whole 

genomes, 272
read depth, 32, 33, 36, 37, 

39, 40, 41

reduced representation 
approaches, 37, 38–40

reference genome 
production, 34, 41

resequencing, 34–35, 44, 45
restriction-associated DNA 

(RAD) sequencing, 37, 
38–39

Sanger sequencing vs., 27, 
31–32, 35

sequence capture, 37, 38
short sequence  

reads, 32–35
single-end reads, 33
SNPs missed (false 

negatives), 35, 38, 40–41
third-generation 

sequencing, 272
transcriptome sequencing 

(or RNA-seq), 37, 38
whole genome studies, 

27, 31
See also genotyping

non-allelic gene  
conversion, 12

nonequilibrium demographic 
histories, inference,  
204–206, 208, 210–211, 
217–222

nonpreferred synonymous 
substitutions, 159

nonsynonymous fixed 
differences, 152, 153–154, 
158, 161, 162–163

nonsynonymous mutations
a (proportion of 

nonsynonymous 
substitutions fixed by 
positive selection), 
161–163

dN/dS values, 142–143, 144
dN (nonsynonymous 

differences per 
nonsynonymous site), 
137–139, 149

E(DN) (expected number 
of nonsynonymous 
differences), 151–152

E(dN) (expected 
nonsynonymous 
divergence), 140–141
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nonsynonymous 
mutations (cont.)

excess of deleterious 
nonsynonymous 
polymorphisms, 146–147, 
148, 153–154

fraction that are deleterious, 
141–142

g (average effect of selection 
on nonsynonymous 
variants), 163

Sawyer, Dykhuizen, and 
Hartl test for neutrality 
of nonsynonymous 
polymorphisms, 146, 155

See also polymorphisms
normalized linkage 

disequilibrium coefficient 
(D′), 61–63, 64, 68, 85, 126

novoSNP (software), 29–30
NST, 86
nucleotide transition 

mutations, 7, 137
nucleotide transversion 

mutations, 7

O
OutFLANK (software), 264
outgroup sequences, 26, 48, 

101–102
outlier approaches, 100, 252, 

257–258, 263–266, 267–268
Oxford Nanopore 

Technologies, 272

P
Pacific Biosciences 

(“PacBio”), 272
pairwise sequentially 

Markovian coalescent 
(PSMC) model, 219–
220, 222, 247

See also sequentially 
Markovian coalescent 
models

paleogenetics, 270
paleopopulation genetics, 

270–271
PAML (software), 139
pan-adaptationism, 21
partial Mantel test, 238

partial selective sweeps, 168, 
247, 258–259, 261–262

PCR-RFLP, 41
perfect LD, 62, 106, 126
Pfu DNA polymerase, 29
PHASE (software), 31, 73
fST, 86
phred, 29
phred score, 29, 35
phylogenies

from allele frequency data, 
230–232

compared to 
genealogies, 118

locus-specific branch lengths 
(LSBLs), 265

methods for constructing, 
230–234

population branch statistic 
(PBS), 265

population trees used in 
population genomics, 
264–265

reticulate phylogenies 
(networks), 230, 231, 233

p
background selection  

model of molecular 
evolution, 54

derived allele frequency 
(DAF) and, 50

estimator of population 
mutation parameter (q), 
120–121, 127, 179–180, 182

hitchhiking model of 
molecular evolution, 54

interpreting expected value, 
E(p), 53–55

Jukes-Cantor correction, 9, 
51, 136–137

pN/pS, 148–149
for sites without singletons 

qp(multi), 52
sum of site heterozygosities 

(p or qp), 44–45, 50, 51, 85, 
120

values from a range 
of prokaryotes and 
eukaryotes, 53

variance in p [Var(p)], 45–46, 
47, 52, 72–73, 97

polymerase chain reaction 
(PCR)

amplicon length, 27, 28, 38
error rates, 28–29, 35
long-amplification (LA-) 

PCR, 27, 28, 34, 38
primers, 27–28
as reduced representation 

approach, 38
Sanger sequencing and, 

27–30
Snip-SNP, PCR-RFLP, or 

cleavable amplified 
polymorphic sequences 
(CAPS), 41

polymorphisms
allele frequency spectrum 

and, 146–147, 155, 162–163
the coalescent and measures 

of polymorphism, 120–122
correlation between 

polymorphism and 
recombination, 252–254

definition, 3
detecting selection using 

polymorphism, 145–149, 
165–175

effect of selection on 
the frequency of 
polymorphism, 145–148

E(PN) (expected number 
of nonsynonymous 
polymorphisms), 151–152

E(PS) (expected number 
of synonymous 
polymorphisms), 151–152

excess of deleterious 
nonsynonymous 
polymorphisms, 146–147, 
148, 153–154

mutation-drift equilibrium, 
20, 21, 43, 175, 182

polymorphisms found by 
comparing to reference 
genome, 34–35, 37

polymorphisms supported 
by multiple sequence 
reads, 34, 35

preferred and nonpreferred 
synonymous 
substitutions, 159
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in regulatory sequences, 
159–160

Sawyer, Dykhuizen, and 
Hartl test for neutral 
nonsynonymous 
polymorphisms, 146, 155

selective sweeps effect  
on, 165–167, 168, 182, 
184, 187

See also McDonald-Kreitman 
test

PolyPhred (software), 29
PolyScan (software), 29–30
pooled sequencing, 37, 39–40
population(s)

admixed individuals in, 105, 
107, 108–109

allele frequency differences, 
79, 80–81, 262

analysis of multiple 
populations in space, 
234–238

assignment tests and 
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IMa2, 98, 229
Jaatha, 228
LDhat, 75
LDhelmet, 75
LFMM, 238
LOSITAN, 264
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allele frequency 
spectrum), 48, 122, 
123, 124

gaps in sequences and, 45
haplotype variation, 57–58
interpreting measures of 

nucleotide variation, 
53–55

microsatellite variation, 
55–57, 85

minor allele frequency 
(MAF), 47–48, 49

paradox of variation, 53
p values from a range 

of prokaryotes and 
eukaryotes, 53

population size and 
nucleotide variation, 53

sample (expected) 
heterozygosity (h), 44

sampling variance, 118, 
158–159



334  INDEX

han39657_index_315-334.indd 334 02/26/18  06:49 PM

variation, describing (cont.)
site frequency spectrum 

(SFS), 48
for sites without singletons 
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