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The habitat heterogeneity hypothesis is one of the central pil-
lars of ecological theory. It states that spatial heterogeneity in 
abiotic and biotic conditions increases niche dimensionality 

(that is, the number of available niches), allowing different species 
to co-exist such that biodiversity increases (Fig. 1)1–3. The positive 
relationship between heterogeneity and species richness is often 
regarded as ubiquitous2 since its first observation in the early 1960s 
when MacArthur and MacArthur1 showed that local bird diversity 
strongly correlated with the vertical heterogeneity in forest stands 
across North America. However, if heterogeneity increases the 
number of species, the amount of suitable area available for individ-
ual species decreases per area unit. According to the area–hetero-
geneity trade-off hypothesis4, this can result in a decrease in mean 
population sizes especially at high levels of habitat heterogeneity 
(Fig. 1). The result is an increased probability of stochastic extinc-
tions and ultimately a decline in species richness. This mechanism, 
along with fragmentation effects that often accompany heterogene-

ity, can lead to hump-shaped heterogeneity–diversity relationships 
(HDRs)4,5 (Fig. 1).

The area–heterogeneity trade-off hypothesis is a relatively recent 
concept and has received less scrutiny than the classical habitat het-
erogeneity hypothesis. Addressing the area–heterogeneity trade-off 
hypothesis requires testing for nonlinear relationships between 
heterogeneity and biodiversity. However, such tests are poorly 
represented in the literature and subsequently, not included in a 
global meta-analysis which supported the prevalence of positive 
HDRs. Next to the growing evidence that HDRs can take nonlinear 
forms4–10, it has been shown that certain ecological properties, such 
as niche breadth, reproduction and dispersal rates5,7–9, moderate the 
responses of species to increasing niche dimensionality, reductions 
in effective area and the degree of fragmentation. Consequently, 
rather than investigating whether positive or hump-shaped HDRs 
prevail, recent theoretical approaches address the question of under 
which conditions HDR takes which shape5,10,11.

Heterogeneity–diversity relationships differ 
between and within trophic levels in temperate 
forests
Lea Heidrich   1 ✉, Soyeon Bae1, Shaun Levick2, Sebastian Seibold   1,3, Wolfgang Weisser   3,  
Peter Krzystek4, Paul Magdon5, Thomas Nauss   6, Peter Schall   7, Alla Serebryanyk4, 
Stephan Wöllauer6, Christian Ammer   7, Claus Bässler8,9, Inken Doerfler3,10, Markus Fischer11, 
Martin M. Gossner   12, Marco Heurich8,13, Torsten Hothorn14, Kirsten Jung   15, Holger Kreft   16,17, 
Ernst-Detlef Schulze18, Nadja Simons19, Simon Thorn1 and Jörg Müller   1,8

The habitat heterogeneity hypothesis predicts that biodiversity increases with increasing habitat heterogeneity due to greater 
niche dimensionality. However, recent studies have reported that richness can decrease with high heterogeneity due to sto-
chastic extinctions, creating trade-offs between area and heterogeneity. This suggests that greater complexity in heterogene-
ity–diversity relationships (HDRs) may exist, with potential for group-specific responses to different facets of heterogeneity 
that may only be partitioned out by a simultaneous test of HDRs of several species groups and several facets of heterogeneity. 
Here, we systematically decompose habitat heterogeneity into six major facets on ~500 temperate forest plots across Germany 
and quantify biodiversity of 12 different species groups, including bats, birds, arthropods, fungi, lichens and plants, represent-
ing 2,600 species. Heterogeneity in horizontal and vertical forest structure underpinned most HDRs, followed by plant diver-
sity, deadwood and topographic heterogeneity, but the relative importance varied even within the same trophic level. Among 
substantial HDRs, 53% increased monotonically, consistent with the classical habitat heterogeneity hypothesis but 21% were 
hump-shaped, 25% had a monotonically decreasing slope and 1% showed no clear pattern. Overall, we found no evidence of a 
single generalizable mechanism determining HDR patterns.

Nature Ecology & Evolution | www.nature.com/natecolevol

mailto:lea.heidrich@gmx.de
http://orcid.org/0000-0002-3229-4758
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-2757-8959
http://orcid.org/0000-0003-3422-0960
http://orcid.org/0000-0003-4808-818X
http://orcid.org/0000-0002-4235-0135
http://orcid.org/0000-0003-1516-6364
http://orcid.org/0000-0002-9449-2215
http://orcid.org/0000-0003-4471-8236
http://orcid.org/0000-0002-1409-1586
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-020-1245-z&domain=pdf
http://www.nature.com/natecolevol


Articles NATuRE EcOlOGy & EvOluTiOn

A theoretical modelling approach suggested that, despite the 
various ways in which environmental heterogeneity may affect spe-
cies richness, HDR patterns should be predictable and robust5. This 
was specifically proposed for sessile organisms, in which low niche 
width and high dispersal ability should decrease the level of het-
erogeneity which maximizes species richness. Moreover, theoretical 
models have shown that given a habitable surrounding, species that 
are limited in dispersal have positive HDRs due to fragmentation 
effects12, while those with large dispersal ranges have hump-shaped 
HDRs5 (Fig. 1).

A limitation of current theoretical modelling is that it is based 
upon strong assumptions (for example, a lack of habitat selection5), 
which are unlikely to be met in practice. Thus, the relevance of 
the theoretical findings to real-world settings remains to be dem-
onstrated. At the same time, attempts to find general patterns in 
empirical studies of HDRs have faced several challenges. First, habi-
tat heterogeneity can result from many different abiotic and biotic 
factors13, referred to in the following as facets of heterogeneity. Even 
within a single facet of heterogeneity, both the multitude of methods 
used to evaluate single facets and the varying lengths of the cov-
ered gradients have hampered comparisons of empirical results13. 
For example, short heterogeneity gradients are more likely to 
under-represent trade-offs between area and heterogeneity than are 
fully covered gradients. Second, species groups differ in their eco-
logical requirements and possibly also in their responses to different 
facets of heterogeneity. Thus, while a taxon may respond strongly 
to vertical forest structure, its response to other facets may be neu-
tral14. A third challenge is the fact that the response of a given taxon 
to environmental heterogeneity might be habitat-specific. This 

is demonstrated by birds, which respond positively to cover-type 
diversity in woodlands and grasslands but not in savannas10. Lastly, 
the shape of the HDR will also depend on the scale at which the 
study is conducted2,8,10.

Species group, habitat, heterogeneity facet and spatial scale may 
act together to modify the nature of the HDR. Therefore, studies 
focusing only on one or two of these aspects without holding the 
others constant are intrinsically limited. A more realistic approach 
would be to shift the focus from studies of single species groups 
to assessments of species richness relationships of a whole habitat. 
This can be achieved by simultaneously testing the linear and non-
linear relationships of many species groups across trophic levels15 
and with respect to major facets of heterogeneity13, covering the full 
gradient length of a single habitat and using a constant sampling 
grain. This approach would provide a unique opportunity to: (1) 
assess the degree to which the determined HDR patterns can be 
generalized and (2) gain nuanced insights into the effects of het-
erogeneity and the underlying mechanisms. In the present work, 
we made use of the data available from three different biodiversity 
projects (Extended Data Fig. 1), comprising ~500 1-ha forest plots 
containing a total of ~2,600 species from 12 species groups cover-
ing a wide range of different life histories, dispersal properties and 
trophic levels.

In forest ecosystems, the pronounced vertical dimension of vege-
tation forms a complex habitat for a broad spectrum of organisms3,16. 
Together with the heterogeneity resulting from the horizontal dis-
tribution of vegetation and the topography of the terrain, vertical 
heterogeneity leads to variations in light availability, microclimate 
and soil moisture within the forest3. Another facet of heterogene-
ity in forests is formed by the structure and species composition of 
dead trees, as both impact many forest species, whether obligatorily 
or facultatively, during some phase of their life cycle17. In this study, 
to ensure a comprehensive assessment of forest heterogeneity, we 
adopted the classification system of Stein and Kreft13, which sys-
tematically divides the various facets of heterogeneity into clearly 
defined subject areas (Fig. 2a). To this a priori classification of inde-
pendent gradients of heterogeneity within a forest stand, we added 
deadwood as a major subject area on the basis of its contribution 
to forest-specific habitat heterogeneity. Analogous to our approach 
to living trees, deadwood heterogeneity was divided into structural 
and taxonomic richness, resulting in six statistically independent 
facets of heterogeneity at the scale of a forest stand: (1) the taxo-
nomic and (2) structural richness of deadwood, (3) vascular plant 
diversity, (4) vertical as well as (5) horizontal structural heterogene-
ity and (6) microscale topography (Fig. 2a).

We assessed whether multidiversity (the scaled species richness 
of all recorded species18) and the species richness of each species 
group respond to particular facets of heterogeneity and which shape 
these HDRs take. We then tested whether the level of heterogene-
ity at which species richness is maximized increases with increas-
ing niche breadth and decreases with increasing dispersal ability, 
as predicted by recent modelling approaches5. Finally, we exam-
ined whether the response of the mean population decreases with 
increasing heterogeneity, as expected by stochastic extinctions and 
the area–heterogeneity trade-off theory.

Results and discussion
The species richness of all species groups, except carabids (Fig. 2b 
and Table 1), responded to habitat heterogeneity. This finding sup-
ported the ubiquitous role of heterogeneity in shaping species rich-
ness across different species groups. However, as expected from the 
exploratory nature of the study design and the fact that species are 
expected to differ in their responsiveness to heterogeneity14, there 
was a large amount of variation in our results. Both responses to dif-
ferent facets of heterogeneity and the shape thereof differed among 
species groups.
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Fig. 1 | Conceptional framework for the relationship between habitat 
heterogeneity and species richness. The habitat heterogeneity hypothesis 
predicts that the number of niches, and thus species richness, increases 
with increasing habitat heterogeneity (blue line). The area–heterogeneity 
trade-off hypothesis predicts that species richness decreases at high levels 
of habitat heterogeneity because the amount of suitable area per species 
decreases as the number of niches decreases, leading to smaller mean 
population sizes per species and thus to stochastic extinctions (red line). 
These effects should be moderated by dispersal ability and niche breadth 
(black arrows).
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Among 72 possible HDRs (12 species groups × six facets of habi-
tat heterogeneity), 34 were significant with P ≤ 0.05, 17 increased 
monotonically, seven were hump-shaped and eight decreased 
monotonically. Two responses showed more than one pronounced 
change in the sign of the HDR: saproxylic beetles in response to 
vertical heterogeneity and spiders in response to microscale topog-
raphy (Fig. 2b and Table 1). It seems important to note that study 
region, next to the heterogeneity gradients, explained still an 
important fraction of the variance (see R² and ΔR² in Table 1). This 
underlines that heterogeneity is not the sole biological predictor of 
species richness across regions. Despite these variable responses of 
the individual species groups, multidiversity yielded hump-shaped 
responses only with respect to plant diversity and vertical hetero-
geneity. This suggested that neither the (partly) negative effects 
nor the positive effects of heterogeneity dominate across all species 

groups considered. This prompts the question whether the ecologi-
cal properties of single species groups determine whether there is a 
relationship to a certain facet of heterogeneity and which form this 
HDR will have.

In the theoretical model of Ben-Hur and Kadmon5, the form of 
the HDRs depended on fragmentation, niche breadth and dispersal 
ability. In our study, fragmentation effects are expected to be negli-
gible because the surrounding matrix is habitable12 as all of our 1-ha 
plots are each embedded in larger forested matrix. Thus, we would 
expect strong effects of niche breath and dispersal ability; increasing 
niche breadth and decreasing dispersal ability should increase the 
level of heterogeneity which maximizes species richness, turning 
hump-shaped HDRs into positive ones5. However, neither habitat 
niche breadth, here estimated on the basis of trophic positions19 (Fig. 3,  
one-sided, linear-by-linear associated test, z = 0.38, P = 0.35) nor 
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dispersal abilities showed any clear response in terms of the position 
of the inflection points (one-sided, linear-by-linear association test, 
z = 0.22, P = 0.96; Supplementary Methods, Supplementary Table 1 
and Supplementary Fig. 1).

Response to single facets of heterogeneity. Not all facets of het-
erogeneity were expected to affect all species groups equally. In fact, 
ecological theory predicts that heterogeneity gradients important 
for some species groups will be unimportant for others, as different 
species use different resources14,20. Indeed, single facets of heteroge-
neity affected different numbers of species groups. The facet affect-
ing the largest number of groups (nine out of 12) in terms of species 
richness was horizontal heterogeneity, followed by vertical hetero-
geneity (eight) and plant diversity (eight). Microscale topography 
affected six groups, taxonomic richness of deadwood affected four 
and the structural richness of deadwood affected only one species 
group, namely saproxylic beetles (Fig. 2b,d).

Saproxylic species and phytophagous groups are predicted 
to react strongly to heterogeneity in their respective resource, as 
deadwood and plants, respectively, provide their dietary niches. 
Indeed, saproxylic beetles responded to the structural richness of 
deadwood (that is, the stage of decomposition and number of dif-
ferent deadwood objects) whereas wood-decomposing fungi were 
affected by its taxonomic richness (Fig. 2). This result provides 
the empirical evidence of experiments showing that fungal species 
richness is driven by host tree diversity21 and saproxylic beetle rich-
ness by heterogeneity related to wood physiognomy, such as diam-
eter, decay stage and deadwood object type22,23. However, we also 
found effects of the taxonomic richness of deadwood on the species 
richness of birds, spiders and lichens, in accordance with experi-
ments and observational studies showing an effect of heterogene-
ity in deadwood on non-saproxylic organisms24,25. While saproxylic 
groups responded to the heterogeneity of deadwood, phytophagous 
beetles were the only group among three phytophagous groups that 
responded to plant diversity, although further responses to plant 
diversity were determined in spiders, saproxylic beetles, bryophytes, 
lichens and bats (Fig. 2b). It is unclear why the number of species 
groups affected by the taxonomic richness of deadwood and by 
plant diversity exceeded the number of species groups whose diet 
directly depends on these two facets. It may be that some groups, 
such as spiders, benefit from increased plant diversity or bottom-up 
effects and an increased number of microstructures26. It might also 
be the case that these facets correlate with other covarying variables 
that were not directly measured.

In contrast to the direct dependence of saproxylic and phytopha-
gous insects on their respective dietary niche, the niches provided by 
forest structure and microtopography are more difficult to specify. 

Heterogeneity in either one can affect the heterogeneity of soil attri-
butes and microclimatic conditions, in turn affecting autotrophic 
groups but also providing different nesting and foraging grounds 
for species of higher trophic levels, especially flying animals3,27,28. 
In this study, structural heterogeneity was divided into vertical and 
horizontal components representing canopy layering and gap distri-
bution, respectively. The species richness of birds, fungi, necropha-
gous beetles, true bugs, phytophagous beetles and moths responded 
to vertical heterogeneity (Fig. 2b and Supplementary Fig. 2). Thus, 
for birds, different vertical structures offer different niches in 
terms of nesting sites and foraging grounds, just as MacArthur and 
MacArthur1 predicted. However, vertical heterogeneity also pro-
vides niches for other species groups, most likely through microcli-
matic conditions and shelter29,30.

Horizontal heterogeneity determines variations in light avail-
ability and microclimatic conditions near ground31. In our study, all 
species groups except moths, bats and carabid beetles responded to 
horizontal heterogeneity. Many arthropods are sensitive to micro-
climatic conditions such that forest gaps will favour communities 
different from those associated with stands with a closed canopy22,24. 
Birds may profit from an increased diversity of nesting sites, forag-
ing sites and food sources. Neither vertical nor horizontal hetero-
geneity, however, correlated with a higher species richness of bats. 
For this group, differences in horizontal forest structure, due to 
species-specific adaptations in echolocation and flight performance, 
probably affect species composition rather than species richness32,33. 
The relationship of species richness to topographic heterogeneity, 
measured as the standard deviation in the slope, was significant  
(P ≤ 0.05) for six species groups (Table 1) and affected most arthro-
pod groups and birds but the underlying mechanism remains 
unclear. Topographic heterogeneity can be seen as a surrogate for 
heterogeneities in microclimate and soil, which seem to influence 
plant richness (Table 1) and may have cascading effects on higher 
trophic levels. These two types of heterogeneity therefore require 
further study.

Irrespective of the mechanisms underlying the variable HDRs, 
the fact that species groups did respond to the heterogeneity facets 
with which they were not obviously connected clearly demonstrates 
that any a priori restriction of heterogeneity facets may overlook 
important HDRs. Conversely, the fact that species groups did not 
respond to heterogeneity facets to which they were obviously con-
nected indicated that the spatial scale at which heterogeneity is per-
ceived is highly variable. Moreover, whether a species group does or 
does not respond to a certain facet of heterogeneity seems to vary 
even within trophic levels. For example, vertical heterogeneity had 
different effects on the three phytophagous groups; while the spe-
cies richness of true bugs and phytophagous beetles decreased at 
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high levels of vertical heterogeneity, that of the more mobile moths 
increased (Fig. 2b and Supplementary Fig. 2). It may be the case 
that a stronger vertical stratification leads to area–heterogeneity 
trade-offs (at least for true bugs) within the near-ground strata, such 
as those where the groups were sampled and where plant suckers are 
typically of low abundance34.

Area effects on population size. Decreases in the mean population 
size with increasing habitat heterogeneity support the assumptions 
of area–heterogeneity trade-off hypothesis and the results of the 
theoretic model of Ben-Hur and Kadmon5. However, habitat het-
erogeneity affected the mean population size only in 15 out of 54 
cases (nine animal groups × six facets of habitat heterogeneity; note 
that no abundance data were available for fungi, lichens and bryo-
phytes). In these cases, population size was almost always lowest at 
the highest levels of heterogeneity. In others, however, the initial or 
even monotonic increases in population size contradicted the theo-
retical modelling results5. Also, decreases in mean populations sizes 
that coincided with a hump-shaped or negative HDR, as expected 
by an area–heterogeneity trade-off, occurred only in two cases 
(true bugs with vertical heterogeneity and phytophagous beetles 
with topographic heterogeneity; Supplementary Fig. 2). Our results 
therefore suggest that trade-offs between a suitable area available 
for individual species and habitat heterogeneity play only a minor 
role in shaping diversity patterns in the stands of temperate forests. 
One possible explanation is that increased vertical heterogeneity 
can lead to higher total leaf biomass per area35–37 and increased hori-
zontal heterogeneity to a larger amount of ground vegetation34. This 
mechanism may average out area–heterogeneity trade-off effects at 
high levels of structural heterogeneity, a scenario supported by the 
positive effect of high horizontal heterogeneity on phytophagous 
beetle and true bug richness and the positive effect of high vertical 
heterogeneity on moth richness (Fig. 2c). Positive effects of vertical 
heterogeneity on species richness via increased resource availability 
and larger population sizes have been shown for arthropods in the 
forest canopy38. In our study, arthropods accounted for eight of the 
12 studied species groups; their fast reproduction rates may reduce 
their vulnerability to stochastic extinction4.

Thus, overall, our study provided little support for area–hetero-
geneity trade-offs. Surprisingly, however, its results revealed a con-
siderable number of hump-shaped or even negative HDRs across 
the studied animal groups. This was especially the case for the facet 
topographic heterogeneity, as all responding groups except moths 
were characterized by a monotonous decrease in species richness 
with increasing slope s.d. Such monotonic declines of species rich-
ness are likely to occur when the studied scale is small2,8 or the stud-
ied species groups are highly specialized4. While the 1-ha scale of 
our study was indeed smaller than the scale used in others (though 
comparable to the early studies of MacArthur and MacArthur1 
for birds) the latter condition is not met by all species groups that 
responded to topographic heterogeneity.

Mechanisms other than area–heterogeneity trade-offs might 
explain the hump-shaped or negative HDRs. HDR shape is influ-
enced by the position of the community on the gradient of envi-
ronmental severity11. Under highly favourable environmental 
conditions, any heterogeneity that reduces interspecific and intra-
specific competition will ultimately increase species richness. 
Under unfavourable conditions, heterogeneity increases the preva-
lence of patches that support larger species pools. However, under 
intermediate conditions, such as in temperate forests, heterogeneity 
only increases the likelihood of patches that contain smaller spe-
cies pools, thus leading to negative HDRs independent of the pop-
ulation size11. For example, saproxylic beetles and lichens, both of 
which have larger species richness in gaps (usually associated with 
larger amounts of deadwood) than under a closed canopy22,39, had a 
hump-shaped response to horizontal heterogeneity, indicating that 

species richness will not reach a maximum when gaps and closed 
canopy are equally distributed but only when the habitat type that 
draws from a larger species pool dominates. By contrast, the species 
richness of fungi and bryophytes decreased with increasing hori-
zontal heterogeneity (Fig. 2b and Supplementary Fig. 2). These two 
groups are dominated by closed-forest specialists that are sensitive 
to dry conditions40,41 and may perceive the increases in solar radia-
tion and the decreases in humidity associated with increasing hori-
zontal heterogeneity as a constraint. Unfortunately, whether this 
constraint was pronounced due to smaller species pools or smaller 
population sizes could not be resolved with our data.

Conclusions and implications. Our study across multiple species 
groups and different facets of stand-level heterogeneity in temperate 
forests revealed a complex picture of HDRs. Habitat heterogeneity 
did not necessarily result in reductions in suitable areas available 
for individual species and area–heterogeneity trade-offs were rare. 
However, negative responses to heterogeneity occurred, indepen-
dent of trophic niche or dispersal ability. The variable responses 
across species groups demonstrated well that there is no universal 
gradient of habitat heterogeneity within a forest. More importantly, 
it appears that in real-world settings, HDRs are not as predictable 
as theoretical models would suggest. Thus, comprehensive assess-
ments of possible HDRs considering different facets of heteroge-
neity as well as different species groups representing different life 
histories, functional groups and trophic levels are likely to be the 
most promising approach to capturing all the details necessary for 
informed forest management. Such assessments should be repeated 
across different scales and for different habitats.

Certain facets of habitat heterogeneity affected more species 
groups than others. Among the facets studied, vertical and hori-
zontal heterogeneity (which can easily be managed in silviculture), 
were found to be major drivers of biodiversity in forests. Hence, for-
est and conservation management measures designed to increase 
within-stand biodiversity should enhance habitat heterogeneity by 
increasing vertical and, especially, horizontal stand heterogeneity, 
as this will have more positive than negative effects on species rich-
ness. However, we caution against a wide-ranging establishment of 
fine-scaled heterogeneity in forest structure. Instead, to minimize 
the effect of negative responses, a mosaic of stands comprising dif-
ferent gradients of structural heterogeneity should be provided.

Methods
Study regions. Our data are based on comprehensive assessments of biodiversity and 
habitat variables obtained from 497 1-ha plots covering five regions in Germany and 
representing the full range of zonal temperate forests in Central Europe (see Extended 
Data Fig. 1). The Biodiversity Exploratories project (biodiversity-exploratories.de42)  
comprised three forest areas, spanning from south to north: the Biosphere Reserve 
Schwäbische Alb in the Swabian Jura (50 plots), Hainich National Park and the 
surrounding area (50 plots) and the Schorfheide-Chorin Biosphere Reserve (50 plots).  
This database43–51 has been supplemented with plots from the Steigerwald project52 
in northern Bavaria (69 plots) and the BIOKLIM project53 in the Bavarian Forest 
National Park32,54–59 (278 plots).

Facets of habitat heterogeneity. To address heterogeneity in forests as 
comprehensively as possible, we adopted the classification system of Stein and 
Kreft13, which systematically divides the facets of heterogeneity into five subject 
areas, of which four can be applied to a 1-ha plot scale: vegetation, microscale 
topography, soil and climate (Fig. 2a). In this study, the soil and climate of the 
subject areas were excluded because their respective measures were not available 
for all plots. However, at the plot level, soil and climate would most likely strongly 
correlate with vegetation and topographic heterogeneity60 both of which were 
included in our study. We also added deadwood52,55,61 as an ecosystem-specific 
subject area of habitat heterogeneity and further divided it into structural and 
taxonomic richness. The subject area vegetation was further divided into plant 
diversity and structural aspects (that is, the vertical and horizontal heterogeneity of 
the vegetation).

Quantifying habitat heterogeneity. On the basis of several reviews3,13,62,63, we 
selected potential measurements a priori for each of the six facets (Supplementary 
Methods and Extended Data Fig. 2). For the final selection, we examined 
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the statistical behaviours (distributions) of the variables and the within- and 
between-aspect collinearity (Supplementary Figs. 3–7), which is often an issue 
in LiDAR-derived measurements (Extended Data Fig. 3). In our study, the 
a posteriori selection of the measurements had several advantages over statistical 
variable selection in terms of dealing with collinearity (Extended Data Fig. 4) and 
the testing of ecological hypotheses. However, we are aware that the response of 
a single species group will slightly vary if different measures for the same facet of 
heterogeneity are considered13. Thus, in group-specific studies a broader use of 
LiDAR metrics might be a suitable approach. However, this was not the aim of our 
study; rather the measures were used to capture the major heterogeneity of the 
whole forest stand relevant for all species groups.

Deadwood heterogeneity was quantified according to Siitonen64. The 
taxonomic richness of deadwood was calculated by counting the number of 
different tree species within a plot and the structural richness of deadwood by 
counting the number of different deadwood types, classified according to diameter 
and decomposition classes as well as subtype (broken snag, lying dead tree and 
so on; see also Supplementary Methods). Plant diversity was characterized by 
considering all vascular plants in the tree, shrub and herb layers determined as part 
of biodiversity assessments51,52,54 (349 in total; Supplementary Methods). However, 
the number of plant species alone does not necessarily reflect ecological differences 
relevant to herbivores65,66, as closely related plant species may host similar 
communities of insects67. Therefore, phylogenetic diversity (Faith’s PD) was used 
as a measure of the amount of evolutionary divergence within a plant community. 
Faith’s PD was calculated on the basis of the phylogeny proposed by Durka and 
Michalski68, using the R software package picante, v.1.769. However, this approach 
does not necessarily reflect all functional differences between plant species (but see 
Supplementary Methods). Standardized measurements of the three-dimensional 
structure of the forests were obtained using high-resolution airborne laser 
scanning (ALS) (Supplementary Methods), a method that provides accurate 
three-dimensional measurements across large areas. The high point density of the 
ALS measurements allows forest structure to be characterized using salient metrics 
that describe the vertical and horizontal distribution of vegetation at high spatial 
resolution70. To calculate vertical heterogeneity, we used the standard deviation 
(s.d.) of the heights of vegetation returns over the entire 1-ha plot area. This metric 
is able to powerfully explain biodiversity patterns in forests3 and is less sensitive 
to artificial classifications of layers than foliage height diversity (Supplementary 
Methods). To calculate horizontal heterogeneity, we classified the area within plots 
as gap and non-gap areas. Gap areas were defined as areas with a minimum size 
of 50 m², a perimeter/area ratio of <1.5 (thus excluding narrow linear structures 
such as forest aisles), a height threshold of 2 m and a penetration ratio of >80%. 
Since the total gap area per plot would not capture a linear increase in horizontal 
heterogeneity—as both extremes (that is, 100% canopy cover as well as a 100% 
gap area) are homogeneous in horizontal structure—we instead calculated the 
total length of the gap edges to obtain a continuous measurement of horizontal 
heterogeneity (for details, see Supplementary Methods and Extended Data  
Fig. 2). Both structural measures (total gap edge length and height s.d.) were largely 
independent of the tree species composition (Extended Data Fig. 5). Microscale 
topography was calculated as the within-plot terrain heterogeneity, determined 
using a high-resolution digital terrain model with 1-m spatial resolution derived 
from the ALS measurements. The s.d. of the slope measured in the digital terrain 
model across our 1-ha plots served as a measure of topographic heterogeneity, as 
it was better than the s.d. of the elevation in capturing small-scale variation (see 
Supplementary Methods).

Biodiversity data. The species richness of bats, birds, several arthropod taxa, 
fungi, lichens, bryophytes and vascular plants had been assessed in each of the 
three projects using standardized protocols43–52,54–59. In this study, for each group 
only data acquired during the year closest to that of the ALS flights were chosen. 
In Biodiversity Exploratories, transect walks were used to record bats with a 
bat detector while the other two projects used fixed autonomous batcorders32,43. 
Birds were monitored acoustically and visually within a fixed time span during 
their breeding season44,52,58. Arthropods were collected using pitfalls, crossed 
flight interception traps and low-intensity light traps45–47,52,57. Fungi, bryophytes 
and lichens present on deadwood objects and the plants within a fixed area were 
mapped49,50,56,59. Animal abundance (or activity) data were available for all five 
regions and were used to estimate the mean population size among species of a 
specific group at a plot4. For species recorded repeatedly within the year, species 
richness and abundance data were pooled for each plot. Details on the sampling 
methods used in each of the projects are provided in Supplementary Methods and 
Supplementary Table 3.

Statistical analysis. This study sought answers to the following questions. (1) 
Does the relationship between species richness and habitat heterogeneity increase 
monotonically or follow a nonlinear hump-shaped curve (Fig. 1)? (2) Does 
population size, here estimated by abundances4 (or calls in the case of bats), decline 
with increasing heterogeneity? Species richness and abundances were modelled 
by generalized additive models (GAMs) allowing for unconstrained and smooth 
relationships. The models therefore did not relate to any particular hypothesis. 
Whether a particular model supported a specific hypothesis (formulated in terms 

of a monotonically increasing, decreasing or hump-shaped HDR) was instead 
decided on the basis of the graphical representations of the results. Significant 
relationships (with P ≤ 0.05) between richness and the single predictors were 
defined as hump-shaped if the changes in the sign of the modelled slope from 
positive to negative could be visually detected. If the overall sign was positive 
(negative) and the slope intersected the horizontal line at a partial effect of zero 
once, it was considered monotonically increasing (decreasing) (Supplementary  
Fig. 2). This approach was chosen because formal model-specification tests (based 
on P values against a specific hypothesis, such as the absence of a quadratic effect) 
are ill-defined in the presence of many observations (see Supplementary Methods). 
Specifically, we applied two-sided GAMs, which account for an overdispersion by a 
quasi-Poisson estimation procedure in modelling species richness and a Gaussian 
distribution of the mean abundance of animals (R package mgcv, function gam, 
v.1.8.26; ref. 71). All predictors were standardized before the analysis by scaling to 
a zero mean and unit variance to account for large differences in scales. Before 
the standardization, the total gap edge length was square-rooted to improve 
the distribution. The smoothness term, representing the taxonomic richness of 
deadwood, was restricted to six degrees of freedom to achieve model convergence. 
The study region was considered as a random factor to account for regional effects. 
Model assumptions were checked visually using the model diagnostics provided by 
the R package mgcViz, v.0.1.1 (ref. 72).

In a last step, multidiversity was calculated by scaling the species richness 
of each of the species groups to its maximum and then averaging the resulting 
scaled species richness across all groups18. This procedure weighted every 
species group equally. However, only data from plots in which all species groups 
had been assessed (n = 197) could be used for this purpose. Here, a GAM with 
a β-regression estimation procedure was applied. Finally, the single species 
groups were ordered according to their trophic position, which was used as a 
surrogate for niche breadth19, with producers assigned the lowest rank, followed 
by primary consumers, detritivores on deadwood73, secondary consumers and 
tertiary consumers. Necrophagous beetles were assigned the highest rank, 
assuming that they need to have the highest flexibility in terms of foraging 
grounds. To test the level of heterogeneity at which species richness is maximized 
against this ordered predictor, we used a simple one-sided linear-by-linear 
association test (R package coin, v.1.3, ref. 74) with the 0 hypothesis being ‘less’. 
Therefore, heterogeneity measures of each facet were scaled to range from 
0 (lowest detected heterogeneity) to 1 (highest detected heterogeneity). The 
same procedure was applied to three orders of dispersal abilities of the single 
species groups, with the 0 hypothesis being ‘greater’. In this case, we expected 
that arthropods would have smaller dispersal abilities than vertebrates, 
while spore-dispersers were expected to have the best dispersal ability. Other 
classifications and rankings led to similar results (see Supplementary Methods 
and Extended Data Fig. 6).

Note that we intentionally did not include the species richness or abundance of 
plants, either as a response variable or in the calculation of multidiversity, as this 
would have heavily interfered with the Faith’s PD of the plant community as an 
independent variable. However, a reduced GAM without Faith’s PD was applied to 
the species richness of plants (see Table 1). All statistical analyses were carried out 
using the statistical software R, v.3.5.0 (ref. 75).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data reported in this paper can be accessed from the Biodiversity Exploratories 
Information System (https://www.bexis.uni-jena.de), DataSetID 25126. All 
data used in this manuscript is publicly available at https://doi.org/10.25829/
bexis.25126-1.
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Extended Data Fig. 1 | Locations of the single regions from which data was derived. The Biodiversity Exploratories project (biodiversity-exploratories.de), 
comprised three forest areas spanning from south to north: the Biosphere Reserve Schwäbische Alb in the Swabian Jura (ALB, 50 Plots), Hainich National 
Park and the surrounding area (HAI, 50 plots) and the Schorfheide-Chorin Biosphere Reserve (SCH, 50 plots). This database is supplemented with plots 
from the Steigerwald project in northern Bavaria (STE, 69 plots) and the BIOKLIM project in the Bavarian Forest National Park (BAY, 278 plots). In all three 
projects diverse environmental variables and species were monitored in a comparable fashion.
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Extended Data Fig. 2 | Conceptual considerations of three potential measurements used to describe horizontal heterogeneity of five (A-E) different 
forest stands. The number of gaps (lilac line) is a measure which would ignore differences in gap areas (B,C). Gap area (orange line) overestimates 
heterogeneity when single gaps areas reach thresholds of more than 50% of the plot size (B). Here, the gap becomes the dominant habitat which makes 
the forest stand actually more homogeneous. Hence, the total gap area per plot would not depict a linear increase in horizontal heterogeneity because 
both extremes, 100% canopy cover as well as 100% gap area are homogenous in structure. Total gap edge length (red line) steadily increases with 
horizontal heterogeneity and incorporates both composition and configuration, thereby covering the most important information in one variable.
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Extended Data Fig. 3 | PCA of structural parameters. Potential structural parameters, which could have been used to describe either vertical or horizontal 
heterogeneity, depicted via Principle Component Analysis. Many measures capture not the main axes and represent a mixture of both. The variables which 
were chosen in our analysis (BE_H_SD and Gap_total_edge length) represent the variation without inferring with each other. Colour-coding referring to 
the five regions: the Biosphere Reserve Schwäbische Alb (ALB), Hainich National Park and the surrounding area (HAI), the Schorfheide-Chorin Biosphere 
Reserve (SCH), the Steigerwald project (STE) and the BIOKLIM project in the Bavarian Forest National Park (BAY).
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Extended Data Fig. 4 | Correlation between selected variables. Shown are Pearson Correlation Coefficients between the selected variables used in the 
GAMs, that is taxonomic (DW_TR) and type richness (DW_type) of deadwood, vertical heterogeneity measured as standard deviation of height from 
vegetation returns (BE_H_SD), vegetation diversity measured as Faith’s PD (in millions of years) of the plant communities (Plant_ObsPD), horizontal 
heterogeneity measured as the (square-rooted) total gap edge length (sqrtGap), topographic heterogeneity measured as the standard deviation of the 
slope of the digital terrain model (dtm_slope_sd) as well as the cover of herbs sampled within the plots (HerbCover). All variables have a R of less than 
0.6, indicating no problems with multicollinearity. Colour-coding referring to the five regions: the Biosphere Reserve Schwäbische Alb (ALB), Hainich 
National Park and the surrounding area (HAI), the Schorfheide-Chorin Biosphere Reserve (SCH), the Steigerwald project (STE) and the BIOKLIM project in 
the Bavarian Forest National Park (BAY).
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Extended Data Fig. 5 | Correlation between height SD (left) and gap edge length (right) and the proportion of conifers in a forest stand. Height SD 
decreased with increasing proportion of coniferous trees but the correlation was relatively weak (F1,495=39.64, t-value = −6.29***, R²=0.07). Horizontal 
heterogeneity increased with increasing proportion of coniferous trees (F1,495=131.2, t-value = 11.45***, R²=0.21). However, this is likely due to the fact that 
in the Bavarian Forest, many spruce stands at higher elevations have been infected by bark beetles, which lead to many gaps. Colour-coding referring to 
the five regions: the Biosphere Reserve Schwäbische Alb (ALB), Hainich National Park and the surrounding area (HAI), the Schorfheide-Chorin Biosphere 
Reserve (SCH), the Steigerwald project (STE) and the BIOKLIM project in the Bavarian Forest National Park (BAY).
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Extended Data Fig. 6 | Infliction points under different ranking. Inflection points, that is, the level of heterogeneity at which species richness was highest, 
summarized over all six facets of heterogeneity, which were binned from 0 (lowest heterogeneity in all plots) to 1 (highest heterogeneity in all plots), 
ordered along dispersal ability. In contrast to Fig. 3, we further subdivided into flying and non-flying arthropods and ranked spore-disperses higher than 
flying vertebrates in terms of dispersal ability. However, both classification and ranking systems did not show any relationship to the infliction point 
(Asymptotic General Independence Test, alternative “greater”, Z=0.38, p-value=0.35).
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Study description Here, we test whether habitat heterogeneity has generally positive effects on species richness, as predicted by the habitat 
heterogeneity hypothesis, or whether heterogeneity leads to a reduced amount of suitable area available for individual species and 
thus a decrease in mean population size and ultimately to hump-shaped or even negative relationships (area-heterogeneity-trade-off 
hypothesis). 
Therefore, we assessed species richness of twelve species groups spanning diverse trophic levels on up to 497 1 ha forest plots 
across temperate forests of Germany. For each plot, we measured six facets of heterogeneity including the subject areas forest 
structure, plant diversity, deadwood and micro-scale topography. This was done either by field assessments or with the help of 
Airborne Laser Scanning. For each species group, we modelled the relationship between species richness and all six facets using a 
generalized additive modelling (GAM) framework, without any a priori assumptions about the nature of the above-described 
relationship and accounting for overdispersion by a quasi-Poisson estimation procedure. The study region was considered as a 
random factor to account for regional effects. To determine whether our data supported the habitat-heterogeneity hypothesis, the 
area–heterogeneity-trade-off hypothesis, or neither, we considered the modelled relationships between the richness of the species 
groups and the single predictor variables as “supporting the habitat-heterogeneity hypothesis” (monotonous increase in species 
richness), “supporting the area–heterogeneity-trade-off hypothesis” (changes in sign of slope from positive to negative in species 
richness) or “supporting neither.”. To test whether heterogeneity affects the mean population size of each animal group (note that 
no abundance data were available fungi, lichens and bryophytes), we also applied GAMs with a Gaussian error distribution with mean 
abundance or, in case of bats, calls per species, as dependent and the six facets of heterogeneity as independent variable.

Research sample Our data are based on three projects, in which comprehensive assessments of biodiversity and habitat variables have been 
conducted. The Biodiversity Exploratories project (biodiversity-exploratories.de), comprised three forest areas spanning from south 
to north: the Biosphere Reserve Schwäbische Alb in the Swabian Jura (50 Plots), Hainich National Park and the surrounding area (50 
plots) and the Schorfheide-Chorin Biosphere Reserve (50 plots). This database is supplemented with plots from the Steigerwald 
project in northern Bavaria (69 plots) and the BIOKLIM project in the Bavarian Forest National Park (278 plots). For each of the plots, 
several species groups have been assessed. 
We sampled a broad range of trophic levels and taxa, namely bats, birds, spiders, carabid, saproxylic, necrophagous and 
phytophagous beetles, true bugs, moths, fungi and lichens on dead wood and bryophytes and calculated their species richness and, 
for the animal groups, mean abundance. A sample hereby refers to the species richness, or, if available, mean population size, per 
species group and plot. 
 
Datasets used: 
Exploratories Project 
Jung, Kirsten; Marco Tschapka (2018): Bat activity in all Exploratories, summer 2008, using acoustic monitoring . v1.1.4. Biodiversity 
Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=19848  
Tschapka, Marco; Swen Renner; Kirsten Jung (2018): Bird survey data 2008. v3.1.4. Biodiversity Exploratories Information System. 
Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=21446  
Goßner, Martin; Markus Lange; Manfred Türke; Esther Pasalic; Wolfgang Weisser (2016): Window and ground traps on forest EPs in 
2008 subset Coleoptera. v1.1.3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/
PublicData.aspx?DatasetId=16866  
Goßner, Martin; Markus Lange; Manfred Türke; Esther Pasalic; Wolfgang Weisser (2016): Window and ground traps on forest EPs in 
2008 subset Hemiptera. v1.1.4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/
PublicData.aspx?DatasetId=16867  
Goßner, Martin; Manfred Türke; Markus Lange; Esther Pasalic; Wolfgang Weisser (2016): Window and ground traps on forest EPs in 
2008 subset Araneae. v1.1.3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/
PublicData.aspx?DatasetId=16868  
Fischer, Markus (2017): Deadwood inhabiting fungi presence absence (2010, all forest EPs). v1.2.2. Biodiversity Exploratories 
Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=18547  
Müller, Jörg; Steffen Boch; Markus Fischer (2016): Bryophyte diversity in forests. v1.6.8. Biodiversity Exploratories Information 
System. Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=4141  
Boch, Steffen; Daniel Prati; Markus Fischer (2016): Lichen diversity in forests. v1.11.14. Biodiversity Exploratories Information System. 
Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=4460 
Schäfer, Deborah; Steffen Boch; Markus Fischer (2017): Vegetation Records for Forest EPs, 2009 - 2016. v1.4.5. Biodiversity 
Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/PublicData/PublicData.aspx?DatasetId=20366  
 
Steigerwald-Project 
Doerfler, I., Gossner, M.M., Müller, J., Seibold, S. & Weisser, W.W. (2018). Deadwood enrichment combining integrative and 
segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv., 228, 70–78. 
 
and further, unpublished data which have been provided by Jörg Müller 
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BIOKLIM-Project 
Bässler, C., Müller, J. & Dziock, F. (2010). Detection of Climate-Sensitive Zones and Identification of Climate Change Indicators: A Case 
Study from the Bavarian Forest National Park. Folia Geobot., 45, 163–182. 
Bässler, C., Müller, J., Dziock, F. & Brandl, R. (2010). Effects of resource availability and climate on the diversity of wood-decaying 
fungi. J. Ecol., 98, 822–832. 
Moning, C., Werth, S., Dziock, F., Bässler, C., Bradtka, J., Hothorn, T., et al. (2009). Lichen diversity in temperate montane forests is 
influenced by forest structure more than climate. For. Ecol. Manag., 258, 745–751. 
Müller, J. & Brandl, R. (2009). Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict 
forest beetle assemblages. J. Appl. Ecol., 46, 897–905. 
Müller, J., Mehr, M., Bässler, C., Fenton, M.B., Hothorn, T., Pretzsch, H., et al. (2012). Aggregative response in bats: prey abundance 
versus habitat. Oecologia, 169, 673–684. 
Müller, J., Moning, C., Bässler, C., Heurich, M. & Brandl, R. (2009). Using airborne laser scanning to model potential abundance and 
assemblages of forest passerines. Basic Appl. Ecol., 10, 671–681. 
Raabe, S., Müller, J., Manthey, M., Dürhammer, O., Teuber, U., Göttlein, A., et al. (2010). Drivers of bryophyte diversity allow 
implications for forest management with a focus on climate change. For. Ecol. Manag., 260, 1956–1964. 
 
and further, unpublished data which have been provided by Jörg Müller 
 

Sampling strategy The study was conducted at up to 497 plots in five forest regions distributed from north to south in Germany and representative of 
forest habitat types in Central Europe. Sample size was based on the maximum of available data with both direct assessments of 
diversity and ALS data. The number of investigated plots per group was 248 for bats, 496 for birds, 385 for all arthropods but moths, 
227 for moths, 597 for dead wood fungi, 315 for lichens and 322 for bryophytes. 
The phylogeny used in the study was taken from Durka and Michalski (Daphne: a dated phylogeny of a large European flora for 
phylogenetically informed ecological analyses. Ecology 93, 2297–2297; 2012) 

Data collection Biodiversity data:  
For each species group, only data acquired during the year closest to that of the ALS flights were chosen. In Biodiversity 
Exploratories, transect walks were used to record bats with a bat detector while in the other two projects fixed autonomous 
batcorders were used. Birds were monitored acoustically and visually within a fixed time span during their breeding season. 
Arthropods were collected using pitfall, crossed flight interception traps and low-intensity light traps. Fungi and lichens present on 
dead-wood objects within a fixed area were mapped. Bryophytes and plants were mapped within a fixed area 
 
 
Environmental data: The taxonomic richness of dead wood was calculated by counting the number of different tree species within a 
plot. Structural richness of dead wood was calculated by counting the number of different deadwood types, classified according to 
diameter and decomposition classes as well as type. Plant diversity was measured as phylogenetic diversity (Faith’s PD, based on a 
published phylogeny) of all vascular plants recorded in the tree, shrub and herb layers.   
Standardized measurements of the 3D structure of the forests as well as microscale topography were obtained using high-resolution 
airborne laser scanning (ALS). Vertical heterogeneity was quantified as the standard deviation (SD) of the vegetation height returns. 
To calculate horizontal heterogeneity, the plots were classified into gap and non-gap areas. Gap areas were defined as areas with a 
minimum size of 50 m², a perimeter/area ratio of <1.5 (thus excluding narrow linear structures such as forest aisles), a height 
threshold of 2 m and a penetration ratio > 80%. Then, we calculated the total length of the gap edges to obtain a continuous 
measurement of horizontal heterogeneity. Micro-scale topography was calculated as within-plot terrain heterogeneity, using a high-
resolution digital terrain model derived from the ALS measurements. The SD of the slope based on a grain size of 1 m × 1 m across 
our one-hectare plots was used as a measure of topographic heterogeneity. 
 
Further details are provided in the Supplementary information. 

Timing and spatial scale All plots were 1ha in size. Sampling of biodoversity data was conducted within the vegetation period. The sampling was conducted 
between 2007 and 2018, depending on the region and taxon. 
 
Dead wood was recorded within 1m left and right along line-transects on both diagonals of a plot  in the Exploratories, within a 13 m 
radius around the midpoint in the Steigerwald-project and within a 8 m radius in the BioKlim Project. 
 
Vegetation  has been recorded twice per year (spring and summer) since 2009 on 20 m x 20 m quadrats in the Exploratories. For the 
ALB, species records from 2010 were chosen, for HAI and SCH those of 2009. In the Steigerwald, vegetation was mapped on a 200m² 
square in April and June 2014. From the spring and summer records, always the higher record is chosen. In the Bavarian Forest 
National park, vegetation was recorded on a circular 0.2 ha plot in summer 2006. 
 
Airborne laserscanning was recorded under leaf-on connditions covering the whole plot in 2007 (Bavarian Forest), 2008 (Hainich), 
2009 (Schorfheide-Chorin), 2010 (Swabian Alb), and 2015 and for some plots, 2018 (Steigerwald). 
  
Bats were recorded from 2008 – 2010 in the Exploratories with a combination of transect- and point stop detector walks.The survey 
time per edge was 6 minutes, same as the time spent at each corner, resulting in 48 minutes per plot. Here, detector walks were 
conducted twice per summer. In the BioKlim Project and the Steigerwald, autonomous bat call recorders were placed as near to the 
middle of the plot in three rounds from April to August 2017 in Steigerwald and in seven rounds from May to August 2009 in the 
BioKlim Project. 
 
Birds were monitored during the breeding seasons from five times between March and June 2008 to 2010 in the Exploratories. All 
bird hearings or sightings were recorded within 5 minutes and a 50 m radius from plot midpoint. In the Steigerwald forest and 
BioKlim Project, a similar procedure was conducted, only that it was on 1 ha and for 7 minutes in 2014 (Steigerwald) and 10 minutes 
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in 2009 (Bavarian Forest). 
 
In the Exploratories, the pitfall-traps and flight-interception traps   were placed at three random corners of the plots from May to 
October in 2008. From these three, two were randomly chosen for species determination (“Priority 1” and “Priority 2”). In the 
Steigerwald and BioKlim Projects, only one trap was established per plot. Here, the traps were placed near the midpoint of the plot. 
In Steigerwald, the traps were operated from March to October 2016, in the Bavarian Forest Nationalpark from April to October 
2007. Light traps were installed near the midpoint of all plots for two nights per plot between the end of May and mid of August (the 
phenological peak of moth occurrence) on all plots. Thereby, the weeks of full moon were avoided. 
 
For dead-wood fungi, eleven dead wood objects located within the 1 ha plot were examined in 2010 in the exploratories. Thereby 
nine of the objects were randomly chosen while the other two were the biggest objects on the plot. In the Steigerwald, a smaller, 
circular area of 0.1 ha was examined. Here, all deadwood objects as well as the soil were examined for 45 minutes in spring, summer 
and autumn of 2014. In the Bavarian Forest Nationalpark, an area of 0.1 ha was examined for 2 h in a single survey from August to 
October 2006. In the process, a minimum of 15 most common dead wood objects were searched, and as much of the remaining 
objects as possible for the rest of the 2 hours. 
 
In the Exploratories, lichens were recorded for four different substrates (bark, further divided into the tree species, rocks, dead wood 
and soil) on 20m x 20 m quadrats in one round from 2007 to 2008. Lichens were recorded in one round on all trees and dead wood 
stems and logs (hereafter referred to as stems), within a 14 m × 14 m plot in 2017 in the Steigerwald forest and within an 8-m radius 
from August to November 2007 in the Bavarian Forest National Park, respectively. In the Bavarian Forest National Park, 1–10 stems 
(average: 5 stems per plot) were examined, depending on stem availability. 

Data exclusions The methods, grain size and time frame for species sampling, although standardised within each project, differ between projects, 
albeit to varying extents. To obtained comparable estimates of diversity, the data had to be similarly cropped while in each case 
retaining as much information as possible. If data on certain taxonomic groups were collected for several years, as was the case in 
Biodiversity Exploratories, for each region only the data of the year closest to the ALS flights were chosen. For our analysis, we always 
selected only data from “priority 1” pitfall and ground window traps from the Exploratories to gain equal sampling sizes in 
comparison to the Steigerwald and Bayerwald projects. Because the fungal communities showed extreme differences between the 
projects, which was unlikely to be based on regional differences alone but rather an effect of the determinability of cryptic species, 
data cropped to a list of species which are equally determinable according to a specialist (CB). For instance, crustean species were 
not included.

Reproducibility Not applicable to our study. We did not conduct any experiments.

Randomization The sampled plots were geographically clustered and used, depending on the project (see above), slightly different methods to 
assess biodiversity. In order to gain comparable estimates of diversity, raw data gained from the projects was cropped to a 
comparable extent.  Furthermore, we added region as a random factor in the GAMs to account for  both the geographical effect and 
differences in methods.

Blinding Our data is drawn from several projects, in which species  and environmental variables were obtained with standardized protocols 
(see above). Within each project, the sampling was the same. After cropping the data to a comparable extent (see above) all further 
processing steps were equally conducted.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Animals, plants, lichens, bryophytes and fungi were recorded throughout the vegetation period of several years. Recordings of 

bats, birds and moths were only conducted under suitable weather conditions and, for the latter, under respect of the moon 
phase. Other arthropods were sampled automatically every day.

Location Sampling locations can be found in the data set. 

Access and import/export obtained permits: 
 
55-8/8848.02-07 Regierungspräsidium Tübingen 
13.4 64233/11-07SDH Thüringer Landesverwaltungsamt 
R07/SOB-0907 Landesumweltamt Brandenburg 
63.2-15.02.00.17-38-2018 UNB Eisenach; 
LFU-N1- 47 43 /128+5#69 122/2018 Landesamt für Umwelt Brandenburg; 
55.1-8642.10-N 25 Regierung von Niederbayern  
55.1-8622 Regierung von Oberfranken  
 
 

Disturbance Mapping of birds, bats, plants, bryophytes, lichens, fungi and dead wood was done without disturbance except from walking 
within the plots. Disturbance was caused only by the withdrawal of arthropods for specification, though this disturbance is 
negligible given the high reproduction rates of arthropods. 
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals the study did not involve laboratory animals

Wild animals Bats and birds were recorded using acoustic monitoring and, for the latter, sightings. Plants, bryophytes, fungi and lichens were 
mapped in the field. For quantitative and qualitative recordings of Arthropods, we used flight-interception traps and pitfall traps 
with sulphate solution as trapping and killing liquid. Moths were caught by of 12 V and 15 Watt super actinic UV lighttraps, with 
chloroform as killing medium.

Field-collected samples The sampled arthropods were preserved in alcohol of frozen until they could be determined by specialists.

Ethics oversight Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, Brandenburg 
and Bavaria.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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