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Unravelling the evolutionary origins of eusocial life is a longstanding endea-
vour in the field of evolutionary-developmental biology. Descended from
solitary ancestors, eusocial insects such as honeybees have evolved ontogen-
etic division of labour in which short-lived workers perform age-associated
tasks, while a long-lived queen produces brood. It is hypothesized that
(i) eusocial caste systems evolved through the co-option of deeply conserved
genes and (ii) longevity may be tied to oxidative damage mitigation
capacity. To date, however, these hypotheses have been examined primarily
among only obligately eusocial corbiculate bees. We present brain transcrip-
tomic data from a Japanese small carpenter bee, Ceratina japonica (Apidae:
Xylocopinae), which demonstrates both solitary and eusocial nesting in
sympatry and lives 2 or more years in the wild. Our dataset captures gene
expression patterns underlying first- and second-year solitary females,
queens and workers, providing an unprecedented opportunity to explore
the molecular mechanisms underlying caste-antecedent phenotypes in a
long-lived and facultatively eusocial bee. We find that C. japonica’s queens
and workers are underpinned by divergent gene regulatory pathways,
involving many differentially expressed genes well-conserved among other
primitively eusocial bee lineages. We also find support for oxidative
damage reduction as a proximate mechanism of longevity in C. japonica.
1. Introduction
The emergence of obligate eusocial life, in which a reproductive individual is
supported by many non-reproductive relatives [1,2], is considered one of the
major evolutionary transitions in biological complexity [3]. A defining feature
of eusocial organization is reproductive division of labour, a pronounced
form of phenotypic plasticity highlighting the capacity for a single genotype
to produce multiple phenotypes under different environmental conditions [4].
For example, across various social insects including honeybees, a female devel-
ops either into a reproductive queen or a non-reproductive worker depending
on the dietary and environmental conditions of her infancy [5]. This ontogenetic
split is highly consequential, as queens and workers go on to exhibit substan-
tially different physiologies and behavioural states. While a queen spends
most of her life inside the nest, producing brood and interacting with her
colony, her worker offspring perform a variety of complex, age-related tasks
to support and protect the nest [6]. This phenotypic variation by caste extends
to life expectancy: workers live for two to six weeks [7], but queens may spend
up to 5 years continuously producing brood [8].

Research exploring caste-associated variations in honeybees and other
highly social insects have provided a wealth of insights into the molecular
mechanisms underpinning differences in behaviour and longevity [9–11]. For
example, we now appreciate that both the developmental and behavioural
plasticity of honeybees emerges from a highly directional regulatory network
of modular suites of co-expressed genes [12,13]. Further, studies have shown
that variations in longevity seen among social insects may be tied to individual
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reproductive capacity [8,14,15], metabolic requirements and
oxidation-reduction activity [16–19]. The relatively abbre-
viated honeybee worker lifespan, for instance, may partly
be explained by the high metabolic costs of frequent flight,
which causes increasing harm as oxidation–reduction activity
fades with worker age [7,16]. By contrast, not only do long-lived
queens rarely fly, there is evidence that reproduction-associated
genes, such as vitellogenin, may also mitigate oxidative damage
in this species [20,21].

Advanced eusocial bee lineages are known to have
evolved from solitary ancestors [22]. Research among bee
lineages of less derived sociality thus presents an exciting
opportunity to empirically test major evolutionary hypoth-
eses regarding the emergence of social organizational
systems [22–24]. For instance, recent works have indicated
that similar behavioural states and reproductive roles
among independent social bee lineages may be underpinned
by consistent differential expression of deeply conserved
genes [25–27]. Research has also revealed that worker-like
roles often feature expanded regulatory elements and evi-
dence of positive protein evolution [28,29], as predicted by
genetic release (in which otherwise pleiotropically con-
strained genes may be available for co-option into novel
roles) [30]. Gene co-option and positive selection are expected
to lead to the development of increasingly novel (taxonomi-
cally restricted) genes during further evolutionary
derivations of social traits (e.g. emergence of a true worker
caste) [22,31]. Additionally, comparative research is finding
growing support for the role of sociality itself as exerting con-
siderable influence on gene expression pathways associated
with behavioural states [32–34] and lifespan among bee
lineages [35]. There remains, however, a paucity of datasets
which capture the transcriptomics of emergent social traits
and ageing among facultatively eusocial bee taxa, which
would allow for empirical testing of hypotheses that seek
to bridge the effects of ageing and social environment on
phenotypic plasticity [4,11,23,36].

Ceratina japonica is a long-lived species of small carpenter
bee, which forms either solitary or eusocial nests in sympatry
across its native range in Japan [37–39]. As is common to all
social species of small carpenter bees around the globe [40–42],
C. japonica forms or re-uses a linear burrow within the stems
of pithy plants in which it rears around eight offspring a year
[37,38]. In solitary nests, brood cell provisioning, guarding
and rearing are accomplished by a single reproductive
female. By contrast, social nests typically contain two adult
females: the larger mother is reproductively dominant and
guards the nest, while the smaller daughter forages [38,39].
Ceratina japonica also lives and reproduces for 2 years [38].
In this way, C. japonica presents a novel opportunity to simul-
taneously test hypotheses regarding the evolution of social
phenotypic plasticity and longevity in a species demonstrat-
ing facultative eusociality. Here, we investigate C. japonica
brain transcriptomic data to (i) identify patterns of differential
gene expression and cis-regulatory enrichment among this
species’ three naturally co-occurring female classes (i.e. queens,
workers and solitary females); (ii) examine molecular signatures
of ageing within and among these classes and (iii) determine the
degree to which molecular elements associated with sociality
and longevity in C. japonica may be conserved among other
social insect lineages. We predict that (i) C. japonica’s facultative
primitive eusociality will be largely underpinned by deeply
conserved and differentially expressed genes (DEGs), with
only limited evidence of novel or taxonomically restricted
genes; (ii) C. japonica’s queen and worker behavioural classes
will be underpinned by distinct regulatory pathways and
(iii) some measure of oxidation reduction will play a role in
older individuals of all three behavioural classes regardless
of other regulatory differentiation.
2. Material and methods
(a) Sample collection, sequencing and molecular

analysis
Ceratina japonica queens, workers and solitary females were col-
lected at dawn from nests found in broken stems of Hydrangea
sp. around Sapporo, Japan in July 2015 following [43]. Individ-
uals were flash frozen in liquid nitrogen upon collection and
remained at or below −196°C until dissection. Nest type (solitary
versus social) was determined through nest dissection, female
identification and scoring individual wing wear and ovarian
development. Social nests are established in pre-formed burrows
(dirty walls) [38,39]. In social nests, workers develop from the
first laid egg and are primarily foragers [38,39]. However,
workers are capable of reproduction most worker-laid eggs are
consumed by queens [38,39]. Queens, by contrast, are both the
dominant egg layers and primary guards; both females regularly
engage in trophallaxis [38,39]. Solitary nests are established in
newly dug burrows (clean walls), in which the reproductive
female lays eggs, forages for her brood and guards her offspring
as she is able [38,39]. Nest types are largely stable from 1 year to
the next: once established, nests typically remain solitary or
social [38]. Social and solitary nest statuses were determined
during nest dissection: those containing eggs and/or larvae
along with two adult females were deemed social and those
with only one adult female solitary. Individual ages were deter-
mined using nest condition (clean nest walls year 1; soiled,
reused nests year 2; electronic supplementary material, table
S1) and adult female wing wear (little to no wing wear, scored
between 1 and 3, indicated young, first-year bees; moderate to
severe wing wear, scored between a 4 and a 5, indicated old,
second-year bees) following well-established methods (electronic
supplementary material, table S1) [38,44]. In social nests, the
wing wear of both females was taken into consideration to aid
in assessing age. To assign classes within social nests, individuals
were assessed for combined metrics of both body size (intertegu-
lar distance and wing length) and ovarian development (sum of
lengths of three largest ovarioles). In accordance with known
biology [38,39,45], the larger and more reproductively estab-
lished of the two individuals was assigned to the queen class
(electronic supplementary material, table S1) [38]. Following
class determination, a total of 18 individuals (three young
queens and three old; three young workers and three old; and
three young solitary females and three old) were selected for
brain RNA extraction using the QIAGEN RNeasy Kit and proto-
col (cat. no. 73404; electronic supplementary material, table S2).
Brain tissue was selected for comparison with other studies, rel-
evance to behaviour, and as one of the most transcriptionally
active tissues [46]. Acceptability of RNA sample quality was con-
firmed on an Agilent Tape Station 2200 before being submitted to
Génome Québec (Montréal, Canada) for library preparation and
150 base pair (bp) paired-end Illumina HiSeq 2500 sequencing.
Illumina sequencing produced an average of 39.9 MB of raw
sequence data for each of our 18 brain samples (718.4 MB in
total; electronic supplementary material, table S3). On average,
93% of raw sequence data for each sample passed initial quality
checks for further alignment via FastQC, enabling the mapping
of an average of 9231 genes at 35× read coverage across all
samples after adapter removal via Trimmomatic (representing
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91.7% of total C. japonica genome [34], NCBI PRJNA526231). This
set was then filtered down to 8936 genes of sufficient expression
data for further analysis (electronic supplementary material,
table S4). Read data were then annotated using the C. japonica
genome [34] before being used for further transcriptomic and
comparative analyses (data are accessible via NCBI PRJNA
413373). Full details on methodology can be found in the electronic
supplementary material.
g.org/journal/rspb
Proc.R.Soc.B

289:20212663
3. Results
(a) Differential gene expression by behavioural class

and age
Principal components analysis of total gene expression data
revealed the majority of variation to be among workers and
queens or solitary females. A total of 89% of this variation
explainable by the first (5183 genes, 58%), second (1876
genes, 21%) and third components (893 genes, 10%; electronic
supplementary material, figure S1) which appeared to reflect
reproductive status (PC1) and age (PCs 2 and 3). DESeq2 [47]
analysis by class revealed a total of 349 significantly DEGs
from all pairwise comparisons (FDR < 0.05; figures 1 and 2;
electronic supplementary material, table S5). Most of the
DEGs were upregulated specifically (uniquely) in workers
(Nunique = 230, 66%). Workers also featured the greatest num-
bers of DEGs with strong expression values (Nlog2fc > 2 = 111,
versus queen Nlog2fc > 2 = 44, and solitary female Nlog2fc > 2 = 8;
electronic supplementary material, table S5 and figure S2)
and significantly more than expected even given total DEG
counts (χ2-test, χ2 = 30.04, d.f. = 6, p < 0.001; electronic sup-
plementary material, table S6). Worker class-associated
DEGs included cytochromes P450 6B1 and 6k1 and two
copies of General odorant binding protein 69a (electronic
supplementary material, table S5, orthologue accession
numbers are provided in the electronic supplementary
material, table S7). Analysis by topGO v 3.7 [48] indicated
that worker DEGs were enriched for metabolic processes
(including carbohydrate and hormone metabolism),
immune function (regulation of cellular defense) and oviduct
development (electronic supplementary material, table S5). A
total of 35 DEGs were uniquely upregulated in queens,
including cytochrome P450 4g15 and Heat shock 70 kDA protein.
GO term enrichment among queens highlighted biological
processes such as protein processing and folding. A total of
40 DEGs were uniquely upregulated in solitary females,
including cytochrome P450 4C1 (electronic supplementary
material, tables S5 and S7). A total of 15 GO terms were
enriched in both solitary female and queen DEG sets (e.g.
protein deglutamylation). Seven additional terms were
enriched among both solitary female and worker DEG sets
(e.g. polysaccharide and carbohydrate metabolic processes;
figure 2; electronic supplementary material, table S5).

We identified a total of 421 DEGs from all tests of age
differences among queens, workers and solitary females
(figure 1; electronic supplementary material, figure S3 and
table S8). A set of 89 DEGs distinguished young workers
(N = 24) from old workers (N = 65). By comparison, a total
of 47 DEGs separated young queens (N = 18) from old
queens (N = 29); and just 28 DEGs separated young solitary
females (N = 17) from old solitary females (N = 11). Genes sig-
nificantly upregulated among old workers included general
odorant binding protein 69a and two Cytochrome P450 s (6B1
and 6A1). Functional enrichment for old worker DEGs indi-
cated a shift with age towards flight, locomotion and both
metabolic (e.g. lipid metabolism) and immune-associated
processes (e.g. haemocyte proliferation). Three cytochrome
P450 s, an orthologue of major royal jelly protein 2, and both
heat shock 70 kDa protein and oxidoreductase YrbE were upre-
gulated in old queens over young. GO term enrichment
revealed a shift towards both oxidation reduction and integ-
rin-mediated cell adhesion as queens’ age. Despite few DEGs
between young and old solitary females, GO term enrich-
ment revealed that solitary females also underwent a
detectable shift towards increased immune responsiveness,
protein methylation and oxidoreductase activity with age
(electronic supplementary material, table S8).

Queens and workers shared more significantly upregu-
lated genes in common than either did with solitary
females, both among young (N = 5, 10%) and old individuals
(N = 10, 11%). DEGs upregulated in both young queens and
workers included putative gustatory receptor 23a, while old
queens and workers shared both cytochrome p450 6A1 and
major royal jelly protein 2 (electronic supplementary material,
table S8). Young queen and worker DEG sets were enriched
for 11 GO terms in common, but this count dropped with
age to just three, representing a significant reduction in func-
tional similarity (χ2-test, χ2 = 9.9159, d.f. = 4, p = 0.0419;
electronic supplementary material, table S6). Notably, all
classes were enriched for oxidoreductase when old (electronic
supplementary material, table S8).

(b) Network analysis
A total of 8936 genes and 16 of our 18 samples passed filter-
ing checks for use in weighted gene co-expression network
analysis (WGCNA; electronic supplementary material,
figure S4 [49]). Topographic rendering revealed that the
most strongly trait-associated genes underlying queens
(N = 447; electronic supplementary material, figures S9–S11
and tables S9, S14), workers (N = 224; electronic supplemen-
tary material, figures S15–S17 and tables S10, S14) and
solitary females (N = 231; electronic supplementary material,
figures S12–S14 and tables S11, S14) clustered mainly by
class (figure 3; electronic supplementary material, figure
S8). Worker-associated modules featured hub genes (i.e.
genes with module membership (a measure of intramodular
connectivity) and gene significance values greater than 0.9;
p-values < 0.05) that were among the most isolated from the
core network (figure 3). Worker hub genes included cyto-
chrome b561, catalase and esterase FE4. Functional enrichment
among genes from worker-associated modules suggested a
role for immune processes (e.g. Toll signalling pathway),
metabolic activity (e.g. oligosaccharide metabolism) and both
muscular and neuronal pathways (electronic supplementary
material, table S14).

(c) Cis-regulatory enrichment
Transcription factor (TF) binding site enrichment was deter-
mined using Stubb [50] and cis-Metalysis [51] referencing
the JASPAR insect and vertebrate TF database [52]. This
analysis identified significantly enriched and functionally
unique up- or downregulating TFs associated both with be-
havioural (N = 429) and age classes (N = 568; electronic
supplementary material, tables S15 and S16). Workers fea-
tured many more upregulating TFs than queens or solitary
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Figure 1. (a) Summary illustrations of Ceratina japonica nesting biology. In social nests ((i), reused nest), the queen acts as the primary reproductive and nest guard
(in grey) while worker forages, in solitary nests (bottom, newly formed nest), the lone reproductive female produces, guards and forages for her brood (in grey).
(b) Heat map of significantly DEGs (FDR corrected p values < 0.05; N = 471) identified among young (first year) and old (second year) queens, workers and solitary
females (three samples per group; relative expression values are in log2fold change). Hierarchical cluster analysis reveals strong support for at least two focal
categories: non-reproductive females (workers) and reproductive females (i.e. queens and solitary females). (Online version in colour.)
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females, both by class (NWorkers = 223, versus NQueens = 30,
NSolitary = 90) and age (NOldWorkers = 308, versus NOldQueens =
35, versus NOldSolitary = 31). Here, we consider enrichment
only for those TFs with known neural, immune and repro-
ductive regulatory associations. Overall, workers featured
significantly greater neural-associated TFs (χ2 = 6.85, d.f. = 2,
p = 0.0325), but significantly fewer reproduction-associated
TFs than expected given total TF counts (χ2 = 11.12, d.f. = 2,
p = 0.00385). By contrast, solitary females were enriched for
significantly more reproduction-associated TFs than expected
(electronic supplementary material, table S6). Counts of
immune-associated TFs were not significantly different than
expected for any role given respective total TF counts (χ2 =
0.157, d.f. = 2, p = 0.924). Enriched binding site motifs accom-
modated TFs that were themselves differentially expressed in
our dataset (i.e. BH1, eve, RREB1; figure 4) suggesting active
regulation at time of sampling.
(d) Comparative analyses of gene expression
Rank-rank hypergeometric overlap (RRHO) analyses of gene
expression variation [53] between queens and workers of
C. japonica and comparable roles in eight additional hymenop-
teran species (C. australensis [25]; M. genalis [28]; C. calcarata
[29]; E. robusta; E. tridentata [34]; A. mellifera [54]; T. longispino-
sus [55]; and Polistes metricus [56]) collectively identified a
total of 3328 genes significantly correlated in all comparisons
to bees and a paper wasp ( p < 0.0001; figure 5; electronic sup-
plementary material, table S17). Notably, this list of genes
included a handful found to be significantly differentially
expressed in both this study and others via BLASTn and
OrthoFinder v 2.3.2 [57] (figure 6; electronic supplementary
material, tables S18–S20). Specifically, DEGs upregulated in
C. japonica queens or workers were similarly upregulated
among the reproductive dominants or subordinates of other
social Hymenoptera (electronic supplementary material,
table S18). By far, the strongest correlations in gene expression
were detected between C. japonica and other Ceratina species
(i.e. C. calcarata [29] and C. australensis [25]) and between
C. japonica and other primitive eusocial bees (M. genalis [28]
and E. robusta [34]).

RRHO comparisons of gene expression by age within
C. japonica and both C. calcarata [29] and A. mellifera [58]
identified an additional 2402 genes significantly correlated
in all but one comparison among classes ( p < 0.0001; elec-
tronic supplementary material, table S23). Overall, this suite
of analyses further corroborated the trends of molecular
divergence between C. japonica’s worker and queen classes
(electronic supplementary material, figure S18). Orthologues
consistently upregulated in older foraging individuals in all
three species included probable cytochrome P450 305a1, glucose
dehydrogenase and alpha-glucosidase.

DEGs uniquely upregulated in workers also accounted
for the majority of C. japonica DEGs identified as under posi-
tive selection in Shell et al. [34] (Nworkers = 21, Nqueens = 6,
Nsolitary = 4; electronic supplementary material, table S21)
and the majority of C. japonica DEGs orthologous with
genes identified under positive selection in studies of honey-
bees ([59], N = 17/19, 89%) and other small carpenter bees
[60] (N = 14/14, 100%; electronic supplementary material,
table S22). GO term enrichment for this set included
processes associated with positive chemotaxis and both
carbohydrate and amino sugar metabolism (electronic
supplementary material, table S22). DEGs uniquely upregu-
lated in queens accounted for three and solitary females no
orthologues under positive selection in other taxa (electronic
supplementary material, table S18). Notably, both queen and
worker DEGs under positive selection were significantly
enriched for oxidoreductase activity.
4. Discussion
Here, we provide the first insights into the molecular
dynamics underlying both caste-antecedent behavioural
classes and ageing in Ceratina japonica, a long-lived species
of small carpenter bee capable of eusocial nesting. We
uncover considerable transcriptomic variation among
queens, workers and solitary females, and highlight how
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regulatory enrichment and a modular co-expression network
may play important roles in C. japonica’s social phenotypes.
We also show how correlations between DEGs underlying
C. japonica’s form of eusociality and those observed across
other social taxa provide empirical support for the role of
deeply conserved genes in the evolution of social traits [22,61].
Finally, we reveal how gene expression patterns shift by class
over C. japonica’s 2-year lifespan and identify the putative
role of oxidation reduction as a critical proximate mechanism
for longevity in a long-lived and facultatively social bee.
(a) Workers are highly distinct from queens and
solitary females

Our analyses highlight reproductively subordinate workers
as especially distinct from queens and solitary females.
Workers are underpinned by almost 70% of all DEGs and
the majority of genes under positive selection in this and
other social bees [33,59,60]. Workers also feature extended
enrichment for neural-associated TFs, some of which are
themselves differentially expressed (e.g. homeobox protein
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Barh1). Other worker enriched TFs, such as apterous, CTCF
and Lim3, have been previously associated with worker-like
phenotypes, including foraging, across other incipiently
social (e.g. C. australensis [25]; C. calcarata [29]) and eusocial
bees (e.g. A. mellifera [58]; E. robusta, Exoneurella tridentata [34]).
Network analysis further indicates that genes expressed in
workers are not upregulated in solitary female or queen-
associated pathways [49,62]. Our study thus corroborates
previous observations that caste-associated phenotypes may
be tied to highly modular sets of co-expressed genes [12,29].
Evidence of positive selection almost exclusively in worker-
associated genes suggests support for the hypothesis of genetic
release [30], which predicts that pleiotropic constraints are
likely to loosen in the non-reproductive role of a social lineage.

Three genes—odorant receptor coreceptor and two copies of
general odorant binding protein 69a (Obp69a)—were identified
as both highly expressed worker-associated DEGs and
functionally important worker hub genes. Odorant-binding
proteins (OBPs) and receptors (ORs) underpin insect olfac-
tory behaviour and pheromone binding [63]. At least one
OBP, Obp69a, has also been shown to help moderate social
interactions among fruit flies [64]. The role of ORs and OBPs
in chemical communication is relatively well-appreciated
among honeybees (Apis mellifera [65,66]) and other advanced
eusocial Hymenoptera (i.e. ants [67] and wasps [68]), as they
likely contribute to nest-mate recognition and the direction of
caste behaviour and physiology [69,70]. OBPs have also been
found to play an important role in other eusocial bees (e.g.
Bombus terrestris [71]) and still-flexible reproductive dominance
hierarchies of incipiently social small carpenter bees [25,46].
While their exact physiological function within C. japonica
remains a question for future research, the evident involvement
of ORs and OBPs in C. japonica’s worker class highlights
chemical communication as of potential importance for the
behavioural dynamics of this species [72,73].

(b) Social phenotypes appear to be undergoing
molecular divergence

Overall, the molecular pathways underlying C. japonica’s
queen and worker phenotypes are highly class specific and
appear to have opposing directional regulation. For example,
a set of 128 enriched TFBS motifs upregulated worker-
associated and downregulated queen-associated expression
profiles. Extensive gene downregulation in queens is perhaps
not surprising given behavioural observations of this species:
queens are at least partly ‘characterized by two negative key
tasks—continuous resting and abandonment of foraging’
[74]. By comparison, we find that solitary female regulatory
enrichment and directionality partly overlaps with both
queens and workers. Network analysis corroborates this
phenotypic directionality: modules are generally clustered
by class, but many genes remain partially co-expressed
among classes. In sum, rather than the decoupled queen
and worker pathways of advanced eusocial Hymenoptera
(e.g. Temnothorax longispinosus [55]; A. mellifera [54]), C.
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japonica’s queens and workers may still be undergoing mol-
ecular divergence, both from solitary females and each
other. Overall, C. japonica’s brain gene expression patterns
more closely resemble those of other facultatively eusocial
bees, such as Euglossa dilemma [26] or M. genalis [28], in
which observably caste-antecedent phenotypes remain flex-
ible at both the molecular and phenotypic levels.

(c) Molecular signatures of longevity in
Ceratina japonica

Class-specific shifts in gene expression and regulatory enrich-
ment with age suggest queens, workers and solitary females
undergo separate changes according to life history. Although
workers may experience the most dramatic changes of any
single phenotype, both workers and queens upregulate
some of the same immune-associated genes with age. These
results suggest that C. japonica social nest females may experi-
ence age-associated changes that are more typical of species
with larger and better-established social nest environments
(e.g. A. mellifera [75]; Bombus terrestris [76]). Extensive regulat-
ory increases and expanded flight, odorant binding and
metabolic activity in C. japonica workers mirror the age-
associated changes observed in workers of more advanced
eusocial bees (e.g. A. mellifera [6]). Further, elevated
immune activity among queens and workers suggests even
a small social nest may invite similar pathogenic and oxi-
dative challenges to those of larger eusocial colonies [77,78].

Queens, workers and solitary females of C. japonica all live
up to 2 years or more [45], suggesting longevity may be under-
pinned by some shared molecular mechanisms despite distinct
life histories. Accordingly, we identified significant enrichment
for oxidation-reduction processes across old individuals regard-
less of phenotypic class (electronic supplementary material,
table S5). An ability tomitigate oxidative damage has been con-
sistently and independently implicated as critical to the
longevity of many aerobic taxa, from bivalves [79] to humans,
mammals and birds [80–82], and among social insects
[17,83,84]. Among advanced eusocial bees, older foragers
may offset oxidative damage through increased expression of
redox-related proteins, such as catalase [83]. Catalase and four
copies of esterase fe4were found to be strongly and significantly
associated with C. japonica workers during multiple analyses.
Like catalase, esterase fe4 plays an essential role in mitigating
damage by oxidation or environmental stress (such as insecti-
cides) across many insects, including social bees (A. mellifera
[85]; A. cerana [86]). Longevity in C. japonica’s worker class
may also be explained by the fact that workers remain repro-
ductively viable [32,33], a trait that is positively correlated
with longevity across social insects [14,18,21,87]. Overall, the
transcriptomics of ageing in C. japonica supports the
propositions that (i) individual longevity in social insect
lineages may be tied to ancestrally reproductive pathways
and activity [21,87,88] and (ii) oxidation–reduction activity is
a key predictor of aerobic organismal lifespan [17,82,89].

(d) Deeply conserved and differentially expressed genes
underlie primitive eusociality

Comparative analyses reveal that genes and gene expression
patterns associated with queen and worker classes in C. japonica
are both well-conserved and highly correlated across other
Ceratina and among primitively eusocial bees. Both C. calcarata
and C. australensis demonstrate incipiently social phenotypes
[90,91] and, as relatively close congeners of C. japonica, share
many of the life-history traits consistent across the small
carpenter bee genus (e.g. stem nesting and alloparental care
[37]). Molecular consistencies among the small carpenter
bees may therefore be explained as much by broad
similarities in biology as they are by shared ancestry within
a genus [40]. By contrast, C. japonica is a distant cousin of
primitively eusocial E. robusta (Xylocopinae [92]) and of a
separate family from M. genalis (Halictinae [93]). Strongly
positive and significant correlations in gene expression
patterns detected among these species are therefore likely
better explained by consistencies in phenotypic traits [94–96]
than by shared phylogenetic ancestry. Our study thus joins
recent works among Hymenoptera (e.g. bees [34]) and other
social animals (e.g. snapping shrimps [33]) in offering empirical
support for the theory that sociality itself may exert a broadly
consistent influence on otherwise separate evolutionary
trajectories [32]. Our results also offer support for the theory
that non-obligate forms of eusocial behaviour are underpinned
primarily by deeply conserved genes and DEGs. Comparisons
of C. japonica to species that have passed the evolutionary
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‘point of no return’ into advanced eusociality [97] also indicate
that taxonomically and phenotypically restricted genes may
play an increasingly focal role in these lineages [22].
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