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Continent-wide genomic signatures of adaptation
to urbanisation in a songbird across Europe
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Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic

changes in wild organisms in response to this novel environment. Yet, the genetic changes

and genomic architecture underlying these adaptations are poorly understood. Here, we

genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent

rural site, to address this major knowledge gap in our understanding of wildlife urban

adaptation. We find that a combination of polygenic allele frequency shifts and recurrent

selective sweeps are associated with the adaptation of great tits to urban environments.

While haplotypes under selection are rarely shared across urban populations, selective

sweeps occur within the same genes, mostly linked to neural function and development.

Collectively, we show that urban adaptation in a widespread songbird occurs through unique

and shared selective sweeps in a core-set of behaviour-linked genes.
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Urban development is rapidly expanding across the globe,
and although urbanisation is regarded a major threat for
wildlife1, its potential role as an evolutionary driver of

adaptation has not been explored until recently2–5. Many species
show phenotypic adaptations to the multiple urban challenges,
such as higher levels of noise, artificial light at night, air pollution,
altered food sources or habitat fragmentation6. These adaptations
include changes in behaviour, e.g., refs. 7–9, morphology and
locomotion, e.g., refs. 10–13 or toxin tolerance14. Indeed, there is
now evidence that the phenotypic divergence between urban and
rural populations may have a genetic basis in some species14,15, in
line with the finding that micro-evolutionary adaptations in
natural populations can occur within short timescales, particu-
larly in response to human activities16–18. The study of the
genetic signals of adaptation could provide important insights
into the magnitude of the evolutionary change induced by
urbanisation on wildlife. However, the short evolutionary time-
scale, the dependence of evolution on local factors, and the
polygenic nature of many phenotypic traits, make detecting the
genomic signals of adaptation difficult17,19.

The majority of studies on the genomic basis of urban adap-
tation have either focused on a limited number of markers and
genes3,20 or on a narrow geographical scale, e.g., refs. 4,15,21,22,
thereby limiting the inferences that can be made on the con-
sistency of genomic responses to urbanisation5. Conversely, the
study of multiple populations on a broad geographical scale
provides a powerful framework to identify the evolutionary forces
shaping the genomic responses and to test the repeatability of
urban adaptation15,23,24. In particular, comparing across popu-
lations enables the distinction between random demographic
non-adaptive processes, such as genetic drift, and signatures of
natural selection, as selection might be expected to affect the same
genomic regions (nucleotides or genes) and/or functional path-
ways across cities23,25. The current evidence on the genomic basis
of urban adaptations ranges from high parallelism, involving a
single or few genes15,23, to polygenic, and to putative genetic
redundancy, e.g., ref. 22. This discrepancy might be due to the
variable and sometimes local urban selection pressures together
with the polygenic nature of many adaptive phenotypic traits,
which could lessen the likelihood for shared genetic changes at
the nucleotide level26.

In this study, we present a multi-location analysis of the evo-
lutionary response to urbanisation, using the great tit (Parus
major), to identify the genetic basis of urban adaptation. The
great tit is a widely distributed songbird and a model species in
urban, evolutionary and ecological research, e.g., refs. 27–36, with
demonstrated phenotypic changes in response to urban envir-
onments in several populations29,34,35,37. In addition, genomic
resources are well developed for this species38 and it is known
that across its European range, the species presents low genetic
differentiation21,39–41. In order to examine genomic responses to
urbanisation on a broad geographical scale, we analyse pairs of
urban and rural great tit populations from nine localities across
Europe (Fig. 1 and Supplementary Table 1). We combine several
complementary approaches to: (1) detect allele frequency shifts
across many loci, which will facilitate the exploration of the
polygenic aspect in the adaptation to urbanisation; (2) search for
selective sweeps in urban populations, which will provide infor-
mation on population-specific signatures of selection; and (3)
identify enriched functional pathways associated with genes
putatively under selection in urban populations, which will help
us to infer which particular phenotypes, known and unknown,
underlie urban adaptation in great tits. Overall, the present study
deepens our understanding of the evolutionary drivers and forces
shaping the genomic landscape of urban adaptation on a con-
tinental scale.

Results and discussion
Genetic diversity and population structure across European
urban and rural populations. A total of 192 great tits from the
nine paired urban–rural populations were genotyped at 517,603
filtered SNPs, with 10–16 individuals per sampling site (Supple-
mentary Table 1). We quantified the relative degree of urbani-
sation for each site (urbanisation score: PCurb, from principal
component analysis, PCA; see “Methods”, Fig. 1b, Supplementary
Fig. 1 and Supplementary Table 1) to inform our genetic down-
stream analyses. Population structuring based on 314,351 LD
(linkage-disequilibrium)-pruned SNPs (excluding small linkage
groups and the Z-chromosome) was overall low across the
18 studied sites (Supplementary Fig. 2), with each of the first two
principal components explaining <3% of the overall variation
across populations (Fig. 2a and Supplementary Fig. 3a). Thus, we
used a UMAP (Uniform Manifold Approximation and Projec-
tion) approach to summarise the genetic variation along the first
20 PC axes. The UMAP analysis revealed the presence of distinct
genetic clusters for some of the localities, although there was still
a strong clustering of individuals from Gothenburg, Munich,
Milan and Paris (Fig. 2a and Supplementary Fig. 3b; results were
comparable when including the Z-chromosome, Supplementary
Fig. 3c). This analysis also suggested that the levels of divergence
differ strongly between each urban and adjacent rural population
(Fig. 2a and Supplementary Fig. 3b). Furthermore, the population
pairs from Glasgow and Lisbon showed the highest levels of
divergence, with Lisbon and Glasgow separating along PC1 and
PC2, respectively (Supplementary Fig. 3a), and also separating
strongly in the UMAP plot (Fig. 2a). This increased divergence of
Glasgow and Lisbon, both located in the range edge of the great
tit distribution, could be explained by their slightly reduced
heterozygosity, particularly in the urban populations (Supple-
mentary Table 1). Indeed, population tree analyses using TreeMix
supported the presence of increased drift in both urban popula-
tions (Fig. 2b). However, overall, we did not find lower hetero-
zygosity levels in any of the nine-urban compared to the rural
populations, which suggests that urban colonisation was in gen-
eral not associated with significant bottlenecks (see Supplemen-
tary Table 1 for details; Wilcoxon test: W= 30, P= 0.377).

Interestingly, the population structure analysis indicated that
multiple urban populations, namely Glasgow, Lisbon, Madrid,
Malmö, Milan, and to weaker extent Barcelona and Gothenburg,
formed distinct genetic clusters and independent drift units
together, in some cases, with their adjacent rural counterparts
(Fig. 2a, b). Nonetheless, the TreeMix analysis also suggests the
presence of migration events across some populations, including
long distance migration events, e.g., from Lisbon to Glasgow
(Supplementary Fig. 4b). Although, there was no clear pattern in
relation to predominant gene flow between urban populations
(Supplementary Fig. 4). In contrast to the mentioned population
clusters, we did not detect any particular signs of genetic
divergence between populations from Munich and Paris (neither
PC or UMAP axis see, e.g., Fig. 2a and Supplementary Fig. 3).
Likewise, we detected significant genetic differentiation between
all pairwise comparisons (P < 0.05; FST permutation test; see
“Methods”) except for the urban populations in Munich and
Paris (Fig. 2e and Supplementary Table 2). Moreover, the genetic
population differentiation (FST) within population pairs (urban vs
adjacent rural population), as well as between urban populations
(urban vs urban), was on average higher than the differentiation
between rural populations (rural vs rural) across Europe (Fig. 2c).
These results support the idea that gene flow is generally stronger
between rural compared to urban habitats in the nine population
pairs, and indicates reduced gene flow between urban and
adjacent rural populations. This is further supported by the
observed isolation-by-distance patterns, which showed slightly
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stronger IBD for urban (Mantel’s r= 0.46, P= 0.008) compared
to rural populations (r= 0.43, P= 0.007; Fig. 2d). Lastly, analysis
of the effective migration surfaces confirmed reductions in gene
flow in many parts of Europe, compared to neutral expectations,
including those in close proximity, e.g., Gothenburg and Malmö,
and simultaneously highlighted strong gene flow in Central/
Western Europe, i.e., Munich and Paris (Fig. 2e).

Overall, our results reveal weak population structuring across
Europe, with slightly increased genetic differentiation between
urban populations compared to the more admixed rural
populations. Previous results in another European songbird, the
blackbird (Turdus merula) showed that urban birds likely
independently colonised multiple times European cities from
forest sources42. In our study, the finding of independent clusters
for some urban populations also point towards a similar scenario,
i.e., an independent and repeated colonisation of urban habitats
from largely admixed rural populations. However, the overall
weak genetic divergence and the detection of significant
migration events across distant populations suggests a possible
role of gene flow in the facilitation of urban adaptation, via
the spread of adaptive alleles. Still, in our subsequent analyses we
treated all our urban–rural population pairs as independent,
including Munich and Paris, as selection pressures might differ

across cities and result in idiosyncratic genomic responses to
selection despite any ongoing gene flow.

Identification of urbanisation-associated allele frequency
shifts. To identify genomic regions with consistent allele
frequency shifts associated with urbanisation, we used
two complementary genotype–environment association (GEA)
approaches, LFMM (latent-factor mixed models) and an addi-
tional Bayesian approach (using BayPass). Testing for GEAs with
LFMM (using PCurb as a continuous habitat descriptor, Fig. 1b)
revealed 2758 SNPs associated with urbanisation (0.52% of the
full SNP dataset, false-discovery rate (FDR) < 1%; Fig. 3a).
Urbanisation-associated SNPs were widely distributed across the
genome and did not cluster in specific regions. Larger chromo-
somes (R2= 0.97) and those with more genes (R2= 0.90; Fig. 3b)
contained more urbanisation-associated SNPs, highlighting the
polygenic nature of urban adaptation. A PCA (PCGEA), based on
all urban-associated SNPs detected by LFMM, clearly separated
urban and rural populations along PC1GEA (proportion of var-
iance explained—PVE—by PC1= 1.98%; Supplementary Fig. 5c),
suggesting consistent allele frequencies in those loci across Eur-
opean cities.
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Fig. 1 Study sampling locations and urbanisation intensity. a Centre: map of Europe, showing the targeted cities where the sampling of great tits
(Parus major) was carried out. Red areas indicate the main dense urban areas. The nine inset zooms flanking the central map exemplify the landscape
and degree of urbanisation for each of the urban–rural sampling locations. Green shading represents canopy or green areas (i.e., vegetation cover)
and roads and buildings are represented in grey. See “Methods”, Supplementary Fig. 1 and Supplementary Table 1 for more details. Map data sources:
Stamen Design under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/); data licensed by OpenStreetMap Foundation (OSMF) under ODbL
(https://opendatacommons.org/licenses/odbl/). Shapefiles: Natural Earth. b Urbanisation scores (principal component, PCurb) for all nine urban–rural
pairs. In both figures, the coloured circles represent each city (in b, urban: open circles; rural: closed circles). BCN Barcelona, GLA Glasgow, GOT
Gothenburg, LIS Lisbon, MAD Madrid, MAL Malmö, MIL Milan, MUC Munich, PAR Paris. Great tit illustration made by Pablo Salmón. Source data for b is
provided as a Source data file.
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Fig. 2 Great tit population structure. a UMAP reduction of the first 20 principal component axes for an LD-pruned SNP dataset, excluding the Z-
chromosome and small linkage groups. The insert shows the percent of variance explained (PVE) by each of the first 50 PC axes. The corresponding
principal component plots can be found in Supplementary Fig. 2. b Population tree generated with TreeMix showing the relationship of urban (open circles)
and rural (closed circles) populations from all sampling locations. c Comparison of FST value distributions (mean ± SD) across population and habitats. The
effect size plots (mean ± 95% bootstrap CI) show that overall rural populations (rural vs rural) display lower differentiation than the studied population
pairs (urban vs rural), but not lower than urban populations (urban vs urban). d Isolation-by-distance analyses (Mantel’s test) for urban (open circles, light
shaded, n= 72) and rural (closed circles, dark shaded, n= 72) populations separately. Shaded area denotes the 95% CI. e Effective migration surfaces for
great tits across Europe. Negative log migration rates [log(m)] depict areas with less gene flow than expected under an isolation-by-distance model,
whereas positive migration rates indicate stronger gene flow. Note that migration rates outside the central part of the sampling distribution are generally
low, also between closely related cities. BCN Barcelona, GLA Glasgow, GOT Gothenburg, LIS Lisbon, MAD Madrid, MAL Malmö, MIL Milan, MUC Munich,
PAR Paris. Colour code is given in panel a. Source data are provided as a Source data file.
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In contrast, the results obtained by BayPass only identified 70
SNPs strongly associated with urbanisation (Bayes factor ≥ 20;
Supplementary Fig. 6a). The lower number of identified SNPs
might respond to the stronger population structure correction
applied by BayPass, which correlates to some extent with the
direction of local adaptation43. Of these significant SNPs, 34 were
shared with the LFMM analysis (more than expected by chance:
χ2= 31.20, P= 2.35 × 10−08; Fig. 3a and Supplementary Fig. 6b).
These shared SNPs, which we term “core urbanisation SNPs”
(Supplementary Table 3), are likely involved in the local
adaptation of great tits to urban habitats, and indeed, they more
strongly discriminated urban and rural individuals across Europe
(PVE by PC1GEA-shared= 11.7%; Fig. 3c and Supplementary
Fig. 7a).

In order to gain a better understanding of the importance of
habitat (i.e., urban vs rural) on allele frequency shifts in the
detected SNPs, we assessed using univariate linear models, the
explanatory power of habitat, locality (city), and their interaction
on the direction and strength of allele frequency shifts per-SNP
across all paired populations. A significant “habitat” term

indicates consistent allele frequency shifts across cities, particu-
larly when the effect size (partial η2) is higher compared to the
effect size of a significant “habitat × locality” interaction term,
which describes differences in the direction and magnitude of the
allele frequency change between cities44. Applying these models
to each urbanisation-associated SNP from the LFMMmodel (2758
SNPs), we detected large variation in allele frequency shifts across
localities (Fig. 3d and Supplementary Fig. 7b), with a slightly
larger proportion of SNPs showing differences in allele frequency
shifts across localities (“habitat × locality” η2 > “habitat” η2).
In contrast to this, most of the “core urbanisation SNPs” showed
similar allele frequency differences across localities, with 76% of
them showing a main effect of the urban habitat (Fig. 3d), and
with the same allele increased in frequency in seven or more
urban populations (Supplementary Fig. 7c; see Supplementary
Fig. 8 for the minor allele frequency trajectory between habitats).
We refined this analysis by accounting for the effect of allele
frequency correlations between SNPs through the use of the
principal component axis from all the LFMM urbanisation-
associated SNPs (PC1GEA) and the “core urbanisation SNPs”
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SNPs” that were also identified as urbanisation associated using BayPass (Supplementary Fig. 6). The heatmap below the Manhattan plot highlights the
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(PC1GEA-shared, Supplementary Fig. 7d). In both cases, the
“habitat” term explained the majority of the total variation in
allele frequency divergence (η2PC1 GEA, habitat= 0. 87, P < 0.001;
η2PC1 GEA-shared, habitat= 0. 73, P < 0.001). In comparison, both the
effect of “locality”, which corresponds to the distinct evolutionary
history of the local populations (η2PC1 GEA, locality= 0.59, P <
0.001; η2PC1 GEA-shared, locality= 0.20, P < 0.001), and the interac-
tion of “habitat × locality” (η2PC1 GEA, habitat × locality= 0.13, P=
0.002; η2PC1 GEA-shared, habitat × locality= 0.13, P= 0.001), explained
much smaller proportions of the total variation (smaller effect
size) than the habitat term by itself. In contrast, genetic variation
along PC2 and PC3 was mostly inconsistent across localities and
likely specific for each city (Supplementary Fig. 7d). Overall, the
PCA-based results are in line with those obtained by the per-SNP
results, reinforcing the idea of consistent continent-wide
responses to urbanisation, in particular regarding the “core
urbanisation SNPs”.

Together, we show that there is local adaptation to urban
habitats in great tits, and that this occurred across Europe
through shifts in allele frequency of the same loci. This might
have occurred via the standing genetic variation observed for the
species, as putatively adaptive alleles were shared across large
parts of the species’ European distribution41, or the exchange of
adaptive alleles through gene flow across urban populations.
Nonetheless, in line with a polygenic basis of adaptation via subtle
allele frequency shifts in several loci26, the detected urban–rural
differences were generally small (Supplementary Fig. 9) with only
a few SNPs showing relatively strong allele frequency shifts with |
ΔAF| (allele frequencies difference between urban and rural) >0.5.

Signatures of selection in urban populations. While GEA
approaches are powerful tools for identifying even subtle allele
frequency shifts associated with local adaptation43, they have
difficulty detecting selective sweeps unique to one or few popu-
lations or sweeps of different haplotypes associated with the same
gene. Selective sweeps have been associated with urban adaptation
in other species, for example, in the case of New York City brown
rats (Rattus norvegicus) and white-footed mice (Peromyscus
leucopus)4,45. Therefore, we further performed genome-wide
scans of differentiation and selective sweep analyses in each of
our studied populations to test if these contributed to the urban
adaptation in great tits and, importantly, to explore if selective
sweeps were population specific or widely shared across Europe.

Since the exchange of genetic material between urban and rural
populations, and the selection pressures are likely recent and
ongoing in great tits, we opted to use a cross-population statistic
that can identify ongoing and recently completed hard and soft
selective sweeps (XP-nSL)46. Using this approach, we found that
between 436 and 700 genomic windows (200 kb sliding windows
with 50 kb steps, see “Methods”), which clustered into 127–173
wider genomic regions, showed signatures of selection in urban
populations (Fig. 4a). Genomic outlier regions had an average size
of 355.8 kb ± 251.6 SD, with the largest region (3.05 Mb) detected
on chromosome 1 in Glasgow and were widely distributed across
the genome with a few distinct population-specific peaks (Fig. 4a).
The large number of genomic outlier regions are in line with the
high number of significant GEAs across the genome and confirms
the inferred polygenic nature of urban adaptation in great tits
(Fig. 3a). However, in contrast to the highly concordant allele
frequency shifts of GEA loci, XP-nSL values were in general
weakly correlated across populations (Fig. 4b), and outlier
windows were shared across a maximum of five populations
(Supplementary Fig. 10). The top three shared windows clustered
in a 300 kb region on chromosome 11 (16.05–16.35Mb) and were
detected in Gothenburg, Munich and the Iberian Peninsula

(Barcelona, Madrid and Lisbon), with one partially overlapping
outlier window detected in Glasgow. In general, the most
pronounced sharing of outlier windows did not seem to occur
between the geographically closest populations, as expected for
shared genetic variation or adaptive introgression (see Supple-
mentary Fig. 10). For example, Gothenburg and Paris, and Lisbon
and Glasgow, showed the highest number of shared outlier
windows (53 and 47, respectively). Indeed, the number of shared
outlier windows between urban populations was not correlated
with their genetic (Mantel’s r= 0.28, P= 0.150) or geographic
distance (Mantel’s r= 0.05, P= 0.400), suggesting that shared
adaptive genetic variation through introgression and gene flow
between neighbouring urban populations likely did not facilitate
urban adaptation. However, we cannot fully exclude the role of
gene flow as migration was generally strong, even across large
distances (Supplementary Fig. 4).

The observed landscape of variation in XP-nSL is in agreement
with the genomic landscape of genetic differentiation (standar-
dised Z-transformed FST [ZFST]) between each adjacent urban
and rural pair across the same windows (Fig. 4b, Supplementary
Figs. 11 and 12). ZFST outlier windows (ZFST > 4, equivalent to
four SD) were largely population specific (Supplementary Fig. 12),
suggesting that population-specific selective and demographic
processes have partly shaped the genomic landscape47. To
strengthen our inference of the selective sweeps landscape
associated with urban adaptation in our species, we additionally
searched for older and completed selective sweeps using the
haplotype-based Rsb statistic48. Similarly to the results obtained
using the XP-nSL statistic and ZFST, window-based Rsb scores
were weakly and inconsistently correlated across populations
(Fig. 4b and Supplementary Fig. 13). We detected fewer Rsb
outlier windows (209–538) and clustered genomic outlier regions
(39–98; average size: 396.9 kb ± 329.2 SD; max= 3.45Mb on
chromosome 3 in Gothenburg) compared to XP-nSL. This result
suggests that ongoing/recent sweeps outnumber older and
completed selective sweeps in urban great tits. Similar to XP-
nSL, the Rsb outlier windows were only shared across a maximum
of five populations and in general widely distributed across the
genome (Supplementary Fig. 14).

Overall, the selection analyses showed that selective sweeps,
and in particular those that are recent and ongoing (XP-nSL),
were pervasive across the genomes of urban great tits, supporting
our inference of a highly redundant polygenic adaptation to
urban environments. The underpinning genomic changes
associated with urban adaptation were largely population specific,
likely the result of differential selective pressures, adaptation
through complex multivariate phenotypic changes and/or selec-
tion on standing genetic variation49,50. Nonetheless, we still
detected shared selective sweeps across urban populations,
suggesting the presence of common genomic responses to the
urban selective pressures, either through repeated selective sweeps
or sharing of adaptive genetic variants.

Evolutionary drivers of genetic differentiation and signatures
of selection. The largely population-specific landscapes of dif-
ferentiation are in line with observations in other young diver-
gences, and have been previously explained by the weaker effect
of linked selection at early stages of the divergence process47.
However, to exclude a driving role of non-adaptive processes, we
corroborated that the detected signatures of selection were indeed
caused by divergent selection and not by genetic drift or linked
selection in low-recombination regions47. To achieve this, we
evaluated the correlation between signatures of selection (XP-nSL
and Rsb) and differentiation (FST) with two proxies of genomic
recombination rate, i.e., LD and intronic GC-content (both in
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200 kb non-sliding windows). LD is correlated with population-
specific recombination rates and the strength of selection, while
intronic GC-content is a surrogate for the long-term recombina-
tion rate variation across the great tit genome, i.e., a higher GC-
content will indicate a higher recombination rate51,52. To confirm
that both proxies provide similar pictures of the recombination
landscape, we tested their correlation across all population pairs.
Indeed, LD and GC-content, were (negatively) correlated in all
populations (Fig. 4c), suggesting that the general effect of recom-
bination on the genomic diversity landscape is broadly consistent.

Under a scenario of linked selection in low-recombination
regions, we would expect strong and consistent positive
correlations between GC-content or LD with our estimates of
genetic differentiation and selection, i.e., FST, XP-nSL and
Rsb53–55. Yet, this was not the case, (Fig. 4c), which indicates
that processes other than linked selection are the main driver
for population differentiation in our study. Indeed, the overall
patterns are more in line with divergent selection, as e.g., the
population-specific selection peak on chromosome 1 in Glasgow
is not associated with low-recombination regions (low GC-
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content) or a pronounced peak in LD (Fig. 4d). However, it is
important to note that these correlations are positive in some
populations, see e.g., XP-nSL and GC-content (Fig. 4c), and that
some population-specific peaks are located on low-recombination
regions, and likely caused by linked selection or other non-
adaptive processes (Fig. 4d). While the contribution of non-
adaptive processes likely differed across populations, we did not
detect a general signature of linked selection as a major driver of
divergence between urban and rural populations.

Divergent selection has been suggested to be the main driver in
the early stages of differentiation in other avian systems47,56, and
it is not surprising that a similar incipient pattern is observed
between urban–rural populations. Although other non-adaptive
processes, such as stochasticity via population-specific drift, could
also generate variable genomic landscapes in an urban context57,
that scenario would be characterised by a decreased gene flow and
increased genetic differentiation with geographical distance
between adjacent urban and rural populations. However, genetic
differentiation between paired urban and rural populations did
not significantly increase with geographic distance (R2=−0.11,
P= 0.645; Fig. 4e), further excluding drift as the main process
underneath the variability in the genomic and the genetic
differentiation landscape between urban and rural populations.
Nonetheless, genetic drift potentially led to increased genetic
differentiation in some urban populations, i.e., Glasgow and
Lisbon, which both showed reduced heterozygosity.

Hence, we conclude that the mosaic of genomic signatures of
differentiation between urban and rural populations and selective
sweeps in the studied populations are most likely driven by
genomic responses to selection on standing genetic variation,
with potentially minor contributions of linked selection in low-
recombination regions or other idiosyncratic non-adaptive
processes.

Genes and pathways associated with adaptation to urbanisa-
tion. While responses to selection at the haplotype level were
highly variable across urban populations, selective sweeps might
affect the same genes or different genes with similar functional
impacts (e.g., same pathway). Such consistent genomic responses
on the gene or functional level could explain the similarity in
phenotypic responses to environmental variation despite a large
variation on the haplotype level14,15,58. Following this rationale,
we identified genes associated with signatures of selective sweeps
in each urban population, but without requiring outlier windows
to overlap with each other. Between 976 and 1366 genes were
associated with signatures of ongoing or recent selective sweeps

(XP-nSL), and 362–923 with completed selective sweeps (Rsb). Of
these genes, 64–207, and 5–76, were detected in at least two urban
populations (based on XP-nSL or Rsb, respectively; Supplemen-
tary Figs. 15 and 16). The higher number of genes associated with
recent and ongoing selective sweeps compared to complete
selective sweeps is in line with the colonisation pattern of urban
habitats, under ongoing or recent gene flow.

Although it is statistically unlikely to detect selective sweeps in
the same gene in more than three urban populations by chance
alone (permutation test; χ21= 77.95, P < 2.2 × 10−16), we con-
servatively focused our functional interpretation only on those
genes that were associated with signatures of selection (XP-nSL or
Rsb) in more than half of all urban populations (≥5 urban
populations), as these likely play more important roles in urban
adaptation. In total, we detected 42 genes associated with recent
or ongoing selective sweeps in at least five populations (XP-nSL:
max. six populations), and 15 genes associated with older
completed selective sweeps (Rsb: max. seven populations; Fig. 5a
and Supplementary Table 4), with none of the genes detected by
both selection statistics. It is noteworthy that we did not detect an
increase in the number of shared genes under selection in relation
to geographical (Mantel’s r= 0.27, P= 0.080) or genetic distance
(Mantel’s r= 0.05, P= 0.480), which is in accordance with the
results regarding shared outlier windows and further supports
that many selective sweeps likely occurred independently in
multiple urban populations. In addition, 12 of the 57 shared genes
under selection were also associated with urbanisation in the
LFMM analysis (Supplementary Table 4). Interestingly, two of
these, GMDS and SLC6A15, were not only associated with
complete selective sweeps (Rsb scores) in seven and six
populations, respectively, but also previously shown to be
differentially expressed in blood and/or liver between urban
and rural birds from Malmö59. Moreover, following Malmö as an
example, one gene found to be differentially expressed in
Watson et al.59, VPS13A, was highly differentiated (ZFST) and
associated with selective sweeps in that particular population, but
importantly, also under selection in Madrid (Rsb) and Lisbon
(XP-nSL) and in general, associated with urbanisation (LFMM
analysis). This exemplifies that some genes show signatures of
urban adaptation on a continental scale, making them strong
candidates for adaptation in these urban centres.

It is noteworthy that despite finding signatures of selection
overlapping the same gene in five or more urban populations
(e.g., GMDS, HTR7 or CDH18), the exact locations of these
signatures were not consistent (Fig. 5b, c). Under a shared
selective sweep or adaptive introgression scenario, we would have

Fig. 4 Signatures of selection in urban populations. a Manhattan plots showing the distribution of cross-population nSL scores (XP-nSL) for each
urban–rural population pair in 200 kb sliding windows with a 50 kb step size. Positive scores depict selection in urban populations. Significant autosomal
outlier windows are highlighted in red and outlier windows on the Z-chromosome in blue (see “Methods”). Autosomal and sex-chromosome outlier
windows were detected separately. b Violin plots showing the distribution of correlation coefficients (Pearson’s r) for the different inter-population
summary statistics for all pairwise comparisons. Note that all distributions overlap zero and are not consistent across pairs. The shaded grey areas of the
violin plot denote the kernel density estimation of the data distribution. The bottom and top edges of the white boxplot denote the upper and lower
interquartile range (25th and 75th) with the vertical black line showing the median, and the thin horizontal line representing the rest of the distribution.
Black dots represent values outside the distribution. c Violin plots for the distribution of correlation coefficients between inter-population summary
statistics with proxies for recombination rate (within population LD, GC-content). The boxplot shows the interquartile range (white area), median (vertical
black line) and the remaining distribution (horizontal black line). d Example signatures of divergence and proxies for recombination along chromosome 1
and 6, to highlight the heterogeneity of divergence across populations. Window-based measures were loess-smoothed across each chromosome.
Populations with selective sweeps on the respective chromosomes are highlighted, with Glasgow (blue) on chromosome 1 and Lisbon (orange) on
chromosome 6. All other populations are in grey in the background. Note that the highest sweep window, marked by the dotted line, corresponds to a likely
low-recombination region on chromosome 6, but a normal recombination region on chromosome 1. e Non-significant correlation of the geographic distance
between urban and rural populations from the same locality and their genetic differentiation. (linear model: F1,7= 0.23, P= 0.645). Shaded area denotes
the 95% CI. BCN Barcelona, GLA Glasgow, GOT Gothenburg, LIS Lisbon, MAD Madrid, MAL Malmö, MIL Milan, MUC Munich, PAR Paris. Source data are
provided as a Source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23027-w

8 NATURE COMMUNICATIONS |         (2021) 12:2983 | https://doi.org/10.1038/s41467-021-23027-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


expected the sharing of urban haplotypes between populations.
However, haplotype plots do not show any noticeable clustering
across urban individuals (e.g., GMDS or HTR7, Fig. 5b),
suggesting that different adaptive haplotypes swept to high
frequency in urban populations across Europe, which is in line
with soft selective sweeps from standing genetic variation60.
Furthermore, we find that the strongest selective sweep signatures
are, in some cases, not within the genes but up- or downstream
and without a consistent pattern among populations. For
example, signatures of selection around HTR7 were downstream

in Glasgow and Munich, but upstream in Malmö, Paris, Madrid
and Lisbon (Fig. 5c). This might suggest that regulatory changes
rather than protein-coding ones are associated with urban
adaptation and the nature of regulatory variation likely differs
across populations. However, high-resolution genomic studies
based on whole-genome resequencing coupled with multi-tissue
functional genomic analyses are needed to resolve this question,
which is beyond the scope of this study.

Many of the genes associated with urbanisation have previously
been linked to behavioural divergence, and cognitive and learning
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Fig. 5 Candidate genes and pathways underlying urban adaptation. a Map showing the spatial distribution of the top shared candidate genes putatively
under selection in urban populations across Europe, detected in at least six urban populations. CDH18, marked with an asterisk, was also detected in the
GEA analysis. Genes in bold font were associated with ongoing selection (XP-nSL), and those with grey font with older completed sweeps (Rsb). The map
was plotted in R using ggplot with the maps package. b Haplotype strips showing haplotype structure around two representative candidate genes (GMDS
and HRT7) on chromosome 2 and 7, respectively. Individuals (rows) are ordered by haplotype similarity and colour-coded by habitat of origin. Note that
individuals from the same habitat do not share the same haplotype. c Distribution of SNP-based Rsb scores for each of the six populations, in which GMDS
is associated with significant outlier windows, and XP-nSL scores around HRT7. Red shades depict SNPs with the strongest positive selection scores. Gene
boundaries are shown by red dotted lines and grey background box. Note that not always the same regions (upstream, downstream or genic) are under
selection in urban populations (positive scores) around the candidate genes. d Enrichment of associated genes in significantly enriched gene ontology (GO)
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functions, suggesting adaptive phenotypic shifts related to
behaviour. In particular, HTR7 (Chr 7) codes for a receptor of
the neurotransmitter serotonin, a pathway consistently identified
as target of changes linked to urbanisation. Indeed, two previous
studies in birds, one on European blackbirds using a candidate
gene approach and another on burrowing owls (Athene
cunicularia), using full-genome resequencing, also described
changes in this pathway as the main difference between urban
and rural populations3,22. Both species also show consistent
urban–rural differences in two behaviours associated with
serotonin: down-regulation of the stress axis and altered
nocturnal behaviour under artificial light at night,
respectively9,61,62. The same gene, HRT7, has also been directly
linked to behavioural differences between migratory and resident
rainbow trout (Onchorynchus mykiss)63, supporting its potential
role in behavioural changes in urban great tits. The CDH18 gene
(Chr 2), is part of a superfamily of membrane proteins involved
in synaptic adhesion and revealed as a candidate gene in
phonological alterations in humans64. The PTPRD and VPS13A
genes (both in Chr Z), are suggested to be involved in
hippocampal neural development65 and were previously linked
to bird navigation, flight performance and migratory
behaviour66–68. Moreover, two other genes under selection and
associated with urbanisation are involved in the regulation of
cognitive processes and behavioural disorders in vertebrates
(DLG2 (ref. 69) and NRXN3 (ref. 70), Chr 1 and 5, respectively),
and were also previously linked to urban divergence in burrowing
owls22.

Thus, our selection analyses suggest that natural selection
repeatedly acts on behavioural traits and sensory and cognitive
performance, all previously shown to be among the most
widespread differences between urban and rural wildlife
populations71,72. These findings were furthermore supported by
gene ontology (GO) analysis of the 2758 urbanisation-associated
SNPs (LFMM analysis), linked to 984 genes (1501 SNPs in genic
regions). Accordingly, most of the GO terms were related
to neural functioning and development (e.g., GO:0016358,
FDR= 4.30 × 10−6), cell adhesion (e.g., GO:0098742, FDR=
3.43 × 10−6) and sensory perception (e.g., GO:0050954, FDR=
3.42 × 10−3; Fig. 5d and Supplementary Table 5). These GO terms
were mainly clustered into two interacting networks, one related
to sensory recognition and the other to neural development and
cell adhesion (Supplementary Fig. 17). These findings reinforce
the previous idea on cognitive and behavioural changes as key
responses to urbanisation, as song structure and escape or distress
behaviour have been previously shown to differ between urban
and rural great tit populations across Europe7,35,73. Nonetheless,
whether this is the result of a genetic response to selection or
phenotypic plasticity was to a large extent still unknown. Our
present study suggests a strong genetic component for these
putatively urban adaptative phenotypes in great tits across
Europe. Detailed functional genomic and phenotypic analyses
are now needed to understand the role of these genes and
pathways in the adaptive divergence of urban and rural great tits
and other songbirds.

Our study demonstrates clear genomic signals of local
adaptation to urban habitats in a common songbird on a
continent-wide scale across Europe. We found that a combination
of polygenic allele frequency shifts and spatially varying selective
sweeps are associated with adaptation to urban environments.
Our results strongly suggest that a few genes, which have known
neural developmental and behavioural functions, experienced
selective sweeps in urban populations. This suggests a strong
consistency in the functional processes associated with urbanisa-
tion, despite the fact that the underlying haplotypes are often not

shared. Thus, our study exemplifies evolutionary adaptation to
urban environments on a European scale, and highlights
behavioural and neurosensory adjustments as important pheno-
typic adaptations in urban habitats.

Methods
Sample collection and DNA extraction. During the years 2013–2015, 20 or more
individual great tits were sampled at paired urban–rural sites from nine European
cities (Fig. 1a and Supplementary Table 1). We sampled a total of 192 individuals
(aged >1 year old) with 10–16 individuals per site (Supplementary Table 1). Sexes
were balanced between pairs (urban–rural) in the dataset (GLMM; sex: χ21= 1.33,
P= 0.280). Each of the paired sampling sites (urban or rural, hereinafter popula-
tions) was sampled within the same season. Barcelona and Munich were sampled
during winter, however, in both cases only known birds (recaptures) were included
in the study, thus, all birds can be considered resident. All urban populations were
located within the city boundaries, the areas are characterised with significant
proportion of human-built structures, such as houses and roads with managed
parks as the only green space (Supplementary Fig. 1). Rural populations were
chosen to contrast the urban locations regarding degree of urbanisation and were
always natural/semi-natural forests, and contained only a few isolated houses. All
urban and rural populations were separated by a distance above the mean adult and
natal dispersal distance of this species (i.e., see Supplementary Table 1)74.

Blood samples (~25 µl) were obtained either from the jugular or brachial vein
and stored at 4 °C in ethanol or SET buffer and subsequently frozen at −20 °C. In
each case, procedures were identical for the paired urban and rural populations. All
procedures employed during field work were approved by national Ethical
Committees and authorisations to collect samples were delivered by the
Environment Department of the Generalitat de Catalunya (permit no. AECC/SF/
0438), the Scottish Natural Heritage (permit no. 52463) and UK Home Office
(license no. 70/7899), the Malmö-Lund animal Ethical Committee (permit no.
M454 12:1), the CEMPA and Portuguese Ministry of Environment (permit nos. 40/
2014 and 164/2014), the Ministry of the Environment, Housing and Territorial
Planning of Madrid (permit nos. 10/103329.9/14, 10/169940.9/13, 10/045383.9/14,
10/127641.9/14 and 10/055393.9/14), the Institute for Environmental Protection
and Research (ISPRA, license nos.15510 and 15944) and the Lombardy Region
(permit no. 3462), the Tierschutzgesetz (TierSchG, German animal protection law)
and the Regierung von Oberbayern (permit nos. 55.2-1-54-2532.2-7-07 and 55.2-1-
54-2532-140-11) and the Minister of Higher Education, Research and Innovation
(Ethics Committee for Animal Experimentation license no. 005 and permit no.
APAFIS#19941-2019032516275025), the Prefect of Paris and the Prefect of Seine et
Marne (permit nos. DRIEE-2012-31 and DRIEE-2012-32) and the CRBPO
(National Museum of Natural History, permit no. 537 and licence no. 1454). DNA
was extracted from ~5 µl samples of red blood cells in 195 µl of phosphate-buffered
saline, using Macherey-Nagel NucleoSpin Blood Kits (Bethlehem, PA, USA), and
following the manufacturer’s instructions or manual salt extraction (ammonium
acetate). The quantity and purity of the extracted genomic DNA was high as
measured using a Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific)
and Qubit 2.0 Fluorometer (Thermo Fisher Scientific).

Urbanisation score. To quantify the degree of urbanisation at each site, we used
the UrbanizationScore image analysis software75, based on aerial images from
Google Maps (Google Maps 2017), and following the methods described in dif-
ferent studies assessing the effect of urbanisation on wild bird populations76.
Briefly, each sampling site was represented by a 1 × 1 km rectangular area around
the capture locations. We opted to use this spatial resolution around the sampling
sites to approximately cover individuals’ territory32, but also to ensure that we
considered the heterogeneity within each selected site. The content in each rec-
tangle was evaluated dividing the image in 100 × 100 m cells and considering three
land-cover characteristics in each: proportion of buildings, vegetation (including
cultivated fields) and paved surfaces (Supplementary Fig. 1). The different land-
cover measures obtained per site were used in a PCA to estimate an urbanisation
score variable (PCurb) for each of the urban or rural populations per locality, see
Table S1. The PCurb values were transformed to obtain negative values in the less
urbanised and positive values in the more urbanised sites. We used the average of
the urbanisation estimates if birds were captured in more than one location within
each site (>2 km apart, mean ± SD: 931.22 ± 1005.26 m). All quantifications were
done in triplicates by the same person (P.S.) and the estimates were highly
repeatable (intra class correlation coefficient, ICC= 0.993, 95% confidence interval
(CI)= 0.997–0.987, P < 0.001).

SNP genotyping. All 192 individuals were successfully genotyped using a custom
made Affymetrix© great tit 650 K SNP chip at Edinburgh Genomics (Edinburgh,
United Kingdom). The Affymetrix SNP chip was developed based on whole-
genome sequencing data from great tits sampled across multiple European
populations, largely corresponding to our sample sites38. Thus, this SNP chip
allowed us to genotype a large number of individuals on a genome-wide basis at
high SNP density without a strong ascertainment bias. SNP calling was done
following the “Best Practices Workflow” in the software Axiom Analysis Suite
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1.1.0.616 (Affymetrix©) and all the individuals passed the default quality control
steps provided by the manufacturer (dish quality control values >0.95) and pre-
vious studies using the same SNP chip38,77. A total of 544,610 SNPs were then
exported to a variant-calling format (VCF) and Plink v. 1.9 (ref. 78), and further
filtered and assigned to chromosomes using the P. major reference genome build
1.1 (annotation release ID 101; “GCA_001522545.2”). A total of 155 SNPs were not
found in the used assembly and 26,852 SNPs were not in chromosomic regions;
thus, these SNPs were removed from further analysis leaving a total of
517,603 SNPs.

Genetic diversity and population structure. We calculated the genome-wide
genetic diversity as expected heterozygosity (He) for each population using Plink v.
1.9 (ref. 78), and tested if genetic diversity significantly differed between
urban–rural populations from the same location using t tests in R, and overall
across urban–rural pairings using a Wilcoxon rank-sum test in R v.3.6.1 (ref. 79).
Furthermore, we estimated pairwise FST between all population pairs (urban–rural
per locality), using VCFtools v. 0.1.15 (ref. 80). Mean average FST was computed
across all comparisons after setting negative values to zero.

For analyses of population structure, we pruned the SNP dataset based on LD in
Plink v.1.9 (ref. 78), using a variance inflation factor threshold of 2 (“-indep 50 5
2”), retaining 358,149 SNPs. Using this LD-pruned dataset, we performed a PCA
using Plink. We performed two different PCAs, (i) only with autosomes and
excluding all small linkage groups and the Z-chromosome, and (ii) including the Z-
chromosome but excluding all small linkage groups. Subsequently, we performed
additional dimensionality reduction for each PCA dataset using the first 20
principal components, using the UMAP v.0.2.7.0 R-package with default settings81.
We also compared the results to the UMAP based on the first ten PCs. Genetic
ancestry analysis was performed using the software package fastStructure v.1.0
(ref. 82), with K ranging from 2 to 9 and cross-validation. In addition, we inferred a
population tree based on allele frequency co-variances using Treemix v.1.3 (ref. 83),
with blocks of 100 SNPs. We fitted up to five migration edges and determined the
optimal number of migration edges that lead to the best fitting population tree by
(i) comparing the likelihoods of trees with different number of migration edges, (ii)
estimating the total variance explained by each tree and (iii) by comparing the
significance of the fitted migration edges.

To infer migration rates across our entire sampling area, we used EEMS84 to
estimate effective migration surfaces across all our samples based on the complete
LD-pruned SNP dataset, with the following settings: nDemes= 1000,
numMCMCIter= 2,000,000, numBurnIter= 1,000,000 and numThinIter= 9999.
The results were plotted using the R-scripts provided with the EEMS software
packages.

Environment-associated SNPs. We used two different approaches to identify
SNPs associated with the degree of urbanisation, based on the “urbanisation score”.
First, we used a univariate latent-factor linear mixed model implemented in LFMM
v.1.5 for examining allele frequency–environment associations85. Based on the
number of ancestry clusters (K) inferred with fastStructure v.1.0, we ran LFMM
with two and four latent factors, respectively. Each model was run five times for
10,000 iterations with a 5000-iteration burn-in. We calculated the median z-score
for each locus across all ten runs, and selected SNPs with a FDR < 1% to be
associated with urbanisation. The results with two or four latent factors were highly
concordant and the same candidate loci were recovered; thus, we only used the
results obtained with four latent factors for further analyses. We also assessed the
distribution of P values to check for the impact of confounding factors (Supple-
mentary Fig. 5a). In addition, to assess if associations are putatively false positives,
we performed a permutation analysis. We randomised habitat-assignments 20
times and performed LFMM association analyses on each randomised dataset.
Following Fuller et al.86 we determined a significance threshold as the 95th per-
centile of the Z-score distribution and identified SNPs from the initial LFMM
analyses above this threshold as significant. Using the significance cut-off based on
randomisation (>99th percentile), we detected a far higher number of associated
SNPs (4358 SNPs; Supplementary Fig. 5b) than using a FDR < 1% (2758 SNPs;
Fig. 3a); therefore, and to avoid a larger number of false positives, we opted for a
more conservative approach and focus on the FDR results in the analysis (see
“Results and discussion”).

Second, we analysed associations with urbanisation using the auxiliary covariate
model implemented in BayPass v.2.1 (ref. 87). We estimated the allele
frequency–environment association for each SNP with the urbanisation score for
each population accounting for population structure, using a covariance matrix.
We estimated the covariance matrix using the LD-pruned SNP dataset in the core
model using default parameters: 20 pilot runs of 1000 iterations, a run length of
50,000 iterations, sampling every 25th iteration, and a burn-in of 5000 iterations.
The resulting covariance matrix was used as input for five replicated runs of the
auxiliary covariate model using the above settings. The strength of association is
given in the test by estimated Bayes factor (measured in deciban; dB). We
calculated the median Bayes factor across all five replicated runs and considered all
SNPs with a deciban unit (dB) > 20 as urbanisation associated. This is the strictest
criterion and is considered as “decisive evidence” for the association87. Using a
resampling-without-replacement-based permutation approach and a chi-square

test, we determined if the overlap between the LFMM and BayPass candidate SNPs
is higher than expected by chance.

Patterns of genetic differentiation (FST). To identify genomic regions distin-
guishing adjacent urban and rural great tits, we estimated the genetic differentia-
tion (Weir and Cockerham’s FST88) for each urban and rural pair for each SNP,
using VCFtools v. 0.1.15 (ref. 80). We subsequently summarised and plotted FST
values in 200 kb sliding windows with 50 kb steps, using the WindowScanR v.0.1 R-
package (https://github.com/tavareshugo/WindowScanR), and standardised
window-based FST estimates using a z-transformation (ZFST). Standardisation was
performed separately for autosomes and the Z-chromosome.

To determine if the extent of genetic differentiation between all possible
population pairs was significantly different from zero, we estimated P values using
a permutation analysis in Genodive v.3 (ref. 89). For computational reasons, the
analysis was performed on a thinned SNP dataset (21,062 SNPs), for which we
randomly selected one SNP every ~50 kb.

Haplotype-based selection analyses. To identify genomic regions showing signs
of selective sweeps in urban–rural population pairs, we used two haplotype-based
selection scans. First, we scanned the genome for regions showing differences in
extended haplotype homozygosity (EHHS) between urban and rural populations
(see Rsb score below) to identify genomic regions showing signs of older and
completed selective sweeps. We used fastPHASE v.1.4 (ref. 90) to reconstruct
haplotypes and impute missing data independently for each chromosome using the
default parameters, except that each individual was classified by its population
(“-u” option). We used ten random starts of the EM algorithm (“-T” option) and
100 haplotypes (“-H” option). The fastPHASE output files were analysed using
rehh v.2.0 (ref. 91) to calculate Rsb statistics per focal SNP. The Rsb score is the
standardised ratio of integrated EHHS (iES, which is a site-specific EHHS) between
two populations48,91. This statistic measures the extent of haplotype homozygosity
between two populations and follows the rationale that if a SNP is under selection
in one population compared to the other, the region around this locus will show an
unusually high level of haplotype homozygosity compared to the neutral dis-
tribution. In accordance to Gautier and colleagues91, we considered significant
SNPs putatively under selection in urban populations based on a threshold of
Rsb ≥ 4. To identify genomic regions consistently showing strong signals of selec-
tion, we summarised Rsb scores in 200 kb sliding windows (50 kb steps) and
selected windows under selection as those with (i) an average Rsb scores above the
95th percentile of the genome-wide distribution (separately for autosomes and
the Z-chromosome) and (ii) a proportion of urban outlier SNPs (Rsb > 4) above the
95th percentile of the genome-wide distribution (separately for autosomes and the
Z-chromosome). The proportion of outlier SNPs per window was the number of
SNPs with Rsb values >4 compared to the total number of SNPs per window92.
Because recombination rates can be assumed to be conserved between closely
related urban and rural populations, the cross-population comparative nature of
the Rsb statistic provides an internal control that cancels out the effect of het-
erogeneous recombination across the genome48.

Second, we used a cross-population nSL93 statistic (XP-nSL) that tests for
signatures of ongoing or recently completed selective sweeps and is implemented in
selscan v.1.3.0 (ref. 46). XP-nSL contrasts nSL, the number of segregating sites by
length, between two populations and thus tests for differential local adaptation.
Analogous to Rsb, we conservatively detected genomic regions by a 200 kb sliding
windows as those with (i) average XP-nSL scores above the 95th percentile of
genome-wide distribution (separately for autosomes and the Z-chromosome) in
each population and (ii) proportions of outlier SNPs (XP-nSL > 2) above the 95th
percentile. We also plotted haplotype patterns around candidate genes using the
haplostrips software v.1.3 (ref. 94).

To determine larger genomic regions associated with signals of selection, we
merged adjacent outlier windows for each selection statistic (XP-nSL and Rsb) into
outlier regions, if windows were not >200 kb apart, using csaw v.3.12 (ref. 95).

To determine the consistency of selection across urban centres, we implemented
a resampling approach to assess the likelihood of genes showing signs of selection
in two, three, four or more populations. We resampled with replacement n genes
(n= number of genes with signatures of selection in each urban population) for
each population from the list of all SNP-linked genes using the “resample” function
in R, assessed the amount of overlap between populations (from two to eight
populations) and repeated the sampling 100,000 times for each comparison. We
then calculated the mean and 95% CI for each comparison and compared the
number of observed shared candidate genes to the expected number of candidate
genes. The expected number of genes showing signs of selection in three or more
populations was zero, thus we focused on genes showing signs of selection (Rsb and
XP-nSL) in three or more populations.

Decomposing habitat and locality effects for urbanisation-associated SNPs.
To determine the explanatory power of urbanisation-associated SNPs and con-
sistency in allele frequency changes across populations, we used linear models (i.e.
“Y∼ habitat × locality × habitat × locality”) to quantify the effects of (i) “habitat”
(i.e., consistent change in allele frequency across urban–rural pairs), (ii) “locality”
(i.e., effect of city-of-origin on absolute allele frequency) and (iii) “habitat ×
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locality” interaction (i.e., inconsistent change in allele frequency across urban–rural
pairs)44,96. We performed this analysis for all individual SNPs (coded as 0, 1 or 2)
and based on PC scores from the first three PC axes for all LFMM candidate SNPs
(PCLFMM), and those overlapping between the LFMM and BayPass analyses (“core
urbanisation SNPs”, PCGEA, see above). The PCA was estimated for each SNP
dataset using SNPrelate v.3.12 (ref. 97). We used the “EtaSq” function implemented
in BaylorEdPsych v.0.5 (ref. 98) to extract the effect sizes (partial η2) for the model
terms in each linear model.

We further estimated the directionality of allele frequency changes across
populations by counting in how many urban populations the same allele was the
minor allele for all significant LFMM candidate SNPs and the “core urbanisation
SNPs”. We then estimated for each SNP dataset the proportion of SNPs that
showed concordant minor alleles in five, six, seven, eight or nine urban
populations.

Patterns of linkage disequilibrium and intronic GC-content across the gen-
ome. To estimate the impact of variation in recombination rate and linked
selection in low-recombination regions on patterns of divergence (i.e., regions
showing signs of selective sweeps), we estimated the correlations of LD and
intronic GC-content in 200 kb windows with measures of selection/differentiation
(Rsb, XP-nSL and ZFST).

First, we estimated patterns of LD (r2) across the genome using Plink 1.9
(ref. 78) for pairs of SNPs located up to 200 kb apart for each urban population
(–r2–ld-window-r2 0–ld-window-kb 200,000). LD estimates were averaged in 200
non-sliding windows using the WindowScanR v.0.1 R-package.

Second, we estimated the GC-content for all introns across the great tit
(P. major) reference genome build 1.1 (annotation release ID 101;
“GCA_001522545.2”), as low intronic GC-content is a good proxy for long-term
reduced recombination in that region52. Intron coordinates were extracted from
the great tit reference genome using the plyranges v.3.12 (ref. 99) and
GenomicRanges v.3.12 (ref. 100) R-packages, and the GC-content for each intron
inferred using the “nuc” function in BEDtools v.2.28 (ref. 101). Intronic GC-content
values were further averaged across 200 kb non-sliding windows using
WindowScanR.

Lastly, we estimated the genome-wide Pearson correlations between LD, GC-
content and all estimators of selection (Rsb, XP-nSL and ZFST) across all 200 kb
windows for each population, using the “cor.test” function in R.

Functional characterisation of candidate SNP. We obtained the gene annota-
tions for all candidate SNPs from the great tit (P. major) reference genome build
1.1 (annotation release ID 101; “GCA_001522545.2”). We used all genes containing
SNPs associated with urbanisation (LFMM and BayPass, n= 1501 SNPs within
genes). To analyse the enrichment of functional classes, we identified over-
represented GOs (biological processes, molecular functions and cellular compo-
nents), using the WebGestalt software tool102. The gene background was set using
annotated great tit genes (annotation release ID 101) containing SNPs from the
SNP chip and with Homo sapiens orthologues. H. sapiens genes were used as a
reference set as human genes are better annotated with GO terms than those of any
avian system (e.g., Gallus gallus)16,39. We focused on non-redundant GO terms to
account for correlations across the GO graph topology and GO terms as imple-
mented in WebGestalt102. An FDR < 0.05 was used as a threshold for significantly
enriched GO terms. Furthermore, we searched the public record for functions of
individual candidate genes. We also used GOrilla103 to visualise the connections of
GO terms associated with LFMM candidate genes and Cytoscape v.3.6.1 (ref. 104)
to visualise the GO network and identify all enriched GO terms (biological pro-
cesses, P < 0.001), including redundant terms.

Candidate genes associated with signatures of selection were those that
overlapped with significant XP-nSL or Rsb outlier windows. Overlaps between
outlier windows and annotated genes were assessed using the plyranges
R-package v.3.12.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genotyping data that support the findings of this study is available in variant call
format (VCF) via the European Variation Archive (EVA) with the accession number
PRJEB44069. Source data are provided with this paper.

Code availability
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considered crucial to the conclusions. All relevant software and R-functions that were
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Received: 5 May 2020; Accepted: 1 April 2021;

References
1. Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human influences on

evolution, and the ecological and societal consequences. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 372, 20160028 (2017).

2. Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments.
Science 358, eaam8327 (2017).

3. Mueller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L.
Candidate gene polymorphisms for behavioural adaptations during
urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).

4. Harris, S. E. & Munshi-South, J. Signatures of positive selection and local
adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol.
Ecol. 26, 6336–6350 (2017).

5. Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12,
384–398 (2019).

6. Alberti, M. et al. Global urban signatures of phenotypic change in animal and
plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

7. Møller, A. P. & Ibáñez-Álamo, J. D. Escape behaviour of birds provides
evidence of predation being involved in urbanization. Anim. Behav. 84,
341–348 (2012).

8. Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird:
problem solving and immunocompetence vary with urbanization. Behav. Ecol.
27, 637–644 (2016).

9. Carrete, M. & Tella, J. L. Behavioral correlations associated with fear of
humans differ between rural and urban burrowing owls. Front. Ecol. Evol. 5,
54 (2017).

10. Winchell, K. M., Reynolds, R. G., Prado‐Irwin, S. R., Puente‐Rolón, A. R. &
Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis
cristatellus. Evolution 70, 1009–1022 (2016).

11. Winchell, K. M., Maayan, I., Fredette, J. R. & Revell, L. J. Linking locomotor
performance to morphological shifts in urban lizards. Proc. R. Soc. B Biol. Sci.
285, 20180229 (2018).

12. Kern, E. M. A. & Langerhans, R. B. Urbanization drives contemporary
evolution in stream fish. Glob. Change Biol. 24, 3791–3803 (2018).

13. Parsons, K. J. et al. Skull morphology diverges between urban and rural
populations of red foxes mirroring patterns of domestication and
macroevolution. Proc. R. Soc. B Biol. Sci. 287, 20200763 (2020).

14. Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary
adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).

15. Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates
repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4,
652–658 (2020).

16. Bosse, M. et al. Recent natural selection causes adaptive evolution of an avian
polygenic trait. Science 358, 365–368 (2017).

17. Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of
phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

18. Jacobs, A. et al. Rapid niche expansion by selection on functional genomic
variation after ecosystem recovery. Nat. Ecol. Evol. 3, 77–86 (2019).

19. Pritchard, J. K., Pickrell, J. K. & Coop, G. The genetics of human adaptation:
hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20, R208–R215
(2010).

20. Thompson, K. A., Renaudin, M. & Johnson, M. T. J. Urbanization drives the
evolution of parallel clines in plant populations. Proc. R. Soc. B Biol. Sci. 283,
20162180 (2016).

21. Perrier, C. et al. Great tits and the city: distribution of genomic diversity and
gene–environment associations along an urbanization gradient. Evolut. Appl.
11, 593–613 (2018).

22. Mueller, J. C. et al. Genes acting in synapses and neuron projections are early
targets of selection during urban colonization. Mol. Ecol. 29, 3403–3412
(2020).

23. Johnson, M. T. J., Prashad, C. M., Lavoignat, M. & Saini, H. S. Contrasting the
effects of natural selection, genetic drift and gene flow on urban evolution in
white clover (Trifolium repens). Proc. R. Soc. B Biol. Sci. 285, 20181019 (2018).

24. Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics:
insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306
(2011).

25. Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi‐South, J. & Verrelli, B. C.
Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151
(2019).

26. Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying
framework to understand positive selection. Nat. Rev. Genet. 21, 769–781
(2020).

27. Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating
environment. Ecology 68, 142–153 (1987).

28. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate
change in a wild bird population. Science 320, 800–803 (2008).

29. Charmantier, A., Demeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A.
Urbanization is associated with divergence in pace-of-life in great tits. Front.
Ecol. Evol. 5, 53 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23027-w

12 NATURE COMMUNICATIONS |         (2021) 12:2983 | https://doi.org/10.1038/s41467-021-23027-w |www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/assembly/GCA_001522545.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_001522545.2
www.nature.com/naturecommunications


30. Pettifor, R. A., Perrins, C. M. & McCleery, R. H. Individual optimization of
clutch size in great tits. Nature 336, 160–162 (1988).

31. Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits
growing old: selective disappearance and the partitioning of senescence to
stages within the breeding cycle. Proc. Biol. Sci. 276, 2769–2777 (2009).

32. Krebs, J. R. Territory and breeding density in the great tit, Parus major L.
Ecology 52, 2–22 (1971).

33. Salmón, P., Nilsson, J. F., Watson, H., Bensch, S. & Isaksson, C. Selective
disappearance of great tits with short telomeres in urban areas. Proc. R. Soc. B
Biol. Sci. 284, 20171349 (2017).

34. Sprau, P., Mouchet, A. & Dingemanse, N. J. Multidimensional environmental
predictors of variation in avian forest and city life histories. Behav. Ecol. 28,
59–68 (2017).

35. Senar, J. C. et al. Urban great tits (Parus major) show higher distress calling
and pecking rates than rural birds across Europe. Front. Ecol. Evol. 5, 163
(2017).

36. Isaksson, C., Sturve, J., Almroth, B. C. & Andersson, S. The impact of urban
environment on oxidative damage (TBARS) and antioxidant systems in lungs
and liver of great tits, Parus major. Environ. Res. 109, 46–50 (2009).

37. Caizergues, A. E., Grégoire, A. & Charmantier, A. Urban versus forest
ecotypes are not explained by divergent reproductive selection. Proc. R. Soc. B
Biol. Sci. 285, 20180261 (2018).

38. Kim, J. M. et al. A high-density SNP chip for genotyping great tit (Parus
major) populations and its application to studying the genetic architecture of
exploration behaviour. Mol. Ecol. Resour. 18, 877–891 (2018).

39. Laine, V. N. et al. Evolutionary signals of selection on cognition from the great
tit genome and methylome. Nat. Commun. 7, 1–9 (2016).

40. Lemoine, M. et al. Low but contrasting neutral genetic differentiation shaped
by winter temperature in European great tits. Biol. J. Linn. Soc. 118, 668–685
(2016).

41. Spurgin, L. G. et al. The great tit HapMap project: a continental-scale analysis
of genomic variation in a songbird. Preprint at bioRxiv https://doi.org/
10.1101/561399 (2020).

42. Evans, K. L. et al. Independent colonization of multiple urban centres by a
formerly forest specialist bird species. Proc. R. Soc. B Biol. Sci. 276, 2403–2410
(2009).

43. Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing
methods for detecting multilocus adaptation with multivariate
genotype–environment associations. Mol. Ecol. 27, 2215–2233 (2018).

44. Bolnick, D. I., Barrett, R. D., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)
parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

45. Harpak, A. et al. Genetic adaptation in New York City rats. Genome Biol. Evol.
13, evaa247 (2021).

46. Szpiech, Z. A., Novak, T. E., Bailey, N. P. & Stevison, L. S. High-altitude
adaptation in rhesus macaques. Preprint at bioRxiv https://doi.org/10.1101/
2020.05.19.104380 (2020).

47. Burri, R. Interpreting differentiation landscapes in the light of long-term
linked selection. Evol. Lett. 1, 118–131 (2017).

48. Tang, K., Thornton, K. R. & Stoneking, M. A new approach for using genome
scans to detect recent positive selection in the human genome. PLoS Biol. 5,
e171 (2007).

49. Thompson, K. A., Osmond, M. M. & Schluter, D. Parallel genetic evolution
and speciation from standing variation. Evol. Lett. 3, 129–141 (2019).

50. Etten, M. V., Lee, K. M., Chang, S.-M. & Baucom, R. S. Parallel and
nonparallel genomic responses contribute to herbicide resistance in Ipomoea
purpurea, a common agricultural weed. PLoS Genet. 16, e1008593 (2020).

51. Fullerton, S. M., Bernardo Carvalho, A. & Clark, A. G. Local rates of
recombination are positively correlated with gc content in the human genome.
Mol. Biol. Evol. 18, 1139–1142 (2001).

52. Charlesworth, D. et al. Using GC content to compare recombination patterns
on the sex chromosomes and autosomes of the guppy, Poecilia reticulata, and
its close outgroup species. Mol. Biol. Evol. 37, 3550–3562 (2020).

53. Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites:
unifying the disparity among species. Nat. Rev. Genet. 14, 262–274 (2013).

54. Burri, R. et al. Linked selection and recombination rate variation drive the
evolution of the genomic landscape of differentiation across the speciation
continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015).

55. Vijay, N. et al. Evolution of heterogeneous genome differentiation across
multiple contact zones in a crow species complex. Nat. Commun. 7, 13195
(2016).

56. Delmore, K. E. et al. Comparative analysis examining patterns of genomic
differentiation across multiple episodes of population divergence in birds.
Evol. Lett. 2, 76–87 (2018).

57. Santangelo, J. S., Johnson, M. T. J. & Ness, R. W. Modern spandrels: the roles
of genetic drift, gene flow and natural selection in the evolution of parallel
clines. Proc. R. Soc. B Biol. Sci. 285, 20180230 (2018).

58. Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840
(2011).

59. Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome
analysis of a wild bird reveals physiological responses to the urban
environment. Sci. Rep. 7, 1–10 (2017).

60. Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft
selective sweeps. Trends Ecol. Evol. 28, 659–669 (2013).

61. Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: urbanization and its
effects on the stress physiology in European Blackbirds. Ecology 87, 1945–1952
(2006).

62. Rodríguez, A., Orozco-Valor, P. M. & Sarasola, J. H. Artificial light at night as
a driver of urban colonization by an avian predator. Lands. Ecol. 36, 17–27
(2021).

63. Hale, M. C., McKinney, G. J., Thrower, F. P. & Nichols, K. M. RNA-seq
reveals differential gene expression in the brains of juvenile resident and
migratory smolt rainbow trout (Oncorhynchus mykiss). Comp. Biochem.
Physiol. Part D Genomics Proteom. 20, 136–150 (2016).

64. Peter, B. et al. Genetic candidate variants in two multigenerational families
with childhood apraxia of speech. PLoS ONE 11, e0153864 (2016).

65. Uetani, N. et al. Impaired learning with enhanced hippocampal long-term
potentiation in PTPδ-deficient mice. EMBO J. 19, 2775–2785 (2000).

66. Mehlhorn, J., Haastert, B. & Rehkämper, G. Asymmetry of different brain
structures in homing pigeons with and without navigational experience. J.
Exp. Biol. 213, 2219–2224 (2010).

67. Gazda, M. A. et al. Signatures of selection on standing genetic variation
underlie athletic and navigational performance in racing pigeons. Mol. Biol.
Evol. 35, 1176–1189 (2018).

68. Toews, D. P. L., Taylor, S. A., Streby, H. M., Kramer, G. R. & Lovette, I. J.
Selection on VPS13A linked to migration in a songbird. Proc. Natl Acad. Sci.
116, 18272–18274 (2019).

69. Grant, S. G. N. The molecular evolution of the vertebrate behavioural
repertoire. Philos. Trans. R. Soc. B 371, 20150051 (2016).

70. Brown, S. M. et al. Synaptic modulators Nrxn1 and Nrxn3 are disregulated in
a Disc1 mouse model of schizophrenia. Mol. Psychiatry 16, 585–587 (2011).

71. Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: a
behavioural ecology perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367,
2762–2772 (2012).

72. Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life
in the city. Anim. Behav. 85, 1101–1112 (2013).

73. Slabbekoorn, H. & den Boer-Visser, A. Cities change the songs of birds. Curr.
Biol. 16, 2326–2331 (2006).

74. Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal
and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).

75. Lipovits, A. A tool for quantifying the urban gradient. In ATINER'S
Conference Paper Series, No. PLA2015-1709 (2015).

76. Seress, G., Lipovits, Á., Bókony, V. & Czúni, L. Quantifying the urban
gradient: a practical method for broad measurements. Landsc. Urban Plan.
131, 42–50 (2014).

77. Gienapp, P., Laine, V. N., Mateman, A. C., van Oers, K. & Visser, M. E.
Environment-dependent genotype-phenotype associations in avian breeding
time. Front. Genet. 8, 102 (2017).

78. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

79. R Core Team. R: A language and Environment for Statistical Computing (R
Foundation for Statistical Computing, 2018).

80. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,
2156–2158 (2011).

81. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold
Approximation And Projection. J. Open Source Softw. 3, 861 (2018).

82. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational
inference of population structure in large SNP data sets. Genetics 197, 573–589
(2014).

83. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures
from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

84. Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population
structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100
(2016).

85. Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for
associations between loci and environmental gradients using latent factor
mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

86. Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward
genomic prediction of bleaching. Science 369, eaba4674 (2020).

87. Gautier, M. Genome-wide scan for adaptive divergence and association with
population-specific covariates. Genetics 201, 1555–1579 (2015).

88. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of
population structure. Evolution 38, 1358–1370 (1984).

89. Meirmans, P. G. genodive version 3.0: easy-to-use software for the analysis of
genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131
(2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23027-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2983 | https://doi.org/10.1038/s41467-021-23027-w |www.nature.com/naturecommunications 13

https://doi.org/10.1101/561399
https://doi.org/10.1101/561399
https://doi.org/10.1101/2020.05.19.104380
https://doi.org/10.1101/2020.05.19.104380
www.nature.com/naturecommunications
www.nature.com/naturecommunications


90. Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes and
haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).

91. Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: a reimplementation of the R
package rehh to detect positive selection from haplotype structure. Mol. Ecol.
Resour. 17, 78–90 (2017).

92. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent
positive selection in the human genome. PLOS Biol. 4, e72 (2006).

93. Ferrer-Admetlla, A., Liang, M., Korneliussen, T. & Nielsen, R. On detecting
incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol.
Evol. 31, 1275–1291 (2014).

94. Marnetto, D. & Huerta‐Sánchez, E. Haplostrips: revealing population
structure through haplotype visualization. Methods Ecol. Evol. 8, 1389–1392
(2017).

95. Lun, A. T. L. & Smyth, G. K. csaw: a bioconductor package for differential
binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res.
44, e45–e45 (2016).

96. Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a
continuum of parallel evolution. Nat. Ecol. Evol. 1, 1–7 (2017).

97. Zheng, X. et al. A high-performance computing toolset for relatedness and
principal component analysis of SNP data. Bioinformatics 28, 3326–3328
(2012).

98. Beaujean, A. A., BaylorEdPsych: r package for Baylor University Educational
Psychology Quantitative Courses. R package version 0.5. http://CRAN.R-
project.org/package=BaylorEdPsych (2012).

99. Lee, S., Cook, D. & Lawrence, M. plyranges: a grammar of genomic data
transformation. Genome Biol. 20, 4 (2019).

100. Lawrence, M. et al. Software for computing and annotating genomic ranges.
PLOS Comput. Biol. 9, e1003118 (2013).

101. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842 (2010).

102. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more
comprehensive, powerful, flexible and interactive gene set enrichment analysis
toolkit. Nucleic Acids Res. 45, W130–W137 (2017).

103. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for
discovery and visualization of enriched GO terms in ranked gene lists. BMC
Bioinformatics 10, 48 (2009).

104. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

Acknowledgements
We are truly thankful to J. Pérez-Tris, J. I. Aguirre de Miguel, M. Morganti, F. Spina,
ringers from La Herreria and Lago di Pusiano, V. Encarnação, A. Mouchet and Pardal
family. We also thank V.N. Laine, A. Herrera-Dueñas and A.C. Mateman for their help
during data extraction and formatting and laboratory work, and M. Bosse for comments
on an early version of the manuscript. Funding was provided by the Swedish Research

Council C0361301 and Marie Curie Career Integration Grant FP7-CIG ID:322217 (to
C.I.), Ministry of Economics and Competiveness (CGL-2016-79568-C3-3-P to J.C.S).

Author contributions
C.I. and P.S. conceived the study. P.S. collected and coordinated the sample collection
with additions from C.B., N.D., D.M.D., B.H., J.C.S. and Ph.S. The data analysis was
carried out by A.J. and P.S. with help from M.L., D.A. and B.H.; M.E.V., C.I., A.J. and P.S.
drafted the initial manuscript with input from all the other authors.

Funding
Open access funding provided by Lund University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23027-w.

Correspondence and requests for materials should be addressed to P.Són. or C.I.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23027-w

14 NATURE COMMUNICATIONS |         (2021) 12:2983 | https://doi.org/10.1038/s41467-021-23027-w |www.nature.com/naturecommunications

http://CRAN.R-project.org/package=BaylorEdPsych
http://CRAN.R-project.org/package=BaylorEdPsych
https://doi.org/10.1038/s41467-021-23027-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe
	Results and discussion
	Genetic diversity and population structure across European urban and rural populations
	Identification of urbanisation-associated allele frequency shifts
	Signatures of selection in urban populations
	Evolutionary drivers of genetic differentiation and signatures of selection
	Genes and pathways associated with adaptation to urbanisation

	Methods
	Sample collection and DNA extraction
	Urbanisation score
	SNP genotyping
	Genetic diversity and population structure
	Environment-associated SNPs
	Patterns of genetic differentiation (FST)
	Haplotype-based selection analyses
	Decomposing habitat and locality effects for urbanisation-associated SNPs
	Patterns of linkage disequilibrium and intronic GC-content across the genome
	Functional characterisation of candidate SNP

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




