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1  | INTRODUC TION

Since its introduction by Wright (1931), the concept of effective popu-
lation size (Ne) has been enormously influential. The main reasons are 

its conceptual simplicity and broad utility, as it brings under a com-
mon denominator species and populations that may differ profoundly 
in their biological characteristics. According to a standard textbook 
definition (Hartl & Clark, 2006) ‘the effective population size of an 
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Abstract
1.	 Effective population size, Ne, is a key evolutionary parameter that determines the 

levels of genetic variation and efficacy of selection. Estimation and interpreta-
tion of Ne are essential in diverse areas of evolutionary and conservation biology, 
ranging from assessing the evolutionary potential or extinction risk to empower-
ing research on the genomic basis of adaptation.

2.	 The diverse applications of the Ne concept resulted in largely independent meth-
odological developments using different Ne definitions and focusing on the 
estimation of either contemporary or long-term Ne. Recently, several novel ap-
proaches appeared that allow the estimation of temporal Ne trends at various 
parts of the temporal Ne continuum.

3.	 Here, we provide an overview of the temporal aspects of Ne, asking whether the 
existing methods and available data provide Ne estimates for the entire temporal 
continuum. We outline the apparent division into contemporary and long-term 
Ne existing in the literature, review Ne estimation methods across the temporal 
continuum and navigate the reader through it pointing to the important biological 
and methodological limitations inherent to the estimation procedures. Finally, we 
provide examples of recent research and future perspectives.

4.	 We conclude that the entire temporal Ne continuum can now be inferred using 
several complementary approaches, bringing together contemporary and long-
term perspectives. Further rapid progress in the field is expected from the wide 
adoption of machine learning and transition to haplotype-resolved population 
genomic data. The expected progress notwithstanding, interpretational difficul-
ties are likely to remain, emphasising the need for a thorough understanding of the 
Ne theory behind the methods, their assumptions and inherent limitations.
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actual population is the number of individuals in a theoretically ideal 
population having the same magnitude of random genetic drift as the 
actual population’. The theoretically ideal population in this defini-
tion is the Wright–Fisher population. Effective population size is a key 
evolutionary parameter that reflects the strength of drift, and thus 
determines the efficacy of selection and the levels of genetic varia-
tion. The interest in the subject has led to the formulation of several 
Ne definitions that use and emphasise various aspects of drift (Box 1). 
Because the action of key evolutionary processes and their balance 
depend on Ne, and because suitable genetic data have become in-
creasingly available, the interest in estimation of Ne increased mark-
edly over the last decades. Estimation and interpretation of Ne are 
essential in diverse areas of evolutionary and conservation biology, 
ranging from assessing the evolutionary potential or extinction risk to 
empowering research on the genomic basis of adaptation.

The approaches for Ne estimation utilise the information con-
tained in genetic data, as outlined below. The relationship between 
the definitions and estimates of Ne can, however, be complex. To 
put it simply, it may become unclear what kind of Ne (inbreeding, 
variance, eigenvalue, something in between) is being estimated 
and how should the estimated quantities be interpreted within 
a given biological context (Ryman et  al.,  2019; Waples,  2010). 
Another complication is the division of the field into the research 
on the ‘contemporary’ (or ‘recent’) and ‘long-term’ (or ‘historical’) 
population size, which has emerged from the diverging method-
ological approaches and applications of the concept (see the ex-
cellent review by Hare et al., 2011). Contemporary Ne, defined as 
Ne in the previous or over several previous generations, has been 
widely used in the areas such as animal and plant breeding, con-
servation and management of wild and captive populations. The 

Glossary

Approximate Bayesian computations (ABCs)—an approach to model testing and parameter estimation that relies on using summary 
statistics and a large number of computer simulations to estimate the posterior probability of a model and posterior distributions of 
model parameters without the need for calculation of the likelihood function.
Balancing selection—any form of natural selection that maintains variation within populations.
Bottleneck—an abrupt reduction of population size.
Coalescent theory—theory that provides a mathematical model linking the properties of the genealogy (which traces the ancestry of 
a sample of gene copies backwards in time to their most recent common ancestor), with the demographic parameters, such as effec-
tive population size, population size changes or migration between populations; it allows the estimation of demographic parameters 
from a sample of DNA sequences.
Diffusion approximation—an approximation of allele frequency changes under evolutionary forces of drift, selection and migration 
obtained by applying mathematical techniques developed to study the process of diffusion; diffusion approximation assumes that 
these forces are weak.
Drift—random changes in allele frequencies over generations caused by the sampling of a finite number of gametes to form the new 
generation.
Harmonic mean—the reciprocal of the mean of reciprocals; is smaller than the arithmetic mean and more affected by small values.
Identity by descent (IBD)—two DNA segments are IBD if they are descended from a single ancestral DNA segment.
Identity by state (IBS)—two DNA segments are identical by state if their sequence is identical. IBS may be a consequence of common 
ancestry (IBD) or parallel mutations.
Inbreeding—(1) a mating between individuals that are more closely related than individuals picked from a population at random, (2) 
increase in the probability that two gene copies in a population will be identical by descent.
Inbreeding depression—reduction of offspring fitness as a consequence of mating among relatives; its main cause is the unmasking 
of phenotypic effects of recessive deleterious mutations in homozygotes.
Linkage disequilibrium—nonrandom association between alleles at different loci; may be a consequence of: (i) physical linkage, (ii) 
mixing of genetically differentiated populations, (iii) genetic drift and (iv) selection acting on more than one locus.
Phasing and phased data—data are phased when we know which variants from different loci are located on the same parental chro-
mosome (or, form a haplotype); phasing is a process that produces phased data.
Run of homozygosity (RoH)—an uninterrupted segment of homozygous genotypes, caused by the transmission of two identical 
haplotypes by both parents.
Site frequency spectrum—the distribution of allele frequencies in a sample, usually presented as the histogram, showing the absolute 
or relative number of sites that have particular counts of the derived (unfolded SFS) or major (folded SFS) allele.
Wright–Fisher population—an idealised population with non-overlapping generations, in which the next generation is formed by 
binomial or multinomial (in case of more than two alleles) sampling of gene copies from a pool of gametes to which all individuals 
contribute equally. In such a population the number of offspring produced by an individual is given by a Poisson distribution.
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estimation of long-term Ne has been of interest in, for example, 
phylogeography, historical demography and speciation research. 
This subdivision into sub-fields that use different kinds of data, es-
timation methods and even terminology is unfortunate, as it limits 
the exchange of ideas and raises the entry bar for newcomers to 
the field. Thus, the success, broad adoption and application of the 
Ne concept notwithstanding, two major issues have slowed down 
the progress of the field:

1.	 Increasingly sophisticated and precise methods are available, 
but it is often unclear which biologically interpretable quantity 
they estimate and how their results can be interpreted in the 
context of the questions that motivated their use.

2.	 The subdivision into contemporary and long-term Ne has domi-
nated the field, while both our understanding of the biological 
reality and the newly available methods emphasise the temporal 
continuum of Ne. Importantly, the growing appreciation of the 
continuum makes the issues outlined above even more pressing.

The recently published reviews of effective population size 
cover the general properties and theoretical underpinning of the 
concept (Charlesworth, 2009; Walsh & Lynch, 2018), methods for 
its prediction and estimation (Wang et al., 2016), interpretation of 
various Ne estimates (Ryman et al., 2019), the estimates of Ne in var-
ious taxonomic groups (Palstra & Fraser, 2012), the use of genomic 
data to reconstruct historical demography (Beichman et al., 2018), 
as well as the effect of various properties of natural populations on 
the estimation and interpretation of Ne estimates (Hare et al., 2011; 
Waples, 2010). Although temporal aspects of Ne feature in several 
of these reviews, no review focusing on the temporal continuum of 
effective population size has been available to date. Here, we aim to 
provide a thorough yet accessible overview of temporal aspects of 
Ne, spanning both contemporary and long-term Ne. We will guide 
the reader through the diversity of the available approaches, dis-
cuss the question of interpretation and illustrate how the recently 

developed approaches can be combined to reconstruct the entire 
Ne continuum. We will provide a general overview of the key meth-
ods and refer the reader to the existing methodological reviews for 
more details. We will also integrate, where necessary, spatial aspects 
of Ne estimation and interpretation, present recent examples of the 
application of the Ne concept and outline prospects for integrative 
Ne research. Importantly, we stress throughout that probing the 
entire temporal Ne continuum can provide invaluable insights into 
the evolution, biology and conservation of natural populations only 
when accompanied by a thorough understanding of the Ne concept 
and biases associated with various approaches to Ne estimation.

2  | DIVISION OF THE FIELD: 
CONTEMPOR ARY AND LONG -TERM Ne

A long-standing interest in the effective size of natural, domesti-
cated and experimental populations resulted in extensive theoreti-
cal Ne research that together with novel techniques for assessing 
genome-wide variation facilitated the development of Ne theory as 
well as inference methods (Hössjer et al., 2014, 2015, 2016; Hui & 
Burt, 2015; Husemann et al., 2016; Ryman et al., 2019; Wang, 2005; 
Wang et  al.,  2016). In the vast literature on Ne methodology and 
application two main lines of research, focusing either on contempo-
rary or long-term Ne are easily distinguishable (Figure 1). These two 
subfields use different methodological approaches, are associated 
with different challenges and, importantly, differ in the timeframe 
over which they estimate Ne.

2.1 | Contemporary Ne

Contemporary Ne represents effective population size in the previ-
ous or over several previous generations. It is informative about the 
current rate of the loss of variation and adaptive potential. Estimation 

BOX 1 Definitions of effective population size.

Initially (Wright, 1931, 1938), effective population size was defined based on the increase in inbreeding coefficient (probability of 
identity by descent) or based on the variance in allele frequency between generations with these two approaches considered equiva-
lent. Then Crow (1954) noticed that under some situations, in particular when population size changes rapidly, the two approaches 
may produce different results, which led to the distinction between inbreeding and variance Ne. Ewens (1979) introduced eigen-
value Ne, which reflects the loss of heterozygosity over time and is based on the leading non-unit eigenvalue of the allele frequency 
transition matrix. Ewens (1982) showed that eigenvalue Ne differs from both inbreeding and variance Ne, and is defined for many 
theoretical models for which variance Ne does not exist. Coalescent Ne, which is similar to inbreeding Ne, was defined as a factor 
by which time needs to be rescaled to obtain a standard coalescent process in a constant size Wright–Fisher population (Nordborg & 
Krone, 2002; Sjödin et al., 2005). If such rescaling cannot be found, then coalescent Ne does not exist, indicating that a given model 
cannot be approximated by the Wright–Fisher model. A large number of other definitions, depending on how changes in the genetic 
composition of populations are quantified, have been discussed in Ryman et al. (2019). This multitude emphasises the elusive sim-
plicity of the concept of Ne. As Ewens (2004) put it: ‘the concept of the effective population size is widely misused in the literature, 
especially in areas outside of, but associated with, evolutionary genetics’.
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of contemporary Ne is particularly important for endangered, 
managed or harvested populations (Hare et  al.,  2011; Marandel 
et al., 2019; Waples & Do, 2010). Endangered populations are often 
characterised by small census size (Nc) as well as small Ne. In such 
cases the signal of drift is strong and its quantification relatively 
easy. In contrast, many harvested populations, such as, for example, 
marine fish, may have enormous Nc but their Ne is much smaller 
resulting in very low Ne/Nc ratios (Hauser & Carvalho, 2008; Palstra 
& Ruzzante, 2008, but see Waples et al., 2018). Assessment of Ne 
in small, threatened populations as well as in extensively harvested 
populations is essential for successful conservation and sustainable 
management.

The two main approaches to the estimation of contemporary 
Ne include direct or indirect (genetic) methods (Wang, 2005; Wang 
et al., 2016; Gilbert & Whitlock, 2015). Direct estimation requires ex-
tensive knowledge about population's parameters, including census 
size, sex ratio, variance in reproductive success, mating system and/
or pedigree (Caballero, 1994; Wang, 2005; Wang & Caballero, 1999; 
Waples & England, 2011). Unfortunately, demographic parameters 

are particularly difficult to obtain for natural populations and, in con-
sequence, direct Ne estimates are relatively rare.

Indirect methods are easier to apply and require an assessment 
of genetic variation in a population. Using various types of genetic 
data, Ne can be estimated from:

1.	 the excess of heterozygosity relative to Hardy–Weinberg expec-
tations (Pudovkin et al., 1996): an offspring population generated 
from a limited number of males and females, that differ in 
allele frequencies due to drift, is expected to exhibit a deficit 
of homozygotes and an excess of heterozygotes, increasing 
with the decreasing parental population size;

2.	 frequencies of half and full siblings in a random sample from a 
population (Wang,  2009; Waples & Waples,  2011): relatedness 
between individuals is directly related to the inbreeding effective 
population size, the smaller Ne the higher probability that two 
randomly sampled individuals share one or both parents;

3.	 analysis of a set summary statistics (such as number of alleles, 
expected heterozygosity, homozygosity, inbreeding coefficient 
and linkage disequlibrium) using simulations and the approximate 
Bayesian computation (ABC) framework (Tallmon et al., 2008);

4.	 changes in allele frequencies over time (Waples, 1989), the smaller 
the population the more pronounced changes in allele frequen-
cies from generation to generation (for more details see below); or

5.	 linkage disequilibrium (LD) among genetic markers (Hill,  1981; 
Waples & Do, 2010), the magnitude of which is related to the size 
of a population (for more details see below)

While the heterozygosity excess method has rather limited ap-
plications due to its poor performance except when Ne is very small, 
the other methods have been successfully applied to infer con-
temporary Ne of organisms from various taxonomic groups (Hare 
et al., 2011; Palstra & Fraser, 2012; Wang et al., 2016). In particular, 
methods based on LD patterns or allele frequency changes over time 
(so-called temporal methods, not to be confused with temporal Ne 
trajectory) have been widely adopted and are under constant devel-
opment as examples from the special issue of Heredity published in 
2016 (https://www.nature.com/colle​ction​s/tjhfw​vyxzy) testify.

Temporal methods, which rely on the comparison of samples 
taken one or (better) several generations apart, provide an intuitive 
estimate of drift, where the magnitude of changes in neutral allele fre-
quencies over time is inversely proportional to Ne over that period. 
Ne can be estimated with temporal methods using moment-based 
(Do et al., 2014; Jorde & Ryman, 1995, 2007; Nei & Tajima, 1981), 
likelihood (Hui & Burt, 2015; Wang, 2001; Wang & Whitlock, 2003) 
or Bayesian approaches (Berthier et al., 2002, Beaumont, 2003). The 
biggest challenge for the use of temporal methods is the require-
ment of sampling several generations apart. This is particularly im-
portant when species are characterised by overlapping generations 
(sampling at least three to five generations apart is recommended, 
Waples & Yokota, 2007). This limits the utility of temporal methods 
to species with a rather short generation time (but also makes it use-
ful in experimental evolution; Jónás et al., 2016).

F I G U R E  1   Examples of the key methods to infer Ne with 
the timeframe for which the Ne estimate is obtained. The insets 
correspond to contemporary (yellow), long-term (orange) and 
recent and historical Ne trajectories (blue). In each inset, particular 
methods/approaches are represented by horizontal bars spanning 
the time for which they provide information. The long-term Ne 
inset is divided into three parts, representing simple demographic 
changes over time possible to model with this approach. Boxplots in 
contemporary and long-term Ne insets (above the horizontal bars) 
represent point Ne estimates produced by these methods. This is in 
contrast to the blue Ne trajectory in the blue inset that represents 
Ne changes over time. Particular methods that infer recent or 
historical Ne trajectories provide information about a specific part 
of the Ne trajectory. Time is in generations on a logarithmic scale. 
Grey circles represent sampling time(s) for which genetic data were 
obtained. Note that the spans of the timeframes are approximate 
since they depend on the data used and the true demographic 
history; this applies particularly for SFS-based methods and recent 
times
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In contrast to the temporal methods, LD-based methods rely on 
a sample taken at a single time point. The LD methods are based 
on the observation that in a finite population random genetic drift 
creates associations between alleles from unlinked loci as well as 
increases LD between physically linked ones (Hill, 1981). This infor-
mation can be used to estimate Ne. Initially, LD-based methods were 
used for a limited number of physically unlinked loci for which quan-
tification of the strength of drift and Ne is rather straightforward 
(Waples et al., 2016). The performance of the LD methods can be 
improved by incorporating thousands of loci. Some of them will, by 
necessity, be physically linked, which elevates LD and biases Ne esti-
mates. Waples et al. (2016) provided equations that use the number 
of chromosomes or the total length of linkage map to correct for 
this bias.

The signals of drift and inbreeding are strongest in small popu-
lations. For this reason, both temporal and LD-based methods were 
mainly used to estimate Ne in small populations («1,000). Several 
simulation studies suggested that contemporary Ne estimation 
methods can be used to estimate Ne of larger populations when 
genome-wide data are used (Hui & Burt, 2015; Wang et al., 2016). 
However, empirical studies showed that estimation of Ne in large 
populations using LD-based methods remains challenging, often 
resulting in infinite credible intervals (DeFaveri & Merilä, 2015; 
Marandel et al., 2019; Nadachowska-Brzyska et al., 2021). In addi-
tion to the ongoing research on contemporary Ne includes inferring 
Ne in populations with different modes of reproduction, popula-
tions under selection (reviewed in Wang et al., 2016) or for complex 
metapopulation structures (Hössjer et al., 2014, 2015, 2016; Ryman 
et al., 2019).

Strictly speaking, contemporary Ne should refer to the previous 
generation (generation prior to sampling). However, obtaining a Ne es-
timate for a single specific time point may be problematic and depends 
on the approach and data used (Ryman et al., 2019; Waples, 2005). In 
particular, temporal and LD-based methods may provide information 
about Ne from different generations/periods (Waples, 2005, Figure 1). 
Overall, temporal methods estimate harmonic mean Ne over the time 
the samples were collected and LD-based methods reflect Ne of the 
parental generation or several generations back in time. To what time 
exactly the estimates apply depends on species life history (discrete 
or overlapping generations), sampling strategy (whether juveniles or 
adults were sampled) and whether the population experienced re-
cent demographic changes (Waples, 2005). Additionally, analysis of 
individuals belonging to a single cohort only (born in the same year) 
may provide information on the effective number of breeders over a 
reproductive cycle (Nb) instead of the Ne (Ruzzante et al., 2016). In 
such case, Ne can be estimated based on Nb when additional infor-
mation on generation time and/or other life-history traits is available 
(e.g. age of maturation, adult life span, variance in reproductive suc-
cess; Waples et al., 2013, 2014). Active research on contemporary Ne 
includes also inference of Ne in populations with different modes of 
reproduction, populations under selection (reviewed in Wang et al., 
2016) or for complex metapopulation structures (Hössjer et al., 2014, 
2015, 2016; Ryman et al., 2019).

2.2 | Long-term Ne

Long-term Ne can be defined as the harmonic mean of per-generation 
Nes over an extended period (hundreds of generations or more) of the 
evolutionary history of the species in question (Figure 1). In contrast 
to contemporary Ne, estimation of long-term Ne can only be based 
on genetic data. It is an essential part of research on phylogeogra-
phy, speciation and historical demography, where the inferences are 
based on the principle that demographic events (e.g. population bot-
tlenecks, expansions and subdivision) leave distinct signatures in the 
genome-wide patterns of variation. It is thus possible, for any popu-
lation (or species), to construct various demographic models that de-
scribe a sequence of historical events and include information about 
their magnitude, for example, strength of a bottleneck or intensity 
of gene flow. In a classic estimation pipeline, the competing models 
are compared, the most likely (or ‘best’) model(s) is(are) selected and 
model parameters, such as Ne, are estimated. Such inferences pro-
vide insights into species evolutionary history, as well as allow us to 
assess the extinction risk. For example, demographic modelling of 
two closely related species with incomplete reproductive isolation 
informs on the process of speciation by providing estimates of Ne 
of ancestral and descendant populations, time of divergence and the 
amount of gene flow between diverging populations. Demographic 
modelling of small endangered populations facilitates the assess-
ment of the status of threatened species by, for example, providing 
information on the probability of inbreeding depression conditional 
on long-term Ne (Robinson et  al.,  2019). Knowledge of historical 
demography is also essential for inferring selection. Since natural 
selection and some demographic events leave similar signatures in 
genetic variation, it is crucial to test whether variation patterns of 
potentially selected loci could have been produced by demographic 
history under neutrality (Yi et al., 2010).

Model-based methods/approaches to infer long-term Ne can be 
classified according to the data used (site frequency spectrum (SFS), 
identity by descent (IBD), haplotypes, LD), analytical framework ap-
plied (Bayesian, likelihood) or the underlying biological model. These 
aspects of demographic inference have been described in several re-
cent reviews (Beichman et al., 2018; Salmona et al., 2017; Schraiber 
& Akey,  2015) that illustrated also the evolution of the field from 
simple models of a single or two populations (IM model, Hey & 
Nielsen, 2004; Wakeley & Hey, 1997) to more complex (but still sim-
plified compared to the actual demographic histories) demographic 
models including many populations of various Ne and incorporat-
ing events such as expansions, bottlenecks or gene flow between 
populations (Beaumont, 2010; Hey, 2010). Advances in both theory 
and data acquisition (Beaumont & Rannala,  2004; Griffiths,  1991; 
Griffiths & Marjoram,  1996; Griffiths & Tavaré, 1998; Kelleher 
et al., 2019; Marchi et al., 2021; Polanski & Kimmel, 2003) allowed 
researchers to infer long-term Ne of descendant as well as ancestral 
populations of hundreds of species from various taxonomic groups 
(Nadachowska-Brzyska et al., 2013; Zieliński et al., 2016).

However, it is important to note that despite the growing com-
plexity of inferred models, they are always a simplified version of 
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reality and are limited by the number of parameters that can be esti-
mated from the data. In consequence, estimated Nes are a result of 
complex demographic events not necessarily explicitly captured by 
the model, and both ancestral Ne and long-term Ne estimates may 
differ from true Ne (Box 2).

3  | TEMPOR AL CONTINUUM OF Ne

Information on temporal Ne changes is a crucial aspect of the demo-
graphic history often missing in demographic inferences described 
above. For example, temporal Ne trajectories can provide insights 
on species response to past climate oscillations (Miller et al., 2012; 
Nadachowska-Brzyska et al., 2016). A longstanding interest in tem-
poral aspects of Ne dynamics resulted in a wide range of methods 
developed to infer Ne changes. The history of these developments 
goes back to the classic skyline plots. This method infers genealogy 
from DNA sequence data and uses it to estimate piecewise constant 
population size over time using the principles of coalescent theory 
(Ho & Shapiro, 2011; Pybus et al., 2000). The first skyline plot meth-
ods used information from single genetic markers and have been 
further extended to include information from multiple loci (Heled & 
Drummond, 2008). The explosion of methods reconstructing tem-
poral Ne trajectories came with the advances in sequencing that 

have made genome-wide information widely available (Beichman 
et al., 2018; Li & Durbin, 2011; Spence et al., 2018).

Temporal changes in Ne can be incorporated into explicit de-
mographic models that describe population splits, mergers, size 
changes and migration rates (as described in the previous section on 
long-term Ne). Unfortunately, under a model-based approach, both 
the number and complexity of models that can be compared are lim-
ited, because the number of parameters to be estimated from the 
data increases quickly with the increasing complexity of the models. 
As a consequence, changes in Ne population size can be only roughly 
reconstructed. A major advance towards the reconstruction of the 
temporal Ne continuum was the development of nonparametric 
models that are more flexible and allow the exploration of a much 
larger model space (Li & Durbin, 2011; Liu & Fu, 2020; Schiffels & 
Durbin, 2014; Terhorst et al., 2017).

Importantly, methods inferring Ne over time differ in the time-
frame in which they operate. Depending on a particular approach 
and data used, one can access different portions of demographic his-
tory that together can cover the entire temporal continuum. Below 
we shortly present the key methods that infer Ne trajectories from 
genome-wide data, focusing on the temporal scales these methods 
provide information for. We also discuss the interpretation of the 
results and show how we can infer the temporal Ne continuum by 
combining different approaches (Table 1).

BOX 2 Demographic model versus long-term Ne

To understand the difference and the relationship between a demographic model and long-term Ne, let us take a simple example 
of an isolated population for which we can draw a simplistic demographic scenario (Figure Box 2). In this example, the population 
originated from a larger ancestral population and its Ne fluctuated over time (yellow line). The proposed demographic model (grey 
boxes in Figure Box 2) is a good approximation of the true demography (yellow line) if we average Ne trajectories of the descendent 
and ancestral population. Assuming the proposed model, the historical demographic inference would involve estimation of Ne for the 
ancestral population and Ne for a descendant population in a form of long-term Ne. However, the true demographic history is more 
complex, in particular, there has been a substantial recent decline which could not be inferred in a simplistic demographic model.

Figure Box 2 True Ne changes over time (yellow line) in relation to the simplistic demographic model (grey boxes)
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3.1 | Inference of historical Ne trajectories

Pairwise sequentially Markovian coalescent (PSMC), was introduced 
by Li and Durbin in 2011 and is one of the most widely used methods 
to infer historical Ne changes over time. It is based on the coalescent 
hidden Markov model (coalescent-HMM) theory with roots in the in-
fluential work of Wiuf and Hein (1999; further developed by McVean 
and Cardin (2005) and Marjoram and Wall (2006)). The huge popularity 
of PSMC can partially be attributed to the fact that the method infers 
Ne changes over time using only a single diploid genome sequence. 
Shortly, PSMC identifies segments that most likely did not experience 
recombination prior to coalescence, so all the positions within the 
segment share the same time to the most recent common ancestor 
(TMRCA). PSMC uses the information on the distribution of TMRCA 
to estimate the rate of coalescence over time and translate it to the 
effective population size trajectory. Unfortunately, PSMC resolution 
is limited and the method does not provide information on recent Ne.

An impressive number of new methods trying to improve res-
olution over recent timescales have been developed since the 
publication of the original PSMC study (Sellinger et  al.,  2021; 
Spence et  al.,  2018). In general, these methods improve the res-
olution by analysing genetic information from more individuals, 
from a few (Malaspinas et  al.,  2016; Schiffels & Durbin,  2014) to 
thousands (Speidel et  al.,  2019). Many of these methods are, like 
PSMC, based on sequentially Markovian coalescent (SMC) theory 
(Barroso et al., 2019; Harris & Nielsen, 2013; Malaspinas et al., 2016; 
Schiffels & Durbin, 2014), others use site frequency spectrum (SFS) 
information (Liu & Fu, 2015, 2020) or a combination of both, SMC 
and SFS (Terhorst et  al.,  2017). For example, the MSMC method 
uses coalescent-HMM to approximate the coalescent process 
under recombination and infer Ne changes over time (Schiffels & 
Durbin, 2014). The MSMC operates on a few diploid genomes se-
quenced to high coverage and phased, and shifts the time window 
by a few hundred generations towards the present (Figure  1). In 
contrast, SMC++ does not require phased data and uses hundreds 
of samples to span the vast majority of Ne continuum by combin-
ing information contained in SFS and LD, which is possible because 
the method effectively combines the Poisson random field and 
coalescent-HMM approaches (Figure 1).

Overall, the methods reliant on the information from a single or 
a few genomes provide Ne estimates for the time interval between 
300–400 generations before present (gbp) and hundreds of thou-
sands of gbp (kgbp). Some methods that base their inferences on SFS 
and hundreds or thousands of genomes may provide information on 
more recent times, starting from approximately 40 gbp (Figure 1). 
The exact timeframe of inference may differ among species, but very 
recent Ne dynamics cannot be inferred using these methods.

3.2 | Inference of recent Ne trajectories

Very recent demography can be inferred from patterns of LD along 
the genome. The structure of LD can be expressed as correlations 

between alleles at different loci as well as the distribution of tracts 
of identity by descent (IBD) or identity by state (IBS), such as runs 
of homozygosity. Correlations between alleles can be used to as-
sess contemporary Ne of a population (discussed in the previous 
section; Wang et al., 2016; Waples, 2006; Waples & Do, 2008) and 
Ne changes over the recent past (Barbato et al., 2015; Hollenbeck 
et  al.,  2016; Mezzavilla & Ghirotto,  2015; Santiago et  al.,  2020). 
The methods differ in algorithmic details and sensitivity to complex 
demography (Santiago et al., 2020) but the general logic behind is 
that LD between single nucleotide polymorphisms (SNPs) at differ-
ent genetic distances provides information on Ne at different times 
in the recent past. Distribution of IBD, which can be inferred from 
population genomic data, carries information about recent Ne dy-
namics (Hayes et al., 2003; MacLeod et al., 2009, 2013). Numerous 
long IBD tracks shared by individuals indicate recent common an-
cestry, suggesting small Ne, and analogously, a large number of short 
IBD tracks implies larger Ne (Browning & Browning,  2015; Hayes 
et al., 2003; Palamara et al., 2012). Similarly, the size distribution of 
genomic segments that are identical by state (IBS), and, importantly, 
can be directly observed, provides information on Ne changes over 
time (MacLeod et al., 2009, 2013).

There is an extensive variation among methods in the tempo-
ral resolution of recent Ne trajectories (Figure  1). Some meth-
ods can only infer Ne changes for the last 15–20 gbp (e.g. LinkNe, 
Hollenbeck et  al.,  2016) others cover a few hundred (e.g. IBDNe, 
GONE; Browning & Browning, 2015; Santiago et al., 2020) or even 
thousands of gbp (e.g. SNeP, PopSizeABC; Barbato et  al.,  2015; 
Boitard et  al.,  2016). Overall, methods reliant on LD/IBD patterns 
provide the most reliable information on Ne changes between a few 
and 100–200 gbp (e.g. IBDNe, Browning & Browning, 2015; GONE, 
Santiago et al., 2020). Methods that span longer periods often re-
quire additional information on SFS and involve complex simulations 
(e.g. PopSizeABC; Boitard et al., 2016).

4  | BIOLOGIC AL AND METHODOLOGIC AL 
LIMITATIONS FOR INFERRING THE 
TEMPOR AL Ne CONTINUUM

In theory, using different approaches presented above, one can infer 
Ne changes spanning the entire temporal continuum starting from 
the previous generation to hundreds of thousands of gbp. However, 
each method has its requirements about data and its assumptions 
that, if violated, may produce unreliable results. Moreover, even if 
Ne trajectory can be reconstructed for extended periods, the reli-
ability of estimation can differ across time.

4.1 | Data-related limitations

Different methods estimating Ne changes over time are prone to 
different biases inherently associated with the type of data used. 
For example, the influence of missing data and coverage on PSMC 
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BOX 3 The effect of geographic subdivision on temporal Ne reconstruction

The theory of effective population size under stable subdivision, that is, in migration-drift equilibrium, is relatively well understood (re-
viewed in Charlesworth & Charlesworth, 2010). However, important analytical results and approximations regarding the expected time 
to coalescence (proportional to Ne) are mostly available for the sample size of two (Charlesworth & Charlesworth, 2010). These results 
show that under numerous scenarios of subdivision sequences sampled from a single deme accurately estimate the sum of the long-term 
population sizes of various demes. Such samples, however, distort SFS and mislead the reconstruction of the temporal Ne trajectory 
(Städler et al., 2009). An interesting and important result emerges for metapopulation models consisting of many demes that undergo 
extinction–recolonisation dynamics (Wakeley, 1999; Wakeley & Aliacar, 2001). When the number of demes is large, the details of the 
migration process between them become less relevant. The genealogical process can be usefully divided into two phases characterised by 
distinct dynamics. The dynamics of the scattering phase is governed by fast processes of coalescence occurring within demes, while the 
dynamics of the collecting phase is determined by slower processes as ancestral lineages migrate among demes that usually do not contain 
other ancestral lineages. If each gene copy is sampled from a different deme, there is no scattering phase in the ancestry of the sample 
and the genealogical process in the collecting phase converges to standard coalescent with appropriately rescaled time (Wakeley, 1999).

To give a concrete example of the effect of the geographic subdivision on the reconstruction of the temporal Ne trajectory, Wakeley 
(1999) demonstrated that structured populations may show spurious bottleneck signals even if they are actually growing. Mazet 
et al. (2016) presented scenarios in which PSMC-like methods under subdivision robustly recovered signal of Ne changes through time 
even under constant population size (Figure Box 3). Interestingly, both signals of demographic expansion and contraction can be inferred 
for the same demographically stable subdivided population depending on how the genomes we base our inferences on are sampled 
(Mazet et al., 2016, Figure Box 3c,d). Such results become easy to understand when we consider the effect of subdivision on the in-
stantaneous rate of coalescence, the inverse of which is equated with effective population size under panmixia. For instance, consider a 
stable subdivision of a population into several demes connected by a limited gene flow. As we follow the ancestral lineages of gene copies 
sampled in a single deme, the rate of coalescence would initially be high, determined by the local deme size. Then, as more and more an-
cestral lineages leave the deme, the rate of coalescence decreases as it becomes determined by the number of demes and migration rates 
between them. Thus, we will recover an increased coalescence rate in the recent past, exactly as expected under a bottleneck scenario.

In a series of papers, Chikhi and colleagues (Arredondo et al., 2021; Chikhi et al., 2018; Grusea et al., 2019; Mazet et al., 2016; Rodríguez 
et al., 2018) formalised the problem, defined the inverse instantaneous coalescence rate (IICR), which equals (coalescent) Ne in a panmictic 
population, and showed that this measure necessarily confounds Ne changes with the effects of population structure. In an attempt to 
co-estimate Ne and subdivision they proposed a method that fits IICR curves to a piecewise n population model estimating the number of 
islands, and rates and changes in connectivity (Arredondo et al., 2021). This work brings the promise of incorporating subdivision and its 
changes into the realm of PSMC-like methods but also points out that we may be reaching limits of demographic inference here.
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analysis was investigated by Nadachowska-Brzyska et al. (2016) who 
found that high quality data (coverage >18x) are essential for proper 
inference. It has also been shown that high numbers of spurious SNPs 
(>10%) and unmasked repetitive sequences bias inference in several 
SMC methods (Sellinger et al., 2021). Many methods appear robust to 
the assembly quality (fragmentation) but their precision and accuracy 
differ across timescales (Patton et al., 2019)—often Ne for the most 
recent as well as ancient times is more difficult to infer. In addition, 
methods based on SFS or IBD require large sample sizes (Browning 
& Browning, 2010; Robinson et al., 2014; Liu & Fu, 2015; Terhorst & 
Song, 2015). Paradoxically, methods relying on smaller sample sizes 
often require phased data that, if the phase is computationally in-
ferred, require large datasets anyway (Terhorst et al., 2017). Phased-
data based methods are sensitive to phasing errors that can result in 
the overestimation of recent Ne (Terhorst et al., 2017).

4.2 | Influence of selection

Selection may influence patterns of variation in data used for Ne 
estimation. First, any form of pervasive selection violates the as-
sumptions of the methods discussed above. Second, selection at 
linked sites decreases heterozygosity and distorts SFS, causing, 
together with variation in recombination rate, significant hetero-
geneity of diversity across the genome (Elyashiv et al., 2016). As a 
consequence, selection can lead to overestimation of the severity 
and rate of Ne changes over time. For example, in classic PSMC, a 
false signal of a recent bottleneck will be produced by the genomic 
regions under strong background selection and a false signal of an-
cient demographic expansion will be due to regions evolving under 
balancing selection. It is, however, believed that balancing selection 
plays a minor role in the long-term maintenance of genetic variation 
(Asthana et al., 2005; Bubb et al., 2006; but see Charlesworth, 2015), 
while transient balancing selection is very difficult to detect be-
cause it only mildly affects the local patterns of variation (Fijarczyk 
& Babik, 2015). On the other hand, when SFS is analysed, false re-
cent population growth is inferred if background selection is ignored 
(Johri et al., 2021). Thus, regardless of the applied method, different 
forms of selection can seriously bias estimation of Ne trajectories, 
especially in gene-dense genomes and in the case of low recombina-
tion rate. Controlling for these effects is, therefore, a critical, but 
also challenging, aspect of the analyses. Recent advances promise, 
however, progress in this field (see below).

4.3 | Temporal and spatial aspects of Ne are 
intimately linked

As we probe the temporal continuum of Ne deeper and deeper in 
time, Ne inferences are increasingly based on the rate of coalescence 
of ancestral lineages, which is either estimated from sequence diver-
gence or inferred from the properties of the SFS. Several processes 
affect the rate of coalescence and may thus generate signals that can 
erroneously be taken as evidence of Ne changes, especially when 
the assumption of panmixia is violated. Structured populations may 
show bottleneck signals even if they are growing (Wakeley,  1999) 
and populations of constant size may appear as declining or expand-
ing, depending on a sampling scheme (Mazet et  al.,  2016; Box 3 
Figure). These observations are particularly important since real spe-
cies are usually subdivided and subdivision often changes over time, 
following natural or anthropogenic environmental processes that 
affect the distribution of habitats and connectivity between them 
(Haddad et al., 2015; Hewitt, 2000; Lowe & Walker, 2014). Hence, 
any serious attempt at reconstructing historical demography needs 
to take into account the spatiotemporal continuum. This is, unfortu-
nately, not an easy task (Box 3).

Theoretical results show that, while Ne under subdivision can 
usually be defined in terms of the expected coalescence times 
(Sjödin et  al.,  2005; Wakeley & Sargsyan,  2009), interpretation of 
this quantity is difficult in strictly demographic terms. This is be-
cause Ne depends not only on the sum of subpopulation sizes but 
also on migration rates between them (Box 3). If one is interested 
in reconstructing demography as the change in the population sizes 
through time, the very concept of effective population size becomes 
elusive under subdivision and it becomes difficult to disentangle the 
local (subpopulation) Nes and global Ne. Depending on the number 
of subpopulations and the migration patterns between them, we 
may or may not accurately estimate the sum of the long-term popu-
lation sizes of various subpopulations or accurately reconstruct (or 
not) the temporal Ne trajectory (Städler et al., 2009; Box 3).

The reconstruction of demographic history under conditions 
of non-equilibrium subdivision has commonly involved formulation 
and comparison of a limited number of models depicting the history 
of population splits, mergers, admixture events and changes in the 
effective size of particular populations (similarly to the long-term 
Ne inference described above, Section 2.2). However, even under 
a rather simple scenario of a small number of subpopulations, the 
number of parameters and computational complexity of the model 

Figure Box 3 The behaviour of PSMC-like methods under population subdivision (adapted from Mazet et al., 2016). (a) The actual 
increase in the size of a subdivided population is reconstructed by PSMC-like methods as a demographic decline when subdivision is 
ignored, (b) Changes in migration rates (M1–M3) in a constant size subdivided populations are reconstructed by PSMC-like methods 
as demographic fluctuation, (c and d) in a constant size subdivided population PSMC-like methods would infer demographic decline 
(c) or expansion (d) depending on the sampling scheme
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increases quickly. This necessitates using simple models, which in it-
self constitutes a strong assumption about the demographic history.

The advent of PSMC-like methods that are temporal per se has 
led to the renewed interest and increased recognition of the pro-
found effects subdivision and its changes have on the estimation of 
the temporal Ne continuum. This interest has been partly motivated 
by the debate on the history of our species in Africa before the col-
onisation of Eurasia (Scerri et  al.,  2018, 2019). The importance of 
the topic is, however, far-reaching, equally and perhaps even more 
relevant to other species that experienced drastic alterations in pop-
ulation sizes, geographic ranges and connectivity. To put it simply: 
when we look at the reconstructed temporal Ne continuum the es-
timates at its different points mean different things, the more so if 
the geographic structuring itself also changes over time. This sim-
ple observation causes considerable interpretational difficulties. 
Paradoxically, we can estimate, with increasing precision and reso-
lution, the IICR (Mazet et al., 2016) which equals (coalescent) Ne in a 
panmictic population, but its meaning becomes increasingly elusive 
under subdivision (Box 3), especially if subdivision itself has changed 
over time as we have all the reasons to suspect is the rule (Fenderson 
et al., 2020). Indeed, Beichman et al. (2017) showed that data simu-
lated under demographic scenarios inferred by PSMC-like methods 
assuming a single panmictic population did not produce SFS similar 
to those observed in the natural populations.

Take home message from this section is that when trying to es-
timate the temporal Ne continuum we must take into account pop-
ulation structure, otherwise, results will not be interpretable. The 
methods to do so are in their infancy and the limits to their devel-
opment remain unclear. For the time being the researchers should 
at the very least be fully aware that uncritical interpretation of the 
temporal trajectories of the rate of coalescence as Ne may lead to 
false inferences and interpretation.

5  | E X AMPLES OF RECENT RESE ARCH 
AND FUTURE PERSPEC TIVES

To jointly infer contemporary and long-term Ne and to bridge the 
gap between these two, hundreds of genomes from a contempo-
rary population are required, ideally accompanied by genome se-
quences of historical samples. PSMC-like and SFS-based methods 
can then be complemented with temporal and LD-based methods, 
potentially allowing reconstruction of the entire Ne continuum. 
Historical samples, including museum specimens, permafrost and 
archaeological samples of various species are becoming a common 
target of sequencing projects, facilitating such analyses (Mitchell & 
Rawlence, 2021; Orlando et al., 2021). Similarly, the use of haplo-
type information is a promising strategy to improve the estimation 
of numerous population genetic parameters, including Ne (Leitwein 
et  al.,  2020; Meier et  al.,  2021). We expect that many haplotype 
datasets will soon become available, as long-read sequencing tech-
nologies mature, which allows direct haplotype phasing and thus 
overcoming computational phasing errors (De Coster et al., 2021). 

As a consequence, we should soon be able to take a look into the 
entire Ne continuum in numerous species. How can our understand-
ing of biology benefit from that?

Perhaps the most basal aspect of wildlife biology that can be ad-
dressed with population genomics tools is population size estimation. 
In the context of conservation, census population size, its oscilla-
tions and relation to Ne are of particular interest. Even though the 
census population sizes generally correlate with effective population 
sizes, there is a substantial variation between species and a discrep-
ancy between the several orders of magnitude variation in census 
population sizes and the much narrower range of Ne estimated from 
genetic variation (Ellegren & Galtier,  2016). An interesting recent 
development is the introduction of the close-kin mark–recapture 
(CKMR) approach that estimates census size using the frequency of 
parent–offspring pairs identified with genomic methods (Bravington 
et al., 2016; Ruzzante et al., 2019; Waples & Feutry, 2021). The same 
data can be used to assess Ne, establishing a direct link between 
Nc and Ne estimates, which led, for example, to the discovery that 
the Ne/Nc ratio in southern bluefin tuna is orders of magnitude 
larger than previously thought (Waples et al., 2018). Ne/Nc ratio is 
conditioned on population structure, demographic fluctuations and 
recent population size changes, as it was discussed above and re-
cently empirically demonstrated for pinnipeds (Peart et  al.,  2020). 
Specifically, species of conservation concern typically have census 
population sizes and current effective population sizes smaller than 
would be expected from their long-term Ne. Only the reconstruction 
of the entire temporal Ne continuum provides the required informa-
tion about Ne oscillations and the relationship between Ne and Nc. 
Such knowledge helps to predict the population's future.

Joint analyses of contemporary and long-term Ne can also be 
used to identify recent changes in genetic variation and their effect 
on the extinction risk. This can be achieved by sequencing histori-
cal samples and comparing contemporary and historical patterns of 
genetic variation associated with changes in Ne. Examples of such 
work include the analysis of Crested ibis genomes (Feng et al., 2019), 
where historical changes in Ne have been reconstructed with PSMC, 
while more recent demography has been modelled with the ABC ap-
proach. Results demonstrated that a recent bottleneck has largely 
removed ancient polymorphisms and caused elevation of inbreed-
ing coefficient and homozygous deleterious mutation load in con-
temporary populations. Museum specimens have also been used to 
investigate the genomic consequences of recent population decline 
in gorillas, demonstrating reduction of polymorphism, increased 
inbreeding and genetic load (van der Valk et  al.,  2019). Historical 
and contemporary samples were also used to infer the demog-
raphy of extinct and living lions (de Manuel et al., 2020). All these 
examples demonstrate that historical snapshots of genetic variation 
contribute substantially to the understanding of recent changes in 
Ne. Recent developments that allow the direct inclusion of ancient 
samples in demographic inferences and linking these samples to 
past demographic events or historical and climate records promise 
to uncover the full potential of historical DNA (Loog,  2021). Such 
analyses should become feasible for many species, as whole-genome 

 2041210x, 2022, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13740 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [30/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



34  |    Methods in Ecology and Evolu
on NADACHOWSKA-BRZYSKA et al.

data from contemporary and historical populations are becoming 
routinely generated (Fuentes-Pardo & Ruzzante,  2017; Hohenlohe 
et al., 2021; Orlando et al., 2021).

Recent climate/historical events can also drive, indirectly or di-
rectly, changes in selective pressures. For example, Feng et al. (2019) 
demonstrated that drift outweighs ancestral balancing selection 
in modern populations of the Crested ibis. Conversely, de Jong 
et  al.  (2020) found evidence for a consistent mode of selection 
across historical periods in several populations of roe deers that 
differ in their Ne trajectories. In particular, in this species genes 
associated with reproductive biology evolve under constant selec-
tive pressure despite reduced effective population size through the 
Pleistocene. These studies show how considering the demographic 
history and natural selection at various timescales can inform about 
the forces shaping genetic diversity and differentiation within spe-
cies (Alexander & Dutoit, 2020).

While the relative role of selection and demography in shap-
ing genetic variation is still a matter of intense discussion (Jensen 
et al., 2019; Kern & Hahn, 2018), these two forces certainly interact, 
producing complex patterns of genetic diversity across the genome 
and influencing inferences of Ne trajectory (Charlesworth,  2009; 
Ellegren & Galtier, 2016; Ewing & Jensen, 2016; Pouyet et al., 2018). 
To account for effects of linked selection that reduce Ne around 
functional regions (much less common balancing selection that can 
increase Ne is usually ignored), demography can be inferred using 
two Ne classes, one for neutral and the other for functional genomic 
regions (Rougemont et al., 2020; Rougeux et al., 2017). Alternatively, 
joint inference of demography and selection across different times-
cales can be performed using ABCtoolbox (Wegmann et al., 2010) 
combined with msms simulator (Ewing & Hermisson, 2010) or using 
other ABC-based approaches (e.g. Fraïsse et  al.,  2021; Sackman 
et al., 2019). Such analyses can provide information about the distri-
bution of selection coefficients of new mutations, as well as improve 
the reconstruction of Ne trajectories (e.g. Johri et  al.,  2020). The 
analyses are, however, computationally intensive, and thus at this 
moment can only be applied to simple models, while still requiring 
some expectations regarding ancient and current Ne, as can be seen 
in analyses of a fruit fly population (Johri et al., 2020). However, if 
we only aim at approximately correcting Ne trajectory for the con-
founding effects of negative selection, demographic history can be 
inferred with reasonable accuracy, by averaging selection effects 
across all possible shapes of the distribution of fitness effects (Johri 
et al., 2021).

Selection (both directional and balancing) and demography can 
also be co-inferred using the rapidly developing machine learning 
approaches. For example, a deep neural network was developed 
to jointly infer simple demographic changes and detect hard and 
soft selective sweeps (Sheehan & Song,  2016). Machine learning 
has also the potential to detect complex patterns left by selection 
using training sets, usually produced by simulations conditioned on 
known/inferred demographic history (Schrider & Kern, 2018). Deep 
learning methods can also extract other information from sequence 
alignments, often outperforming expert-derived statistical methods 

(Flagel et al., 2019). For example, Adrion et al. (2020) demonstrated 
a method to infer recombination rates, where data for training can 
be generated on a Ne trajectory inferred with PSMC-like methods. 
Another example includes work by Lozano et al. (2021) who applied 
machine learning to estimate deleterious gene index in sorghum and 
maize. They found decreased deleterious burden in landraces com-
pared with wild sorghum, and different scenarios were simulated to 
understand this difference, where simulations were parameterised 
with Ne estimates, inferred with SMC++.

These examples demonstrate the flexibility of machine learn-
ing which opens up a whole slew of opportunities for population 
genomic inference in ways that have never before been possible 
(Schrider & Kern, 2018). An inherent part of these investigations is 
generating training sets, based on known demographic parameters. 
Currently, because of the complexity of the analyses, the simplifying 
assumption of constant Ne is often applied, even if Ne trajectory 
is inferred. Certainly, this will change with advances in the field. 
Machine learning can also be used to automatically estimate param-
eters in population genetic models, including changes in Ne (Sanchez 
et al., 2020; Wang et al., 2021). In such a case, even without expert 
knowledge about summary statistics, accuracy similar to that of ABC 
can be achieved. Furthermore, combining machine learning and ABC 
can improve performance while combining the advantages of both 
frameworks (Sanchez et al., 2020).

Joint inferences across the time continuum can help us in un-
derstanding various biological phenomena in a broader context. For 
example, trajectories of recent and historical Ne can be used to infer 
the amount of deleterious variation and risk of inbreeding depression 
associated with particular ancestries in contemporary populations. 
In particular, IBD-based methods, which can infer approximately 100 
generations of demographic history and can be applied to ancestry-
specific segments, can reveal effective population sizes of different 
ancestral populations that contributed to an admixed population 
(Browning et al., 2018; Ongaro et al., 2019). This approach requires 
relatively large sample sizes (>100 individuals) and accurate deter-
mination of local ancestry (Browning & Browning, 2015; Browning 
et al., 2018), but with technological advances, such analyses can also 
be applied to non-model organisms. An even more interesting pic-
ture can be drawn if we could look at the long-term effective pop-
ulation sizes, which can be achieved, for example, by analysing SFS 
of introgressed fragments, assuming that SFS of introgressed seg-
ments reflects SFS of ancestral populations (e.g. Gravel et al., 2013). 
Different ancestries might harbour different amounts of deleterious 
variation determined by historical Ne trajectories, disproportion-
ately affecting inbreeding depression in bottlenecked populations. 
Such analyses of admixed human populations suggested that African 
haplotypes might play a particularly important role in the genetic ar-
chitecture of complex diseases (Szpiech et al., 2019), indicating that 
rare deleterious recessive mutations accumulating in large popula-
tions might excessively contribute to inbreeding depression. A sim-
ilar explanation based on computer simulations has been proposed 
for elevated inbreeding depression in the Isle Royal wolf population 
observed after the arrival of a migrant from a mainland population 
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(Kyriazis et al., 2021; Robinson et al., 2019). On the other hand, these 
analyses have been criticised for applying unrealistic assumptions 
and parameter distributions (Ralls et al., 2020), but yet another re-
cent analysis demonstrated no simple general relationship between 
neutral genetic diversity (aka long-term effective population size) 
and the risk of species extinction (Teixeira & Huber, 2021). To ad-
dress such controversies, we need a better understanding of how 
demographic history and functional genetic diversity shape delete-
rious variation segregating in populations. That would be possible 
only when we reconstruct Ne trajectories over the entire tempo-
ral continuum. They can later serve as a groundwork for generating 
meaningful predictions based on theoretical expectations and com-
puter simulations.

6  | OUTLOOK

With the new analytical methods, the increasing amount and quality 
of genomic data we can now access the entire temporal Ne contin-
uum, bridging the gap between contemporary and long-term Ne. Still, 
most of the available methods provide reliable information only for 
parts of the continuum and it is difficult to imagine a single method 
that would perform well across the entire continuum. Indeed, the 
few existing solutions that promise the reconstruction of the entire 
continuum are not fully satisfactory, as they rely heavily on time-
consuming simulations. The complex interaction among data quan-
tity, quality and sometimes restrictive assumptions of the methods 
cause interpretational difficulties. Therefore, using several comple-
mentary approaches to infer the temporal Ne continuum should 
be adopted as the gold standard in the field, and there is an urgent 
need for the development of software packages that make multi-
ple methods available for the user. In particular, exploratory analysis 
with model-flexible methods may be followed up by more complex 
analyses of a restricted set of models that refine the estimates and 
incorporate additional factors, such as spatial complexity. Judging 
from the growing appreciation of the temporal Ne continuum and its 
increasing usage in diverse areas of evolutionary biology, we expect 
rapid progress in the coming years. The two exciting developments 
are likely to be game changers: wide adoption of machine learning 
and transition to haplotype-resolved population genomic data. The 
expected progress notwithstanding, interpretational difficulties are 
likely to remain, emphasising the need for a thorough understanding 
of the Ne theory behind the methods, their assumptions and inher-
ent limitations.
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