STATISTICAL RETHINKING

PRACTICE PROBLEM
SOLUTIONS

CONTENTS
L. Chapter 2 Solutiong 2
R. Chapter 3 Solutiong 8
B. Chapter 4 Solutiong 16
#. Chapter 5 Solutiong 23
pb. Chapter 6 Solutiong 32
p. Chapter 7 Solutiong 44
/. Chapter 8 Solutiong 57
B. Chapter 10 Solutiong 71
p. Chapter 11 Solutiong 85
[10. Chapter 12 Solutiong 108
[11. Chapter 13 Solutiong 123
[12. Chapter 14 Solutiong 140

Date: September 14, 2015.

R code
1.1

R code
1.2

R code
1.3

2 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

1. Chapter 2 Solutions

2E1. Both (2) and (4) are correct. (2) is a direct interpretation, and (4) is equivalent.

2E2. Only (3) is correct.

2E3. Both (1) and (4) are correct. For (4), the product Pr(rain|Monday) Pr(Monday) is just the joint
probability of rain and Monday, Pr(rain, Monday). Then dividing by the probability of rain provides
the conditional probability.

2E4. This problem is merely a prompt for readers to explore intuitions about probability. The goal is
to help understand statements like “the probability of water is 0.7” as statements about partial knowl-
edge, not as statements about physical processes. The physics of the globe toss are deterministic, not
“random.” But we are substantially ignorant of those physics when we toss the globe. So when some-
one states that a process is “random,” this can mean nothing more than ignorance of the details that
would permit predicting the outcome.

As a consequence, probabilities change when our information (or a model’s information) changes.
Frequencies, in contrast, are facts about particular empirical contexts. They do not depend upon our
information (although our beliefs about frequencies do).

This gives a new meaning to words like “randomization,” because it makes clear that when we
shuftle a deck of playing cards, what we have done is merely remove our knowledge of the card order.
A card is “random” because we cannot guess it.

2M1. Since the prior is uniform, it can be omitted from the calculations. But I'll show it here, for
conceptual completeness. To compute the grid approximate posterior distribution for (1):

p_grid <- seq(from=0 , to=1 , length.out=100)

likelihood of 3 water 1in 3 tosses

likelihood <- dbinom(3 , size=3 , prob=p_grid)
prior <- rep(1,100) # uniform prior

posterior <- likelihood * prior

posterior <- posterior / sum(posterior) # standardize

And plot(posterior) will produce a simple and ugly plot. This will produce something with nicer
labels and a line instead of individual points:

plot(posterior ~ p_grid , type="1")

The other two data vectors are completed the same way, but with different likelihood calculations. For

(2):

likelihood of 3 water 1in 4 tosses
likelihood <- dbinom(3 , size=4 , prob=p_grid)

And for (3):

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 3

R cod
likelihood of 5 water in 7 tosses 120 ¢
likelihood <- dbinom(5 , size=7 , prob=p_grid)
And this is what each plot should look like:
s DWW w @WWWL BILWWLWWW
=N 8 | 1
S o
2] o g
=] S T (=}
8 5° 5 |
g8 g2 5}
g3 23 ge
a Qe Qo
- [T} ©
S A 8 |
S g |
g1 g 1 g
o T T T T T T O T T T T T T O T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
p_grid p_grid p_grid
2M2. Only the prior has to be changed. For the first set of observations, W W W, this will complete
the calculation and plot the result:
R
p_grid <- seq(from=0 , to=1 , length.out=100) 1§Ode

likelihood <- dbinom(3 , size=3 , prob=p_grid)
prior <- ifelse(p_grid < 6.5 , 0 , 1) # new prior
posterior <- likelihood * prior

posterior <- posterior / sum(posterior) # standardize
plot(posterior ~ p_grid , type="1")

The other two plots can be completed by changing the likelihood, just as in the previous problem.
Here are the new plots, demonstrating that the prior merely truncates the posterior distribution below
0.5:

MHWww 2)WWWL = B LWWLWWW
< o
o 4 4 a
= o
I
[se] o 1
o 4 g o
_© . =
S s | So
= = I~
22 Fo 2
oo O — 9 o
aQ [S
<] =
S S
o 4
o o o
S S S
o T T T T T T O T T T T T T o T T T T T T
0.0 02 04 06 038 1.0 00 02 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
p_grid p_grid p_grid

2M3. Here’s what we know from the problem definition, restated as probabilities:

Pr(land|Earth) =1 —0.7 = 0.3
Pr(land|Mars) = 1

R code

4 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

We also have, as stated in the problem, equal prior expectation of each globe. This means:
Pr(Earth) = 0.5
Pr(Mars) = 0.5
We want to calculate Pr(Earth|land). By definition:
Pr(land|Earth) Pr(Earth)
Pr(land)

The Pr(land) in the denominator is just the average probability of land, averaging over the two globes.
So the above expands to:

Pr(Earth|land) =

Pr(land|Earth) Pr(Earth)
Pr(land|Earth) Pr(Earth) + Pr(land|Mars) Pr(Mars)

Plugging in the numerical values:

Pr(Earth|land) =

(0.3)(0.5)

Pr(Earth|land) = (0.3)(0.5) + (1)(0.5)

Let’s compute the result using R:

0.3*0.5 / (0.3%0.5 + 1*0.5)

[1] 0.2307692

And there’s the answer, Pr(Earth|land) &~ 0.23. You can think of this posterior probability as an
updated prior, of course. The prior probability was 0.5. Since there is more land coverage on Mars
than on Earth, the posterior probability after observing land is smaller than the prior.

2M4. Label the three cards as (1) B/B, (2) B/W, and (3) W/W. Having observed a black (B) side face
up on the table, the question is: How many ways could the other side also be black?

First, count up all the ways each card could produce the observed black side. The first card is B/B,
and so there are 2 ways is could produce a black side face up on the table. The second card is B/W, so
there is only 1 way it could show a black side up. The final card is W/W, so it has zero ways to produce
a black side up.

Now in total, there are 3 ways to see a black side up. 2 of those ways come from the B/B card. The
other comes from the B/W card. So 2 out of 3 ways are consistent with the other side of the card being
black. The answer is 2/3.

2M5. With the extra B/B card, there are now 5 ways to see a black card face up: 2 from the first B/B
card, 1 from the B/W card, and 2 more from the other B/B card. 4 of these ways are consistent with
a B/B card, so the probability is now 4/5 that the other side of the card is also black.

2M6. This problem introduces uneven numbers of ways to draw each card from the bag. So while
in the two previous problems we could treat each card as equally likely, prior to the observation, now
we need to employ the prior odds explicitly.

There are still 2 ways for B/B to produce a black side up, 1 way for B/W, and zero ways for W/W.
But now there is 1 way to get the B/B card, 2 ways to get the B/W card, and 3 ways to get the W/W
card. So there are, in total, 1 x 2 = 2 ways for the B/B card to produce a black sideup and 2 x 1 = 2
ways for the B/W card to produce a black side up. This means there are 4 ways total to see a black side
up, and 2 of these are from the B/B card. 2/4 ways means probability 0.5.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 5

2M7. The observation is now the sequence: black side up then white side up. We're still interested in
the probability the other side of the first card is black. Let’s take each possible card in turn.

First the B/B card. There are 2 ways for it to produce the first observation, the black side up. This
leaves the B/W card and W/W card to produce the next observation. Each card is equally likely (has
same number of ways to get drawn from the bag). But the B/W card has only 1 way to produce a
white side up, while the W/W card has 2 ways. So 3 ways in total to get the second card to show white
side up. All together, assuming the first card is B/B, there are 2 x 3 = 6 ways to see the BW sequence
of sides up.

Now consider the B/W card being drawn first. There is 1 way for it to show black side up. This
leaves the B/B and W/W cards to produce the second side up. B/B cannot show white up, so zero
ways there. W/W has 2 ways to show white up. All together, that'’s 1 x 2 = 2 ways to see the sequence
BW, when the first card is B/W.

The final card, W/W, cannot produce the sequence when drawn first. So zero ways.

Now let’s bring it all together. Among all three cards, there are 6 + 2 = 8 ways to produce the
sequence BW. 6 of these are from the B/B being drawn first. So that’s 6/8 = 0.75 probability that the
first card is B/B.

2H1. To solve this problem, realize first that it is asking for a conditional probability:
Pr(twins;|twins;)

the probability the second birth is twins, conditional on the first birth being twins. Remember the
definition of conditional probability:

Pr(twins;, twins,)

Pr(twins,|twins;) = Pr (twins)

So our job is to define Pr(twins, , twins,), the joint probability that both births are twins, and Pr(twins),
the unconditioned probability of twins.

Pr(twins) is easier, so let’s do that one first. The “unconditioned” probability just means that we
have to average over the possibilities. In this case, that means the species have to averaged over. The
problem implies that both species are equally common, so there’s a half chance that any given panda
is of either species. This gives us:

Pr(twins) = 1(0.1) + 1(0.2) .
—— =
Species A Species B

A little arithmetic tells us that Pr(twins) = 0.15.
Now for Pr(twins;, twins;). The probability that a female from species A has two sets of twins is

0.1 x 0.1 = 0.01. The corresponding probability for species B is 0.2 x 0.2 = 0.04. Averaging over
species identity:

Pr(twins;, twins,) = 1(0.01) + 1(0.04) = 0.025.
Finally, we combine these probabilities to get the answer:

0.025 25 1
= = - ~0.17.

Pr(twins,|twins;) = 5 =T =3

Note that this is higher than Pr(twins). This is because the first set of twins provides some information
about which species we have, and this information was automatically used in the calculation.

6 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

2H2. Our target now is Pr(A[twins;), the posterior probability that the panda is species A, given that
we observed twins. Bayes’ theorem tells us:

Pr(twins;|A) Pr(A)

Pr(Altwins;) = Pr(twins)

We calculated Pr(twins) = 0.15 in the previous problem, and we were given Pr(twins|A) = 0.1 as
well. The only stumbling block may be Pr(A), the prior probability of species A. This was also given,
implied by the equal abundance of both species. So prior to observing the birth, we have Pr(A) = 0.5.
So:
Pr(Altwins) = (D05 5 1
0.15 15 3

So the posterior probability of species A, after observing twins, falls to 1/3, from a prior probability of
1/2. This also implies a posterior probability of 2/3 that our panda is species B, since we are assuming
only two possible species. These are small world probabilities that trust the assumptions.

2H3. There are a few ways to arrive at the answer. The easiest is perhaps to recall that Bayes” theorem
accumulates evidence, using Bayesian updating. So we can take the posterior probabilities from the
previous problem and use them as prior probabilities in this problem. This implies Pr(A) = 1/3. Now
we can ignore the first observation, the twins, and concern ourselves with only the latest observation,
the singleton birth. The previous observation is embodied in the prior, so there’s no need to account
for it again.
The formula is:
Pr(singleton|A) Pr(A)

Pr(A|singleton) = Pr (singleton)

We already have the prior, Pr(A). The other pieces are straightforward:
Pr(singleton|A) =1 —0.1 = 0.9
Pr(singleton) = Pr(singleton|A) Pr(A) + Pr(singleton|B) Pr(B)

=(0.9)1 +(0.8)2 =

AN

Combining everything, we get:

0.9)1 9
(093 = =0.36
25

Pr(A|singleton) =

N

This is a modest increase in posterior probability of species A, an increase from about 0.33 to 0.36.

The other way to proceed is to go back to the original prior, Pr(A) = 0.5, before observed any
births. Then you can treat both observations (twins, singleton) as data and update the original prior.
I'm going to start abbreviating “twins” as T and “singleton” as S. The formula:

Pr(T, S|A) Pr(A)
Pr(T, S)

Let’s start with the average likelihood, Pr(T, S), because it will force us to define the likelihoods any-
way.

Pr(A|T, S) =

Pr(T, S) = Pr(T, S|A) Pr(A) + Pr(T, S|B) Pr(B)

I'll go slowly through this, so I don’t lose anyone along the way. The first likelihood is just the proba-
bility a species A mother has twins and then a singleton:

Pr(T, S|A) = (0.1)(0.9) = 0.09

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 7

And the second likelihood is similar, but for species B:
Pr(T, S|B) = (0.2)(0.8) = 0.16
The priors are both 0.5, so all together:

Pr(T, S) = (0.09)(0.5) + (0.16)(0.5) = é —0.125

We already have the likelihood needed for the numerator, so we can go to the final answer now:

(0.09)(0.5)
0.125
Unsurprisingly, the same answer we got the other way.

Pr(A|T, S) = = 0.36

2H4. First, ignoring the births. This is what we know about the test:

Pr(test A|A) = 0.8

Pr(test A|B) = 1 — 0.65 = 0.35
We use the original prior, Pr(A) = 0.5. Plugging everything into Bayes” theorem:

(0.8)(0.5)
(0.8)(0.5) + (0.35)(0.5)
So the test has increased the confidence in species A from 0.5 to 0.7.
Now to use the birth information as well. The easiest way to do this is just to begin with the

posterior from the previous problem. That posterior already used the birth data, so if we adopt it as

our prior, we automatically use the birth data. And so our prior becomes Pr(A) = 0.36. Then the
approach is just the same as just above:

Pr(test A|A) Pr(A)
Pr(test A)
(0.8)(0.36)
(0.36)(0.8) + (1 — 0.36)(0.35)

And since this posterior uses all of the data, the two births and the genetic test, it would be honest to
label it as Pr(A|test A, twins, singleton) /2 0.56.

~ 0.7

Pr(Altest A) =

Pr(Altest A) =

Pr(Altest A) = ~ 0.56

R code

R code

R code
2.3

R code
2.4

R code
2.5

R code
2.6

8 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

2. Chapter 3 Solutions

3El. Lets begin by running the code that computes the samples (was given in the problem):
p_grid <- seq(from=0 , to=1 , length.out=1000)

prior <- rep(1 , 1000)

likelihood <- dbinom(6 , size=9 , prob=p_grid)

posterior <- likelihood * prior

posterior <- posterior / sum(posterior)

set.seed(100)
samples <- sample(p_grid , prob=posterior , size=1le4 , replace=TRUE)

Now to find out how much posterior probability lies below p = 0.2, just compute the proportion of
samples that are below 0.2. I'll do this in two steps, to make the logic more transparent. First, count
up how many samples are below 0.2:

sum(samples < 0.2)

5

Only 5 samples have a value less than 0.2. Now to compute the proportion, just divide by the number
of samples:

sum(samples < 0.2) / 1le4

[1] 5e-04
Thats 5 x 10~*. Not a lot of probability mass below 0.2.

3E2. A similar calculation as in 3E1:

sum(samples > 0.8) / le4

[1] 0.1117
The answer is that about 11% of the posterior probability lies above 0.8.

3E3. This one requires just a slightly more complicated condition inside the expression:

sum(samples > 0.2 & samples < 0.8) / le4

[1] ©.8878
So about 89% of the posterior probability lies between 0.2 and 0.8.

3E4. This problem asks for an interval of defined mass, so we need to find the boundary. In the
chapter, the quantile function was used for this purpose.

quantile(samples , 0.2)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 9

20%
0.5195195

So p = 0.52 (rounding for sanity) is the value that 20% of the posterior probability lies below. You
can confirm this by going in the other direction:

sum(samples < 0.52) / le4

[1] 0.201

3E5. A slight modification to the quantile code from 3E4 will do it. The trick here is to realize that
finding the value of p above which 20% of the posterior probability lies means asking for the 80%
quantile. Why? Because only 20% of the probability mass remains above 80%. Here’s the code:

quantile(samples , 0.8)

80%
0.7567568
Again, you can verify that this is correct by doing the calculation in reverse:

sum(samples > 0.75) / le4

[1] ©.1905

Not exactly 0.2, but that’s just because of the discrete nature of the grid we used, as well as the finite
number of samples.

3E6. This problem is asking for a highest posterior density interval. You can compute this with the
HPDI function:

HPDI(samples , prob=0.66)

|0.66 0.66]
0.5205205 0.7847848

3E7. 'This problem is asking instead for a conventional percentile interval. PI will do the job:

PI(samples , prob=0.66)

17% 83%
0.5005005 0.7687688
Note that this interval is, as expected, a little wider than the corresponding HPDI from the previous
problem. If this isn’t obvious at a glance, you can just compute the width of the intervals:

intervall <- HPDI(samples , prob=0.66)
interval2 <- PI(samples , prob=0.66)
widthl <- 1dintervall[2] - dintervall[1l]
width2 <- 1dinterval2[2] - 1interval2[1l]
cbind(widthl,width2)

R code
2.7

R code
2.8

R code
2.9

R code
2.10

R code
2.11

R code
2.12

R code
2.13

R code
2.14

R code
2.15

R code
2.16

R code
2.17

10 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

widthl width2
0.66| 0.2642643 0.2682683

3M1. We can use the same code structure as before, but now with different data:

p_grid <- seq(from=0 , to=1 , length.out=1000)
prior <- rep(1 , 1000)

likelihood <- dbinom(8 , size=15 , prob=p_grid)
posterior <- likelihood * prior

posterior <- posterior / sum(posterior)

Note the 8 out of 15 in the likelihood calculation. When plotted, the posterior looks like this:

plot(posterior ~ p_grid , type="1")

posterior
0.0000 0.0010 0.0020 0.0030

00 02 04 06 08 10
p_grid

3M2. To draw 10-thousand (1e4) samples:

samples <- sample(p_grid , prob=posterior , size=le4 , replace=TRUE)

And to compute the 90% HPDI:

HPDI(samples , prob=0.9)

|6.9 0.9]
0.3383383 0.7317317

Your values will be slightly different, on account of sampling variation.

3M3. Following the example in the chapter, we just use rbinom to simulate samples, using samples
from posterior distribution in place of the probability of water. This will do it:

samples <- sample(p_grid , prob=posterior , size=le4 , replace=TRUE)
w <- rbinom(le4 , size=15 , prob=samples)

And to compute the proportion of these simulated observations that match the data:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 11

sum(w==8) / le4 gigde
[1] 0.1473
What does this number mean? Not much. Any particular set of data can be unlikely, so discrete
probabilities of data are hardly ever useful for summarize model fit. It's more common to summarize
model fit using tail-area probabilities, for this reason. But those aren’t always sensible either. In this
case, it may be enough to confirm that the observed value 8 is right in the middle of the posterior
predictive distribution. Plot it to confirm:
simplehist(w) gigde
This doesn’t mean it is a good model. But it does mean that model fitting worked.
3M4. A minor change in the code is all that is needed:
w <- rbinom(le4 , size=9 , prob=samples) gggde
sum(w==6) / le4
[1] ©.1802
Your answer will be slightly different, due to sampling variation.
3M5. Beginning again, but now with the new prior:
p_grid <- seq(from=0 , to=1 , length.out=1000) gque
prior <- ifelse(p_grid < 6.5 , 0 , 1)
likelihood <- dbinom(8 , size=15 , prob=p_grid)
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
samples <- sample(p_grid , prob=posterior , size=le4 , replace=TRUE)
plot(posterior ~ p_grid , type="1")
<
S
o
kel
g
12
53]
o
o
S
= : : ‘ ‘ ‘
00 02 04 06 08 10
p_grid
The 90% HPDI will be a lot narrower now:
R code

HPDI(samples , prob=0.9) 2.22

R code
2.23

R code
2.24

R code
2.25

R code
2.26

12 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

|0.9 0.9]
0.5005005 0.7087087
It is narrower, just because the prior tells the model to ignore all values of p below 0.5. Prior informa-
tion makes those values impossible causes of the data.
When re-simulating the posterior predictive distributions, note that the observed value of 8 water
is no longer right in the center of the distribution. For example:

w <- rbinom(le4 , size=15 , prob=samples)
simplehist(w)

1500

Frequency
1000

500

0 5 10 15
Count

0

The informative prior tells the model not to completely trust the data, so it shouldn’t be surprising that
the simulated posterior sampling distributions are not centered on the data. This is not an indication
of anything wrong with the model. It's merely a consequence of the model.

When you reach multilevel models in the late chapters, you will have to expect mismatch between
predictions and data in this way, because multilevel models often have informative priors. Informative
priors are what make them good models.

3HI. First, define the parameter values to consider. As in the book, I'll use 1000 values of p here, but
a value as low as 100 will do fine.

p <- seq(from=0 , to=1 , length.out=1000)

Now we need to define the uniform prior. An easy way to accomplish this is just to assign the same
value to every model. There is no need to standardize the prior, because when you standardize the
posterior, it will take care of it too.

prior <- rep(1l,length(p))

The value 1 in there is arbitrary. It could be anything, because only relative values matter, once the
density is standardized.

We're ready to compute likelihoods, now. We want to compute the probability of the observed
count of boy births, given all the probability values in p. So count up the boys and then compute the
likelihoods:

library(rethinking)
data(homeworkch3)
boys <- sum(birthl) + sum(birth2)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 13

likelihood <- dbinom(boys , size=200 , prob=p)

Finally, the posterior is the standardized product of the prior and likelihoods, so we can compute
it with:

posterior <- likelihood * prior g;;de
posterior <- posterior / sum(posterior)
This is what your posterior distribution should look like:
plot(posterior ~ p , type="1") gggde
abline(v=0.5 , lty=2)
[se]
o
S -
= O
k<]
§ 4
|72}
a3
S -
o
5]
S
s L ‘ ‘ ‘
00 02 08 1.0
All that remains is to find the parameter value that maximizes posterior probability:
p[which.max(posterior)] gggde
[1] ©.5545546
3H2. You can just copy the code from the book, in order to draw samples from the posterior. Then
it’s just a matter of passing those samples to HPDI:
. . R code
p.samples <- sample(p , size=10000 , replace=TRUE , prob=posterior) 2.30

HPDI(p.samples,prob=0.50)
HPDI(p.samples,prob=0.89)
HPDI(p.samples,prob=0.97)

|0.5 0.5
0.5305305 0.5765766

|0.89 0.89]
0.4964965 0.6076076

|0.97 0.97]
0.4774775 0.6266266

Each of these intervals is the narrowest range of parameter values that contains the specified proba-
bility mass.

R code
2.31

R code
2.32

R code
2.33

14 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

3H3. You can use the rbinom command to simulate binomial data, just like in the book. Here is code
to regenerate the samples from the posterior and then use them to simulate 10-thousand samples of
200 predicted births:

p.samples <- sample(p , size=10000 , replace=TRUE , prob=posterior)
bsim <- rbinom(10000 , size=200 , prob=p.samples)

Now you want to compare the distribution of these predictions to the observed count of boys in
all 200 observed births. Here is one way to do this, graphically:

adj value makes a strict histogram, with spikes at integers
dens(bsim , adj=0.1)
abline(v=sum(birthl)+sum(birth2) , col="red")

Here’s what the plot looks like:

0.08

Density

0.04

80 100 120 140
N =10000 Bandwidth =0.1422

0.00

The black density is the simulated counts of male births, out of 200 maximum. The red vertical line
is the observed count in the data. Looks like the model does a good job of predicting the data. In a
sense, this isn’t surprising, because the model was fit to this exact aspect of the data, the total count
of boys.

3H4. The model can be threatened a little more by asking if it can predict other, subtler aspects of
the data. How does it do predicting just first borns? The code looks very similar, but now there are
only 100 births to predict. The posterior is the same as before.

blsim <- rbinom(10000 , size=100 , prob=p.samples)
dens(blsim , adj=0.1)
abline(v=sum(birthl) , col="red")

Here’s what the plot looks like:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 15

Density
0.00 0.05 0.10 0.15 0.20 0.25

A.»AAAAAAHAA AAAAAAA AAAAA
30 40 50 60 70 80
N'=10000 Bandwidth = 0.08731
Not bad, but not right on center now. The frequency of boys among first borns is a little less than the

model tends to predict. The model doesn’t have a problem accounting for this variation though, as
the red line is well within density of simulated data.

3H5. Now an even harder test of the model. How does it do predicting second births that follow girl
births? The only tricky part of this is counting up boys born after girls. You can use R’s subsetting to
accomplish this:

b01 <- birth2[birthl==0]

b0lsim <- rbinom(10000 , size=length(b0l) , prob=p.samples)
dens(bO1lsim,adj=0.1)

abline(v=sum(b0l) , col="red")

The first line of code extracts those elements of birth2 where birthl is equal to 0. So b@1 ends up
holding all the second births that followed girls. The rest of the code is just as before, but now with a
count of births to simulate equal to the length of bo1.

Here’s what the plot looks like:

Density
0.0 01 02 03 04 05 06

_AAAAAAA AHAAA)

15 20 25 30 35 40
N =10000 Bandwidth =0.05322

That’s pretty terrible. The observed number of boys who follow girls is far in excess of what the model
predicts. Perhaps the first and second births are not independent?

R code
2.34

R code
3.1

R code

16 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS
3. Chapter 4 Solutions

4E1. The first line is the likelihood. The second line is very similar, but is instead the prior for the
parameter y. The third line is the prior for the parameter o. Likelihoods and priors can look very
similar, because a likelihood is effectively a prior for the residuals.

4E2. Two parameters in the posterior: p and o.

4E3. There are boxes in the chapter that provide examples. Here’s the right form in this case, ignoring
the specific distributions for the moment:

_ Pr(y|u,0) Pr(p) Pr(o)
Pr(p, oly) = [| Pr(y|u, o) Pr(p) Pr(c)dudo

Now inserting the distributional assumptions:

Normal(y|x, o)Normal(y|0, 10)Uniform(o|0, 10)
J Normal(y|p1, o)Normal(y|0, 10)Uniform(c|0, 10)dpdo

Pr(M70Wy):= f

4E4. The second line is the linear model.

4E5. There are 3 parameters in the posterior: o, 8, and o. The symbol p is no longer a parameter in
the posterior, because it is entirely determined by ¢, 3, and x.

4M1. To sample from the prior distribution of heights, we use rnorm to simulate, while averaging
over the prior distributions of 1+ and o. The easiest way to do this is to sample from the priors and
then pass those samples to rnorm to simulate heights. This code will sample from the priors:

mu_prior <- rnorm(le4 , 0 , 10)
sigma_prior <- runif(le4 , 0, 10)

You may want to visualize these samples with dens, just to help school your intuition for the priors.
Now to simulate heights that average over these prior distributions of parameters:

h_sim <- rnorm(le4 , mu_prior , sigma_prior)
dens(h_sim)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 17

Density
0.02 0.03

0.01

0.00

60 -40 -20 0 20 40
N =10000 Bandwidth =0.7974

Note that the prior distribution of heights is centered on zero. If that strikes you as odd, remember that
a continuous variable like height can always be re-centered to any value you like, without changing
any of the information in the data.

4M2. Asamap formula, the model in 4M1 is:

f < alist(ot
y ~ dnorm(mu , sigma),
mu ~ dnorm(@ , 10),
sigma ~ dunif(0 , 10)

4M3. This is straightforward, but remember that mathematical notation makes use of index variables
like 7, while the R code is instead implicitly vectorized over observations.

y; ~ Normal(u, o)
p=a+ Bx;

a ~ Normal(0, 50)
B ~ Normal(0, 10)
o ~ Uniform(0, 50)

4M4. Thisisan more open-ended problem than the others. But perhaps the simplest model structure
that addresses the prompt would be:

h; ~ Normal(u, o)
p=a+ By
a ~ Normal(0, 100)
B ~ Normal(0, 10)
o ~ Uniform(0, 50)
where h is height and y is year. These priors aren’t great, but they’ll do. The prior on the intercept o

is effectively uninformative. The problem didn’t say what scale height is measured on, so it’s hard to
do much else here. The prior on f is very weakly informative, centered on zero, which corresponds

R code
34

18 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

to no impact of year. This doesn’t seem like a great prior, because surely height increases each year or
stays the same. So maybe a uniform prior above zero would be better?

h; ~ Normal(u, o)
p= o+ By

a ~ Normal(0, 100)
B ~ Uniform(0, 10)
o ~ Uniform(0, 50)

There are other options, including truncated distributions or log-Normal distributions, but the book
hasn’t introduced those yet.

4M5. This one is subtle. On the one hand, having information on measurement scale lets us set a
more sensible prior for the intercept, o. You might center it on 120 now, for example. On the other
hand, for the prior to really be “prior,” it needs to be ignorance of the actual data values. Since the
observed mean is a feature of the sample, not of the measurement scale, basing the prior on it could
get you into trouble. What kind of trouble? It could lead to an illusionary fit to data, as essentially
you've used the data twice: once in setting the prior and once in conditioning on the data (computing
the posterior).

Much later in the book, you’ll see how constraints on the data can be used to design models, with-
out running the risk of using the data twice.

4M6. Again, this is a subtle issue. All the advice from just above applies. But it’s not clear here
whether “variance among heights for students of the same age is never more than 64cm” is a feature
of the sample or of the population. If it’s of the population, then setting a prior for it may be okay. In
that case:

o ~ Uniform(0, 64)

would make sense.

4H1. First, fit the model with map, to provide a quadratic approximation of the posterior. I'll use
quite flat priors here, but if you used stronger priors, thats fine. What matters is the procedure be
coherent.

library(rethinking)
data(Howelll)
d <- Howelll
d2 <- d[d$age>=18,]

m <- map(

alist(
height ~ dnorm(mu , sigma) ,
mu <- a + b*weight ,
a ~ dnorm(100 , 100) ,
b ~ dnorm(@ , 10) ,
sigma ~ dunif(0 , 50)

) b

data=d2)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 19

Then produce samples from the quadratic approximate posterior. You could use mvrnorm directly, or
the convenient extract.samples function:

post <- extract.samples(m)
str(post)

'data.frame': 10000 obs. of 3 variables:

$ a : num 114 115 114 115 113 ...

$b : num ©.888 0.882 0.891 0.878 0.925 ...
$ sigma: num 4.98 4.88 5.02 5.25 5.37 ...

Now we want to plug the weights in the table into this model, and then average over the posterior
to compute predictions for each individual’s height. The question is ambiguous as to whether it wants
 only or rather the distribution of individual height measurements (using o). T'll show the harder
approach, that uses o and simulates individual heights. Also, I won't use link or sim, but it’s fine if
you did.

For the first individual, the code might look like this:

y <- rnorm(le5 , post$Sa + post$b*46.95 , post$sigma)
mean (y)
HPDI(y,prob=0.90)

[1] 156.3685

[0.9 0.9]
148.1271 164.7901
How does the code work? The first line, which includes rnorm, simulates 100-thousand heights, using
the samples from the posterior and an assumed weight of 46.95 kg. The second line then computes
the average of these simulated heights. That gives the expected (mean) height. The third line then
computes the 90% HPDI of height.
Do the above for each row in the table, and you should get numbers close to:

Individual | weight | expected height | 90% confidence interval
1 46.95 156.3685 148.1271 — 164.7901
2 43.72 153.4653 144.7351 — 161.4463
3 64.78 172.5211 163.7667 — 180.8067
4 32.59 143.4007 135.0600 — 151.9068
5 54.63 163.3143 155.1877 — 171.9731

You could have also computed the expected heights straight from the MAP. That approach is fine,
and will give nearly the same answer.

4H2. (a) First make a new data frame with just the non-adults in it:

library(rethinking)
data(Howelll)

d <- Howelll

d3 <- d[d$age < 18 ,]
str(d3)

'data.frame': 192 obs. of 4 variables:

$ height: num 121.9 105.4 86.4 129.5 109.2 ...
$ weight: num 19.6 13.9 10.5 23.6 16 ...

$ age : hum 12 8 6.5 13 7 17 16 11 17 8 ...

R code
3.5

R code
3.6

R code
3.7

R code

R code

R code
3.10

20

$ male

¢ dint

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

10010

10101...

Now find the quadratic approximate posterior. The code is the same as before. The data frame just

changes.

m <- map(

alist(
height ~ dnorm(mu , sigma) ,
mu <- a + b*weight ,
a ~ dnorm(100 , 100),
b ~ dnorm(6 , 10) ,
sigma ~ dunif(© , 50)

)

data=d3)

precis(m)

Mean StdDev 5.5% 94.5%
1.40 56.01 60.47

a 58.
b 2.
sigma 8.

24
72
44

0.07 2.61
0.43 7.75

2.83
9.13

The estimates suggest that the MAP coefficient for weight is 2.7. This implies that for a unit change
of 1kg of weight, we predict an average of 2.7cm of increase in height.

(b) Now to plot the raw data and superimpose the model estimates, modify the code in Chapter
4. We will sample from the naive posterior, then compute 90% intervals for the mean and predicted
heights. This is what the complete code looks like, if you opt not to use the convenience functions

link and sim:

post <- extract.samples(m)
w.seq <- seq(from=1,to=45,length.out=50)
mu <- sapply(w.seq , function(z) mean(post$a + postSb*z))
mu.ci <- sapply(w.seq , function(z)
HPDI(post$a + postSb*z , prob=0.9))
pred.ci <- sapply(w.seq , function(z)
HPDI(rnorm(10000,post$a + post$b*z,post$sigma) , 0.9))

And then to plot everything:

plot(height ~ weight , data=d3 ,
col=col.alpha("slateblue",0.5) , cex=0.5)

Tines(w
Tines(w
lines(w
Tines(w.
Tines(w

seq

.seq

>

)

>

>

.seq , mu)
.seq
.seq

mu.ci[1l,] ,
mu.ci[2,] ,
pred.ci[1,]
pred.ci[2,]

lty=2)
lty=2)
, lty=2)
, lty=2)

And the resulting plot looks like:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 21

height
80 100 120 140 160

60

(c) The major problem with this model appears to be that the relationship between weight and
height, for non-adults, isn’t very linear. Instead it is curved. As a result, at low weight values, the
predicted mean is above most of the actual heights. At middle weight values, the predicted mean is
below most of the heights. Then again at high weight values, the mean is above the heights.

A parabolic model would likely fit these data much better. But that’s not the only option. What
we're after essentially is some way to model a reduction of the slope between height and weight, as
weight increases. And onwards to the next solution, which does that, for the entire data.

4H3. (a) You can just use log inside the call to map:

R code

library(rethinking) 311

data(Howelll)
d <- Howelll
mlw <- map(
alist(
height ~ dnorm(mean=mu , sd=sigma) ,
mu <- a + b*log(weight) ,
a ~ dnorm(138 , 100) ,
b ~ dnorm(0@ , 100) ,
sigma ~ dunif(0 , 50)
)
data=d)
precis(mlw)

Mean StdDev 5.5% 94.5%
a -23.79 1.34 -25.93 -21.66
b 47.08 0.38 46.47 47.69
sigma 5.13 0.16 4.89 5.38

Pretty hard to know what to make of these estimates, aside from the fact that the confidence intervals
are quite narrow, owing to there being 544 rows. The estimate for b (/) is hard to understand, because
it refers to log-kg, not raw kg. It means that for every increase of 1 log-kg of weight, you expect a
increase of 47 cm of height. But what’s a log-kg? You want to know what the model predicts on the
natural scale of measurement. So now to plotting...

(b) Begin by sampling from the naive posterior and computing the confidence intervals as per the
examples in the book. Again, I'll not use the convenience functions, but it’s fine if you did.

R code
3.12

R code
3.13

22 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

post <- extract.samples(mlw)
lw.seq <- seq(from=1.4,to=4.2,length.out=50)
mu <- sapply(lw.seq , function(z) mean(postS$Sa+post$Sb*z))
mu.ci <- sapply(lw.seq , function(z) HPDI(post$a+post$b*z))
h.ci <- sapply(lw.seq , function(z)

HPDI(rnorm(10000,post$a+postsb*z,postésigma)))

Now you have lists of numbers that can be plotted to produce the confidence curves. But how
to translate back to the non-log scale of measurement on the horizontal axis? Just exponentiate the
x-axis coordinates in lw. seq, and the job is done:

plot(height ~ weight , data=d , col=col.alpha("slateblue",0.4))
lines(exp(lw.seq) , mu)

lines(exp(lw.seq) , mu.ci[l,] , lty=2)

lines(exp(lw.seq) , mu.ci[2,] , lty=2)

lines(exp(lw.seq) , h.ci[1,] , lty=2)

lines(exp(lw.seq) , h.ci[2,] , lty=2)

This code yields:

180
\
\

height

10 20 30 40 50 60

weight

The model may have been linear, but plotted on the raw scale of measurement, it is clearly non-linear.
Not only is the trend for the mean curved, but the variance around the mean is not constant, on this
scale. Instead, the variance around the mean increases with weight. On the scale you fit the model on,
the variance was assumed to be constant. But once you transform the measurement scale, it usually
won't be.

Notice also that the estimate for the mean is so precise that you can hardly even see the confidence
interval for it. Don’t get too confident about such results, though. Remember, all inferences of the
model are conditional on the model. Even estimated trends that do a terrible job of prediction can
have tight confidence intervals, when the data set is large.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 23

4. Chapter 5 Solutions

5E1. Only (2) and (4) are multiple linear regressions. Both have more than one predictor variable
and corresponding coeflicients in the linear model. The model (1) has only a single predictor variable,
x. The model (3) has two predictor variables, but only their difference for each case enters the model,
so effectively this is a uni-variate regression, with a single slope parameter.

5E2. A verbal model statement like this will always be somewhat ambiguous. That is why mathemat-
ical notation is needed in scientific communication. However, the conventional interpretation of the
statement would be:

A; ~ Normal(y;, o)
pi = o+ BrLi + BpP;

where A is animal diversity, L is latitude, and P is plant diversity. This linear model “controls” for plant
diversity, while estimating a linear relationship between latitude and animal diversity.

5E3. Define T as time to PhD degree, the outcome variable implied by the problem. Define F as
amount of funding and S as size of laboratory, the implied predictor variables. Then the model (ig-
noring priors) might be:

T; ~ Normal(y;, o)
pi = o+ BrF; + BsS;

The slopes Br and (s should both be positive.

How can both be positively associated with the outcome in a multiple regression, but neither by
itself? If they are negatively correlated with one another, then considering each alone may miss the
positive relationships with the outcome. For example, large labs have less funding per student. Small
labs have more funding per student, but poorer intellectual environments. So both could be positive
influences on time to degree, but be negatively associated in nature.

5E4. This question is tricky. First, the answer will actually depend upon the priors, which aren’t
mentioned in the problem. But assuming weakly informative or flat priors, the answer is that (1),
(3), (4), and (5) are inferentially equivalent. They’ll make the same predictions, and you can convert
among them after model fitting. (2) stands out because it has a redundant parameter, the intercept a.

5M1. The are many good answers to this question. The easiest approach is to think of some context
that follows the divorce rate pattern in the chapter: one predictor influences both the outcome and the
other predictor. For example, we might consider predicting whether or not a scientific study replicates.
Two predictor variables are available: (1) sample size and (2) statistical significance. Sample size
influences both statistical significance and reliability of a finding. This induces a correlation between
significance and successful replication, even though significance is not associated with replication,
once sample size is taken into account.

R code

R code
4.2

24 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

5M2. Again, many good answers are possible. The pattern from the milk energy example in the chap-
ter is the simplest. Consider for example the influences of income and drug use on health. Income
is positively associated, in reality, with health. Drug use is, for the sake of the example, negatively
associated with health. But wealthy people consume more drugs than the poor, simply because the
wealthy can afford them. So income and drug use are positively associated in the population. If this
positive association is strong enough, examining either income or drug use alone will show only a
weak relationship with health, because each works on health in opposite directions.

5M3. Divorce might lead to, or be in expectation of, remarriage. Thus divorce could cause marriage
rate to rise. In order to examine this idea, or another like it, the data would need to be structured into
more categories, such as remarriage rate versus first marriage rate. Better yet would be longitudinal
data. In many real empirical contexts, causation involves feedback loops that can render regression
fairly useless, unless some kind of time series framework is used.

5M4. It is worth finding and entering the values yourself, for the practice at data management. But
here are the values I found, scraped from Wikipedia and merged into the original data:

library(rethinking)

data(WaffleDivorce)

d <- WaffleDivorce

d$pct_LDS <- c(0.75, 4.53, 6.18, 1, 2.01, 2.82, 0.43, 0.55, 0.38,
0.75, 0.82, 5.18, 26.35, 0.44, 0.66, 0.87, 1.25, 0.77, 0.64, 0.81,
0.72, 0.39, 0.44, 0.58, 0.72, 1.14, 4.78, 1.29, 0.61, 0.37, 3.34,
©.41, 0.82, 1.48, 0.52, 1.2, 3.85, 0.4, 0.37, 0.83, 1.27, 0.75,
1.21, 67.97, 0.74, 1.13, 3.99, 0.92, 0.44, 11.5)

A first regression model including this variable might be:

m_5M4 <- map(
alist(
Divorce ~ dnorm(mu,sigma),
mu <- a + bR*Marriage + bA*MedianAgeMarriage + bM*pct_LDS,
a ~ dnorm(0,100),
c(bA,bR,bM) ~ dnorm(0,10),
sigma ~ dunif(0,10)
))
data=d)
precis(m_5M4)

Mean StdDev 5.5% 94.5%
a 38.58 6.94 27.49 49.67

bA -1.10 0.23 -1.46 -0.74
bR 0.00 0.08 -0.12 0.12
bM -0.06 0.02 -0.10 -0.03
sigma 1.34 0.13 1.13 1.56

As expected, there is a negative association between percent LDS and divorce rate. This model as-
sumes the relationship between divorce rate and percent LDF is linear. This makes sense if the LDS
community has a lower divorce rate within itself only, and so as it makes up more of a State’s pop-
ulation, that State’s divorce rate declines. This is to say that the expected divorce rate of State i is a

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 25

“convex” mix of two average divorce rates:
D; = (1 — P)Dg + PDyps

where D; is the divorce rate for State i, P is the proportion of the State’s population that is LDS, and
the two divorce rates Dg and Dy ps are the divorce rates for gentiles (non-LDS) and LDS, respectively.
If Dg > Dips, then as P increases, the value of D; increases linearly as well.

But maybe the percent LDS in the population has a secondary impact as a marker of a State-level
cultural environment that has lower divorce in more demographic groups than just LDS. In that case,
this model will miss that impact. Can you think of a way to address this?

5M5. This is an open-ended question with many good, expanding answers. Here’s the basic outline
of an approach. The first two implied variables are the rate of obesity O and the price of gasoline P.
The first proposed mechanism suggests that higher price P reduces driving D, which in turn increases
exercise X, which then reduces obesity O. As a set of regressions, this mechanism implies:

(1) D as a declining function of P
(2) Xas adeclining function of D
(3) O as a declining function of X

In other words, for the mechanism to work, each predictor above needs be negatively associated with
each outcome. Note that each outcome becomes a predictor. That’s just how these causal chains look.
A bunch of reasonable control variables could be added to each of the regressions above. Consider
for example that a very wealthy person will be more insensitive to changes in price, so we might think
to interact P with income. The second proposed mechanism suggests that price P reduces driving D
which reduces eating out E which reduces obesity O. A similar chain of regressions is implied:

(1) D asadeclining function of P
(2) E asan increasing function of D
(3) O asan increasing function of E

5H1. The bivariate models are familiar to you:
library(rethinking) §§Ode
data(foxes)
d <- foxes
ml <- map(
alist(
weight ~ dnorm(mu , sigma) ,
mu <- a + ba*area ,
a ~ dnorm(0,100),
ba ~ dnorm(0,10),
sigma ~ dunif(0,50)
) , data=d)
m2 <- map(
alist(
weight ~ dnorm(mu , sigma) ,
mu <- a + bg*groupsize ,
a ~ dnorm(0,100),
bg ~ dnorm(0,10),
sigma ~ dunif(0,50)
) , data=d)
precis(ml)

R code
4.4

R code

26 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

precis(m2)

Mean StdDev 5.5% 94.5%
a 4.45 0.39 3.83 5.08
ba 0.02 0.12 -0.16 0.21
sigma 1.18 0.08 1.06 1.30

Mean StdDev 5.5% 94.5%
a 5.07 0.32 4.55 5.59
bg -0.12 0.07 -0.24 -0.01
sigma 1.16 0.08 1.04 1.29

From just these estimates, seems like area is rather unimportant. Its MAP is close to zero and its 89%
interval covers a lot of territory on both sides of zero. Group size seems to have a weak negative effect
on body weight.

As usual, it’s easier to appreciate the importance of the estimates when you plot them against the
data. First, the code for m1:

x.seq <- seq(from=0,to=6,by=0.025)

mu <- link(ml , data=list(area=x.seq))

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

plot(weight ~ area , data=d , col="slateblue")
lines(x.seq , mu.mean)

lines(x.seq , mu.ci[l,] , lty=2)

lines(x.seq , mu.ci[2,] , lty=2)

And now the very similar code for m2:

x.seq <- seq(from=1,to=9,by=0.5)

mu <- link(m2 , data=list(groupsize=x.seq))

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

plot(weight ~ groupsize , data=d , col="slateblue")
lines(x.seq , mu.mean)

lines(x.seq , mu.ci[l,] , lty=2)

lines(x.seq , mu.ci[2,] , lty=2)

And the plots look like this:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 27

So weight on area is essentially a horizontal line—no trend at all of any importance—and the weight
on group size effect is on the order of one unit of weight for a change in group size from 2 to 8 animals.
That’s a very modest effect, compared to the range of variation in weight within the data as a whole.

5H2. Here’s the code for the multiple regression:

R code
m3 <- map(4.6

alist(
weight ~ dnorm(mu , sigma) ,
mu <- a + ba*area + bg*groupsize ,
a ~ dnorm(0,100),
c(ba,bg) ~ dnorm(0,10),
sigma ~ dunif(0,50)

) , data=d)

precis(m3)

Mean StdDev 5.5% 94.5%
a 4.45 0.37 3.86 5.04
ba 0.62 0.20 0.30 0.94
bg -0.43 0.12 -0.63 -0.24
sigma 1.12 0.07 1.00 1.24

From the estimates alone, you can see that the importance of each predictor is increased, now. The
MAP is further from zero, and the intervals in both cases are now reliably on one side of zero.

How big are the effects, relative to the range of variation in the data? Plots will help answer that.
Here is the code for plotting the effect of area, holding groupsize constant at the mean:

R cod
area.seq <- seq(from=1,to=6,by=0.5) 4;O ¢

pred.dat <- data.frame(area=area.seq , groupsize=mean(dSgroupsize))
mu <- link(m3 , data=pred.dat)

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

plot(weight ~ area , data=d , type="n")

lines(area.seq , mu.mean)

lines(area.seq , mu.ci[l,] , lty=2)

lines(area.seq , mu.ci[2,] , lty=2)

And here is the code for the analogous plot for groupsize, holding area constant at the mean:

gs.seq <- seq(from=1,to=9,by=0.5) §§Ode

pred.dat <- data.frame(area=mean(d$area) , groupsize=gs.seq)
mu <- link(m3 , data=pred.dat)

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

plot(weight ~ groupsize , data=d , type="n")

lines(gs.seq , mu.mean)

lines(gs.seq , mu.ci[1,] , lty=2)

lines(gs.seq , mu.ci[2,] , lty=2)

And here are the plots:

R code
4.9

28 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

area groupsize

So from the smallest area territory to the largest, there is a change from 3kg to 6kg in expected weight.
That’s a lot. For a change from the smallest groups (2 animals) to the largest (8 animals), we expect a
change in body weight from about 6kg down to 3kg. Again that’s a big effect, given that body weight
only varies between 2kg and 7kg in the entire data.

Remember, I've blanked out the data points here, because these are like experiments done with the
model fit, to see how the predictions respond to changing one predictor, holding the other constant.
Since in the real data, the predictors are correlated, you can't easily plot the predictions against the
raw data.

You get different results with the multivariate model, because the predictor variables area and
groupsize are correlated with one another but have opposite correlations with the outcome. Area is
positively correlated with weight: more area means more resources means heavier foxes. Group size is
negatively correlated with weight: bigger groups for a given territory size means less food per animal,
means lighter foxes. But since in the natural fox groups, area and group size are correlated—more
foxes go to the bigger territories, as you might expect from an ideal free perspective. You can see for
yourself by plotting the two variables against one another:

plot(groupsize ~ area , data=d , col="slateblue")

o
~ o
0© o
N
g
8w - o oo
o
o
4 omo co a0
™ A o0 O o o
N 400 @
1 2 3 4 5

But since area and groupsize are not perfectly correlated, the multiple regression can focus on those
groups that are most informative about the countervailing effects of each predictor. For example,
those groups that have few animals for their area (you can see some in the plot above) help us figure
out whether reducing group size leads to heavier foxes or not. The regression automatically compares
such groups to groups with similar sized territories (similar area) but with higher densities of animals.
If the animals in the smaller groups are heavier on average, that informs the estimate of the coefficient
for groupsize.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 29

It would of course be better to have a direct experiment. If you could experimentally alter group
sizes, leaving territory sizes unchanged (might be hard, if more animals are needed to defend terri-
tory size!), then you could make stronger inferences about the direct causal effect of density on body
weight.

5H3. First, fitting the new models:

m4 <- map(i;gde
alist(
weight ~ dnorm(mu , sigma) ,
mu <- a + bf*avgfood + bg*groupsize ,
a ~ dnorm(0,100),
c(bf,bg) ~ dnorm(0,10),
sigma ~ dunif(0,50)
) , data=d)
m5 <- map(
alist(
weight ~ dnorm(mu , sigma) ,
mu <- a + bf*avgfood + bg*groupsize + ba*area ,
a ~ dnorm(0,100),
c(bf,bg,ba) ~ dnorm(0,10),
sigma ~ dunif(0,50)
) , data=d)
(a) Start by looking at m4:
. R code
precis(m4) 411
Mean StdDev 5.5% 94.5%
a 4.14 0.43 3.45 4.83
bf 3.77 1.20 1.85 5.70
bg -0.56 0.16 -0.81 -0.31
sigma 1.12 0.07 1.00 1.23
The estimate for avgfood in m4 is pretty far from zero, and its 89% interval is reliably above zero too.
So it seems avgfood is a good predictor, at least combined with groupsize. Is it more strongly related
to body weight than area is? Hard to tell from the coeflicient, because the range of avgfood is different
than the range of area. Again, a plot helps.
R code
food.seq <- seq(from=0,to=1.5,by=0.1) 412

pred.dat <- data.frame(avgfood=food.seq , groupsize=mean(d$groupsize))
mu <- link(m4 , data=pred.dat)

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

plot(weight ~ avgfood , data=d , type="n")

lines(food.seq , mu.mean)

lines(food.seq , mu.ci[l,] , lty=2)

lines(food.seq , mu.ci[2,] , lty=2)

I'll show this new plot next to the analogous plot from before, the one produced for area:

R code
4.13

R code
4.14

30 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

~ 7 ~
© A /’/ © 4>
50+ T S0 T I0
o e [} RSN
2 e 2 NG
<4 - - < A DN e
™ ,’/ ™ \\\
U ~ A >
0.4 0.6 0.8 1.0 1.2 2 3 4 5 6 7 8
avgfood groupsize

The estimated effect of avgfood is a little stronger than area, but not by much. Especially on the high
end (the right side of the plot), the expected body weight goes above 6kg for the extreme values of
avgfood, whereas the plot for area never quite gets that high. This comparison suggests avgfood is a
little better as a predictor.

A more principled way to compare the predictive value of the two variables (still consider only
models that have one or the other, not both!) is to compare some measure of fit. Lots of people use
R?, which is appropriate for Gaussian models, at least most of the time. A measure that works for any
likelihood-based model is negative log-likelihood. You can extract the log-likelihood of each model
to compare them:

-logLik(m3)
-logLik(m4)

"log Lik.' 177.5824 (df=4)

"log Lik.' 177.3915 (df=4)

Smaller negative log-likelihood indicates a better fit. So model m4 fits better, by a small amount. This
suggests avgfood is a better predictor, consistent with the intuition arrived at from inspecting the
plots above. But in Chapter 6, you'll see why fit measured this way can be misleading. In this case, it
isn’t, but you'll have to wait to verify that.

(b) But it would be nice to include both in a model and see which comes out on top. That’s what
model m5 does.

precis(m5)

Mean StdDev 5.5% 94.5%
a 4.07 0.43 3.39 4.76
bf 2.46 1.44 0.16 4.75
bg -0.60 0.16 -0.85 -0.35
ba 0.39 0.24 0.01 0.77

sigma 1.10 0.07 0.99 1.22

Is neither avgfood nor area important? While they both still have positive MAP estimates, their
intervals are now spread much more widely.

This is a case of multicollinearity, although not an extreme one. Take alook at the scatter of avgfood
against area (do this yourself). Bigger territories have more food in them. That accounts for the high
correlation here. That in turn accounts for why adding both variables results in inflated standard
errors for both.

Now why would avgfood be a slightly better predictor? Hard to know for sure, but it stands to
reason that avgfood is the actual resource that affects body weight, and so it is a more reliable predictor.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 31

If you think about it, area should only affect fox weight through food availability. To really test that
speculation, wed need some way to manipulate food availability in a habitat, keeping area the same.
Then we could break up that correlation a bit and make stronger causal inferences.

But it might turn out that area does have some direct effect on fox weight, maybe because the
larger territories are not really like the smaller ones. They could be in different places (on edges of
towns, perhaps), and therefore introduce different factors, like different ecological communities and
different disease risk.

32 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

5. Chapter 6 Solutions

6E1. The criteria for this measure of “uncertainty” are:

(1) Continuity. The measure is not discrete, but it may be bounded. So it can have a minimum
and maximum, but it must be continuous in between.

(2) Increasing with the number of events. When more distinct things can happen, and all else is
equal, there is more uncertainty than when fewer things can happen.

(3) Additivity. This is hardest one to understand, for most people. Additivity is desirable because
it means we can redefine event categories without changing the amount of uncertainty.

6E2. This is a simple calculation in R, very much like the example on page 192:
R code . R .
51 # define probabilities of heads and tails
p<-c(0.7, 0.3)

compute entropy
-sum(p*log(p))

[1] 0.6108643

6E3. Similar to the problem above, but now with four types of events:
RC%&; # define probabilities of sides
p<-c(0.2,0.25, 0.25 , 0.3)

compute entropy
-sum(p*log(p))

[1] 1.376227

6E4. When events are impossible (have probability of zero), they just fall out of the calculation:

R cod
a;; # define probabilities of sides

p <-c(1/3 , 1/3 , 1/3)

compute entropy
-sum(p*log(p))

[1] 1.098612

6M1. The definition of AIC is:

AIC = —2logPr(data] MAP estimates) + 2p
= Dtrain + 2P

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 33

where p is the number of parameters in the model. DIC is instead:
DIC =D+ (D - D)
=D+ pp
=D+ 2pp

where D is the deviance on the training data, averaging over the posterior distribution of the parame-
ters, and D is the deviance on the training data, plugging in the MAP estimates. Finally, there is WAIC.
WAIC is a notational mess, but once you understand each part, then the notation makes sense:

WAIC = —2(lppd — pWAIC)

=2 (Z log Pr(y;) — Z V()’i))
1 1
where Pr(y;) is the likelihood of observation i, averaging over the posterior distribution, and V(y;) is
the variance in the log-likelihood of observation i, taking the variance over the posterior distribution.
To really grasp what WAIC means, it may be necessary to see the calculations in the Overthinking
box on pages 206 and 207.

Comparing these definitions, each has a term that expresses the fit to the training sample, as well
as a term that expresses some penalty for flexibility in fitting to the sample. For AIC, the fit term is
simply the “plug-in deviance,” Dirain, and the penalty term is twice the number of parameters, p. For
DIC, the fit term can be expressed either as D (the average deviance) or D (which is just Dyrain again).
The penalty term is either the difference D — D or rather twice that difference. See the alternative
arrangements presented above. But in either case, the flexibility of the model is measured as the
difference between the average deviance and the deviance at the posterior mean. For WAIC, the fit
term is a fully Bayesian log-likelihood that averages over the posterior prediction for each observation
separately. This is lppd. The penalty term is the sum of the variances of each log-likelihood.

From most general to least general: WAIC, DIC, AIC. When the posterior predictive mean is a
good representation of the posterior predictive distribution, DIC and WAIC will tend to agree. When
priors are effectively flat or overwhelmed by the amount of data, the DIC and AIC will tend to agree.

6M2. Model selection means ranking models by information criteria (or any other criteria) and
choosing the highest ranked model. Model averaging is instead weighting each model by its rela-
tive distance from the best model and creating a posterior predictive distribution comprising pre-
dictions from each model in proportion to these weights, a prediction “ensemble” Model selection
discards information about model uncertainty. Model averaging retains some of that information,
but it still discards some information about model uncertainty, because it compresses the full infor-
mation about the set of models into a single predictive distribution. Since the full set of ranks and
information criteria values cannot be recovered from the averaged predictive distribution, some of
that information has been lost. In other words, different model comparison sets with different ranks
and information criteria values can produce nearly identical prediction ensembles. But those differ-
ent model comparison sets may be different in other important ways. For example, inspecting the
full model comparison set, with the structure of each model, often reveals why some models fit better
than others.

6M3. When one model is fit to fewer (or different) observations, it is being judged on a different target
than the other models. If fewer observations are used, the model will usually appear to perform better,
because the deviance will smaller due to having less to predict. Less to predict means less prediction
error, and deviance (as well as information criteria) is a kind of accumulated error. We have to be

R code

R code
5.5

34 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

careful about this, because most of R’s black-box regression functions like 1m, glm, and glmer will
automatically and silently drop incomplete cases, reducing the number of observations the model is
fit to. This is bad behavior for scientific software, but unfortunately it is the norm.

6M4. Asaprior becomes more concentrated around particular parameter values, the model becomes
less flexible in fitting the sample. One way to remember this is to think of the prior as representing
previous learning from previous observations. So a more concentrated, or peaked, prior represents
more previous data. As the model becomes less flexible, the effective number of parameters declines,
as measured by both DIC and WAIC.

To perform some simple experiments to demonstrate this, try out this code, changing the value
for sigma in the data list. The smaller sigma, the more concentrated the prior and the smaller the
effective number of parameters should be.

y <- rnorm(10) # execute just once, to get data

repeat this, changing sigma each time
m <- map(
alist(
y ~ dnorm(mu,1),
mu ~ dnorm(0,sigma)
)
data=list(y=y,sigma=10))
WAIC(m)

6M5. Informative priors reduce overfitting by reducing the sensitivity of a model to a sample. Some
of the information in a sample is irregular, not a recurring feature of the process of interest.

6M6. If a prior is overly informative, then even regular features of a sample will not be learned by a
model. In this case, the model may underfit the sample. In case this sounds like a terrifying balancing
act, in practice there is usually a broad family of priors which achieve practically indistinguishable
estimates from the same sample. The last “hard” practice problem for this chapter provides an exam-
ple.

6H1. Let’s fit each model. First, I'll define each formula list:

fl <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age,
c(a,bl) ~ dnorm(0,100),
sigma ~ dunif(0,50)

)

f2 <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age + b2*age”2,
c(a,bl,b2) ~ dnorm(0,100),
sigma ~ dunif(0,50)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 35

f3 <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age + b2*age”2 + b3*age”3,
c(a,bl,b2,b3) ~ dnorm(0,100),
sigma ~ dunif(0,50)

f4 <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age + b2*age?2 + b3*age”3 + b4*age’4,
c(a,bl,b2,b3,b4) ~ dnorm(0,100),
sigma ~ dunif(0,50)

f5 <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age + b2*age”2 + b3*age”3 + b4*age”4 + b5*age’5,
c(a,bl,b2,b3,b4,b5) ~ dnorm(6,100),
sigma ~ dunif(0,50)

fe <- alist(
height ~ dnorm(mu,sigma),
mu <- a + bl*age + b2*age”2 + b3*age”3 + b4*age”4 + b5*age’5 +
b6*age”6,
c(a,bl,b2,b3,b4,b5,b6) ~ dnorm(0,100),
sigma ~ dunif(0,50)

You can fit these models without starting values, but you might have to try a few times. The reason
is that with these very flat priors, a random starting value from the prior might be very far from the
MAP. So now let’s store some sensible starting values for a and sigma, since we'll use them over and
over again:

. . R code
compute starting values for a and sigma 5.6
a.start <- mean(dil$height)
sigma.start <- sd(dlsheight)
Now to fit the models:
fit models g;ode

ml <- map(f1 , data=dl ,
start=list(a=a.start,sigma=sigma.start,bl1=0))
m2 <- map(f2 , data=dl ,
start=list(a=a.start,sigma=sigma.start,bl1=0,b2=0))
m3 <- map(f3 , data=dl ,
start=1list(a=a.start,sigma=sigma.start,b1=0,b2=0,
b3=0))
m4 <- map(f4 , data=dl ,
start=1list(a=a.start,sigma=sigma.start,b1=0,b2=0,
b3=0,b4=0))
m5 <- map(f5 , data=dl ,
start=1list(a=a.start,sigma=sigma.start,b1=0,b2=0,
b3=0,b4=0,b5=0))
m6 <- map(fé6 , data=dl ,

R code

R code
5.9

36 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

start=1list(a=a.start,sigma=sigma.start,b1=0,b2=0,
b3=0,b4=0,b5=0,b6=0))

And the easy way to get the WAIC values and weights for each model is to use compare:

compare(ml,m2,m3,m4,m5,m6)

WAIC pWAIC dWAIC weight SE dSE
m4 1926.1 5.7 0.0 0.58 25.51 NA

m5 1927.7 6.6 1.6 0.26 25.50 1.13
mé 1928.6 7.8 2.5 0.16 25.00 3.12
m3 1952.3 5.4 26.2 0.00 24.21 10.87
m2 2150.0 5.2 223.8 0.00 22.62 26.80

ml 2395.3 3.3 469.2 0.00 22.94 31.12

Your table may be slightly different, as WAIC is computed from samples, and so there is sampling
variation. For example, m5 and m6 might swap positions. You can take more samples with compare
by using the optional n argument. This will reduce sampling variation. See ?compare.

So what’s going on here? The models are sorted by WAIC, in ascending order. The order is ascend-
ing, from low to high values, because smaller WAIC values are better. They indicate smaller expected
out-of-sample error (smaller expected KL-divergence).

The top three models are m4, m5, and m6. These models have quite similar WAIC values, and these
three are far better than the bottom three models. You can see this most clearly by looking at the
dWAIC column on the far right end of the table above. The top three models are all within 2 or 3 units
of deviance of one another, while the next best model is 25 units away. From there, it gets even worse.
So, we can be confident at least that the top three models should do a good job, out of sample.

The top three models also get nearly all of the Akaike weight. The top model gets about half the
weight, suggesting about a half chance that it'll be best out of sample. The next two models divide
the weight about equally between them, each having around a quarter of the weight. Note that in
interpreting these values, 'm not being anal about the exact numbers. This is because WAIC is an
estimate of the average deviance out of sample, but there can be substantial variation around these
averages. So it won't pay to be too strict about small differences in weight.

You can get a sense of this from the standard error columns in the table. Notice that the standard
error of the differences (last column) do lead the top three models to overlap a lot. That is, while m4
is clearly the best in expectation, there’s reason not to bet your life savings on its doing best in any
particular test sample.

6H2. Here’s the code to compute for m4, the best model, and then plot it.

select out model to plot
m_plot <- m4

define sequence of ages to compute values over
age.seq <- seq(from=-2 , to=3 , length.out=30)

compute posterior predictions for mu
mu <- link(m_plot , data=list(age=age.seq))

compute average prediction
mu.mean <- apply(mu , 2 , mean)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 37

compute 97% interval of average
mu.ci <- apply(mu , 2 , PI , prob=0.97)

compute interval of height
h <- sim(m_plot , data=list(age=age.seq))
height.ci <- apply(h , 2 , PI)

plot it all

plot(height ~ age , d1 , col="slateblue" , xlim=c(-2,3))
lines(age.seq , mu.mean)

shade(mu.ci , age.seq)

shade(height.ci , age.seq)

The only thing to note here, as it differs from the text, is that I've extended the x-axis range, x1im, of
the plot. I did this to show a little bit of the curve beyond the data range. Each plot for each model
can be produced by just changing the line that defines m_plot. The functions link and sim are really
doing the hard work here, extracting the model definitions from the fit model object and chugging
through the posterior predictions for you.

Here are the plots for all six models, each labeled on top:

o o o
@ A) @
- - -
o o o
< < <
- - -
- = =
< < <
= K= 2 1
[7} [} Q
<o <o <o
S A S S
- - -
o (=] o
© «© ©
o | o o |
© © ©
(=3 o o
@ 4 @« @ -
- - -
o o o
< 4 < < 4
- - -
= = -
< < <
K=y i =
[} [[
<o <o <o
S A S S A
- - -
o | o o
© © ©
o | o o |
© © ©

These predictive distributions reflect the information criteria quite well: the top three models, m4
through m6, are barely different in prediction; the other three models are very different from one
another and the top three. Among the top three models, there are very minor differences, particular
beyond the range of the observed data. The most complex model, m6, turns wildly both just before
and after the observed range of age. It’s a very flexible model, and this kind of wild prediction at the
extremes is a common problem with polynomial regressions. It is often called Runge’s phenomenon,
after Carl Runge (1856-1927), a German mathematician and scientist who described it. It’s a well-
understood reason for why complex functions can perform worse than simpler ones. In fitting the

R code
5.10

R code
5.11

38 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

sample, the fancy polynomial pays no cost for its flexibility. But in real prediction on new data, these
wild swings at the extremes may ruin it.

6H3. For the model-averaged predictions, it’s almost the same procedure. We just use ensemble
instead of link and sim:

h.ensemble <- ensemble(m4,m5,m6 , data=list(age=age.seq))

I included only the top three models, because none of the other models have even 1% of the model

weight, so including them wouldn’t produce any samples from them anyway. The result, h.ensemble,

is a list containing a 1ink matrix with samples for mu and a sim matrix with samples for height.
Here’s all of the needed code, together:

h.ensemble <- ensemble(m4,m5,m6 , data=list(age=age.seq))

mu.mean <- apply(h.ensemble$link , 2 , mean)
mu.ci <- apply(h.ensemble$link , 2 , PI)
height.ci <- apply(h.ensemble$sim , 2 , PI)

plot(height ~ age , d1 , col="slateblue" , xlim=c(-2,3))
lines(age.seq , mu.mean)

shade(mu.ci , age.seq)

shade(height.ci , age.seq)

And the here’s the result, accompanied by the previous plot for ease of comparison:

o WAIC ensemble o
O - @ -
o o
< A <
= =
2 7 2
[} Q
<o <o
o A o A
o | o |
[ee] [ee]
o | o |
© ©
T T
-2 -1 0 1 2 3 -2
age age

The one on the left is the model averaged predictions. The one on the right is the predictions for
m4 only. There isn’t much difference! Until you get outside the range of the data, that is. Then the
model averaged predictions swing more wildly, on the far right edge. This is because these predictions
include about a 25% influence of m6, which is capable of swinging around very rapidly. So out where
there is no data to tame it, it’s free to swing.

Keep in mind that with a smaller sample, the differences among the models and the ensemble
would be more pronounced.

6H4. Computing each deviance, out of sample, is just a matter of extracting MAP estimates, plugging
them into each linear model, and then summing log likelihoods over the heights in d2. You could
also compute lppd, the fully Bayesian “deviance” that WAIC uses, but that would be harder. Using the

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 39

ordinary deviance will serve to teach the lesson, without making the calculations too difficult. Here’s
the code to do it for each model:

k <- coef(ml) g;‘z’de
mu <- k['a']l + k['bl']*d2$age
dev.ml <- (-2)*sum(dnorm(d2$Sheight , mu , k['sigma'] , log=TRUE))
k <- coef(m2)
mu <- k['a']l + k['bl']*d2%age + k['b2']*d2Sage’2
dev.m2 <- (-2)*sum(dnorm(d2Sheight , mu , k['sigma'] , log=TRUE))
k <- coef(m3)
mu <- k['a']l + k['bl']*d2$age + k['b2']*d2$age”2 + k['b3']*d2Sage’3
dev.m3 <- (-2)*sum(dnorm(d2Sheight , mu , k['sigma'] , log=TRUE))
k <- coef(m4)
mu <- k['a'] + k['bl']*d2$age + k['b2']*d2$%$age”2 + k['b3']*d2$age”3 +

k['b4']*d2$age”4
dev.m4 <- (-2)*sum(dnorm(d2Sheight , mu , k['sigma'] , log=TRUE))
k <- coef(m5)
mu <- k['a']l + k['bl']*d2$age + k['b2']*d2$age”2 + k['b3']*d2Sage”3 +

k['b4']*d2$age”4 + k['b5']*d2$ager5
dev.m5 <- (-2)*sum(dnorm(d2Sheight , mu , k['sigma'] , log=TRUE))
k <- coef(mé6)
mu <- k['a']l + k['bl']*d2$age + k['b2']*d2$age”2 + k['b3']*d2$age”3 +

k['b4']*d2$age”r4 + k['b5']*d2Sage’5 + k['b6']*d2$age’6
dev.m6 <- (-2)*sum(dnorm(d2Sheight , mu , k['sigma'] , log=TRUE))
You end up with each out-of-sample deviance in the symbols dev.m1 through dev.mé.
6H5. Here I've organized the out-of-sample deviance values in a table with the WAIC values (sorted
by out-of-sample deviance, ascending):

R code

compare.tab <- compare(ml,m2,m3,m4,m5,m6,sort=FALSE) 5.13

tab <- data.frame(
WAIC=compare.taboutputSwAIC,
dev_out=c(dev.ml,dev.m2,dev.m3,dev.m4,dev.m5,dev.m6)
)

rownames (tab) <- rownames(compare.tab@output)

display, sorted by dev out
tab[order(tab$dev_out) ,]

WAIC dev_out
m4 1926.586 1876.568
mé 1928.309 1877.628
m5 1927.964 1878.417
m3 1952.805 1932.251
m2 2149.982 2137.511
ml 2395.373 2422.093

The order for WAIC and the actual out-of-sample deviance is nearly the same.

R code
5.14

R code
5.15

40 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

How about the relative differences? Here I'll subtract the smallest WAIC from each WAIC value
and plot them all. Then I'll do the same for the deviance values, plotting them also.

dWAIC <- tab$WAIC - min(tabSWAIC)
ddev_out <- tab$dev_out - min(tabs$dev_out)

plot(1:6 , dWAIC , type="1" , xlab="model" , ylab="deviance")
lines(1:6 , ddev_out , col="red")

plot(4:6 , dWAIC[4:6] , type="1" , xlab="model" ,
ylab="deviance" , ylim=c(0,2.2))
lines(4:6 , ddev_out[4:6] , col="red")

This is what you get:
o
S | 3%
<
g 21
8o 8
s s
8 Lo
8] 87
o 0
27 S
12 3 4 5 & 40 45 50 55 60
model model

The left plot shows all six models. The black line is WAIC. The red line is out-of-sample deviance. The
righthand plot zooms in on the best three models, so you can see differences between them. Notice
the tiny vertical scale in the righthand plot.

So WAIC did a reasonable job, but it also switched the orders of m5 and m6. Note however that
the weights for those models were very similar, so we shouldn’t have been too confident about which
would be better in any event, and we should have expected them to perform very similarly as well.
Keep the scale on the vertical axis in mind: the difference between the out-of-sample accuracy of m5
and mé is tiny.

6H6. The point of this problem is to drive home how regularization helps with out-of-sample predic-
tion. Here’s how we can fit this model:

f <- alist(
height ~ dnorm(mu , sigma),
mu <- a + bl*age + b2*age”2 + b3*age”3 + b4*age”4 +
b5*age”5 + b6*age”6,
c(b1,b2,b3,b4,b5,b6) ~ dnorm(@ , 5)
)

m <- map(f , data=d1l ,
start=list(
a=mean(dl$height),
b1=0,b2=0,b3=0,b4=0,b5=0,b6=0,
sigma=sd(d1$height)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 41

))

I pulled a trick here with map of using a vector of parameter names to specify the same prior for every

beta-coeflicient at once. If you used six lines of dnorm(0,5), that’s fine. But I thought I'd show oft a
little of the optional features here.
Here are the MAP estimates:

precis(m)

Mean StdDev 5.5% 94.5%

a 155.86 0.88 154.46 157.26
bl 5.97 1.81 3.08 8.86
b2 -16.60 2.13 -20.01 -13.20
b3 12.09 2.72 7.75 16.44
b4 -3.51 1.16 -5.37 ~-1.65
b5 0.23 1.04 -1.43 1.89
b6 0.05 0.33 -0.48 0.58

sigma 8.20 0.36 7.63 8.77

What do these values mean? Not much, unless you can compute a sixth-order polynomial in your
head. I cannot. It may be helpful to compare to the previous model m6, which used flat priors:

plot(coeftab(mé,m) , pars=c("bl","b2","b3","b4","b5","b6"))

This is what you get:

b1
m6 —_—
b2
m —_—
m6 | —e——
b3
m —_——
m6 —_—
b4
m ——
m6 ——
b5
m —_——
m6 ——
b6
o
m6 <
-20 -10 0 10 20
Estimate

I've plotted only the beta coefficients. Notice that in most cases the posterior distribution in model
m, the regularized model, is closer to zero than in model m6. The regularizing priors move estimates
towards zero. But as some parameters get closer to zero, others like b1, get farther from zero in an
attempt to pick up the work that the other parameters were doing. So not every parameter in m is
closer to zero. But most of them are.

Now let’s plot the implied posterior predictions.

age.seq <- seq(from=-2 , to=3 , length.out=30)
mu <- link(m , data=list(age=age.seq))
h <- sim(m , data=list(age=age.seq))

mu.mean <- apply(mu , 2 , mean)
mu.ci <- apply(mu , 2 , PI)

R code
5.16

R code
5.17

R code
5.18

R code
5.19

R code
5.20

42 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

height.ci <- apply(h , 2 , PI)

plot(height ~ age , d1 , col="slateblue" , xlim=c(-2,3))
lines(age.seq , mu.mean)

shade(mu.ci , age.seq)

shade(height.ci , age.seq)

This is the result:

height

age

Haven't we seen this plot already? Well, it’s very similar to the previous plots, because it fits the data
well. Being a pure sixth-degree polynomial, it does go more wild on the right edge. But otherwise
very similar.

Now to compute the out-of-sample deviance. You've done this already. With slight code modifi-
cations:

k <- coef(m)
mu <- k['a']l + k['bl']*d2$age + k['b2']*d2$age”2 + k['b3']*d2$age”3 +
k['b4']*d2$age”4 + k['b5']*d2Sage’r5 + k['b6']*d2$age’6
dev <- (-2)*sum(
dnorm(
d2sheight ,
mean=mu ,
sd=k['sigma'] ,
log=TRUE))
dev

[1] 1875.433

To make it easier to compare this value to the previous models, I'll repeat the table from earlier, and
tack our new regularized model onto the top of it, in the first row:

new_tab <- rbind(c(WAIC(m),dev) , tab)
rownames (new_tab) [1] <- "m"
new_tab[order (new_tab$dev_out) ,]

WAIC dev_out
m 1930.978 1875.433
m4 1926.586 1876.568
m6 1928.309 1877.628
m5 1927.964 1878.417
m3 1952.805 1932.251

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 43

m2 2149.982 2137.511
ml 2395.373 2422.093
WAIC for the new model is worse than m4, but notice that it actually has a slightly better out-of-sample
deviance than m4.

Note however that I just gave you the value 5 for the standard deviation of the prior. You might
try other values and see how results vary. I did this already, and here’s a plot showing the result of
varying the standard deviation in the prior from 1 to 15, in increments of 0.2:

o
o 8
[
IS
[
w0

[ee]
B ®
e 2
3
o
[]

S &
C o
F I
>
[
© 0
'q\)f
2 T T T T T T

2 4 6 8 10 12 14

standard deviation of prior

The best value is right around 6, actually. But there’s a broad flat region in which many values are just
about equally good. Smaller values get terrible quickly, because they prevent the model from learning
enough. Larger values slowly get worse, as they let the model learn too much.

This cross-validation method of choosing a prior is quite common. It's common in machine learn-
ing as well, but there it’s not usually described as choosing a prior. In ridge regression, for example,
youd be choosing instead a value for A\, which is a control parameter that governs regularization. But
mathematically, it’s equivalent to choosing the standard deviation of the prior.

Those little wiggles in the plot are just due to slightly imperfect convergence of the hill climbing
algorithm that map uses by default. They could be cleared out with a little tweaking of some optional
settings in map.

44 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

6. Chapter 7 Solutions

7E1. There are many good responses. Here are some examples.

(1) Bread dough rises because of yeast, conditional on the presence of sugar. This is an interac-
tion between yeast and sugar.

(2) Education leads to higher income, conditional on field of study. Some types of degrees lead
to higher income than others.

(3) Gasoline makes a car go, unless it has no spark plugs (or belts, or wheels, etc.).

7E2. Only number (1) is a strict interaction. The others all imply additive influences. For (1), you
could express it as “cooking with low heat leads to caramelizing, conditional on the onions not drying
out” That’s an interaction, as the effect of heat depends upon moisture. For (2), a car with many
cylinders can go fast, whether or not it also has a good fuel injector. The reverse is also implied:
either a fuel injector or more cylinders is sufficient to make a car go faster. For (3), the statement does
not imply that the influence of parents depends upon the beliefs of friends. It just implies that one
may be influenced by either parents or friends. For (4), the word “or” gives away that this is another
case in which either factor, sociality or manipulative appendages (hands, tentacles), is sufficient to
predict intelligence.

7E3.

(1) For outcome “extent caramelized”, yi; = « + SgH; + BuM; + BupHiM,;.

(2) For outcome “maximum speed”, p; = o + BcC; + SrF;.

(3) For outcome “extent conservative’, u; = « + [BpP; + BgF;.

(4) For outcome “intelligence” (whatever that means when comparing an octopus to a monkey),
pi = o+ BsS; + BuM;.

7M1. Tulips are a winter flower in much of their natural range. High temperatures do frustrate them.
This is not a linear interaction, because by raising temperature the effect was to prevent all blooms.
A linear effect would be an additive change. But it is still correct to say that there is a three-way
interaction here: the influence of water and shade depend upon one another, and both and their
interaction depend upon temperature. In later chapters, you’ll see how to model non-linear responses
of this kind.

7M2. Here is one idea. Let L; stand for the ordinary linear model from the chapter. Then let H; be a
0/1 indicator of whether or not the temperature was hot. Then:

wi = Li(1 — H;)

When H; = 1, the entire model above is zero, regardless of the value of L;.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 45

7M3. The implied relationship between ravens and wolves is one in which wolves do not need ravens,
but ravens very much do benefit from wolves (at least in some places). Here’s an example set of data
in which this might be the case:

Region Wolves Ravens

1 12 43
2 15 46
3 7 28
4 30 99
5 17 60
6 70 212

Really, this “interaction” is not a statical interaction effect at all, because just stating that ravens de-
pend upon wolves implies that we can partially predict raven density with wolf density. A statisti-
cal interaction requires instead that some other third variable regulate the dependency of ravens on
wolves. For example, in regions in which there is plenty of small prey for ravens to kill and consume
on their own, the presence of wolves may not matter at all.

7H1. Let’s begin by loading the data and inspecting the bed variable.

library(rethinking)
data(tulips)

d <- tulips

d$bed

[1l1] aaaaaaaaabbbbbbbbbccccccccec
Levels: a b ¢
This is a factor with three levels. So we could either code two dummy variables to contain the same
information or rather one index variable. Both approaches were introduced in Chapter 5. T'll show
both approaches here, to provide additional examples.
First, the dummy variable approach. We'll need two dummy variables, one less than the number
of categories. This will construct them:

dSbed_b <- 1ifelse(d$bed=="b" , 1 ,
d$bed_c <- ifelse(d$bed=="c" , 1 ,

For bed a, it will be absorbed into the intercept, and then the coefficients for each dummy variable
will contain contrasts with bed a.

And here is the model using these dummy variables. I'm also going to center the water and shade
variables, just like in the chapter. 'm not going to standardize the outcome, blooms, although that
would make fitting this model a lot simpler. So instead I'll show you again how to use the start list
to specify sensible start values. If we provided better priors, this wouldn’t be necessary.

d$water.c <- d$water - mean(dSwater)
d$shade.c <- d$shade - mean(d$shade)
ml <- map(
alist(
blooms ~ dnorm(mu,sigma),
mu <- a + bW*water.c + bS*shade.c +
bwWS*water.c*shade.c +
b_bed_b*bed_b + b_bed_c*bed_c ,
a ~ dnorm(0,100),

R code
6.1

R code

R code

R code
6.4

R code
6.5

46 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

c(bW,bS,bWS,b_bed_b,b_bed_c) ~ dnorm(0,100),
sigma ~ dunif(0,100)

)5
start=1list(a=130,bW=0,bS=0,bWS=0,b_bed_b=0,b_bed_c=0,sigma=90),
data=d)

precis(ml)

Mean StdDev 5.5% 94.5%

a 97.34 12.74 76.98 117.70
bw 75.17 9.20 60.47 89.86
bS -41.25 9.19 -55.95 -26.56
bws -52.23 11.24 -70.19 -34.27

b_bed_b 44.42 18.02 15.63 73.22
b_bed_c 49.03 18.02 20.24 77.83
sigma 39.17 5.33 30.65 47.69

This table is a bit monstrous to look at, but comparing to the interaction model fit in the chapter
reveals that everything is basically the same, except for the presence now of the bed parameters. Both
beds “b” and “c” appear to have done better than bed “a” did. How can I tell? Because both b_bed_b
and b_bed_c are reliably positive.

Now let’s do the model over again, using an index variable instead. This approach estimates a
unique intercept for each category. To construct the index variable, you can use the convenient co-
erce_index function:

(dSbed_idx <- coerce_index(dSbed))

[1]111111111222222222333333333

So now bed “a” has index 1, bed “b” index 2, and bed “c” index 3. To fit the model:

m2 <- map(
alist(
blooms ~ dnorm(mu,sigma),
mu <- a[bed_idx] +
bw*water.c + bS*shade.c +
bwWS*water.c*shade.c ,
a[bed_idx] ~ dnorm(130,100),
c(bW,bS,bWS) ~ dnorm(0,100),
sigma ~ dunif(0,100)

)
start=1list(a=rep(130,3),bW=0,bS=0,bWS=0,sigma=90),
data=d)

precis(m2,depth=2)

Mean StdDev 5.5% 94.5%
a[l] 97.67 12.95 76.97 118.37
a[2] 142.37 12.95 121.67 163.07
a[3] 146.99 12.95 126.29 167.69
bw 75.16 9.20 60.46 89.86
bS -41.25 9.20 -55.95 -26.55
bws -52.18 11.24 -70.14 -34.21
sigma 39.18 5.33 30.66 47.71

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 47

These are (nearly) the same estimates. Again we see that beds “b” and “c” did better than bed “a”
Bed “c” did appear to grow a little better than bed “b”. But what’s the posterior distribution of that
difference? We can calculate it with samples, just like the examples in Chapter 5:

post <- extract.samples(m2) ggode
diff_b_c <- post$al[,2] - post$al,3] '
HPDI(diff_b_c)
|0.89 0.89]
-34.55393 24.53934
So while the expected difference is there, the posterior distribution of the difference has a lot of prob-
ability on both sides of zero.
So what to make of all of this? Including bed in the analysis doesn’t change any qualitative inference
about the experiment, even though there probably were differences between the beds.
7H2. Now let’s compare the model from the previous problem with the interaction model from the
chapter.
m3 <- map(E;Ode
alist(
blooms ~ dnorm(mu,sigma),
mu <- a + bW*water.c + bS*shade.c +
bwS*water.c*shade.c ,
a ~ dnorm(130,100),
c(bW,bS,bWS) ~ dnorm(0,100),
sigma ~ dunif(0,100)
)5
start=1list(a=130,bW=0,bS=0,bWS=0,sigma=90),
data=d)
compare(m2,m3)
WAIC pWAIC dWAIC weight SE dSE
m2 294.3 9.5 0.0 0.67 9.56 NA
m3 295.7 6.4 1.4 0.33 10.03 7.99
The model with bed, m2, does a little bit better in the WAIC comparison. But the difference is very
small. Why? Because while there is some evidence that bed mattered, the treatments mattered a
lot more. So including bed in the model doesn’t help prediction much, as least as far as WAIC can
estimate. This is all as it should be: this was a factorial experiment. In the experimental design, there
is no correlation between bed and treatment. So even when there are effects of bed, we can still get
good measures of the treatments. In observational studies, trying to control for common confounds
like bed is much more important, typically.
7H3. (a) The first thing you need to do is make the new data frame, missing Seychelles. Here’s the
code to do so:
library(rethinking) 2§Ode
data(rugged)
d <- rugged

dd <- d[complete.cases(d$rgdppc_2000) ,]
dd$log_gdp <- log(dd$rgdppc_2000)

R code

R code
6.10

R code
6.11

48 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

d2 <- dd[dd$country!="Seychelles" ,]

So now d2 contains all the complete cases, excepting Seychelles. Fitting the interaction model is
straightforward, despite how ugly the code looks:

m3 <- map(
alist(
log_gdp ~ dnorm(mu , sigma) ,
mu <- a + bA*cont_africa + br*rugged +
bAr*cont_africa*rugged,
a ~ dnorm(0,100),
c(bA,br,bAr) ~ dnorm(0,10),
sigma ~ dunif(0,50)
)
data=d2)

To ease comparison, I'll also refit the model using all of the data in dd, which is in the book and lecture.
Call this model m3al1l now. Then to compare the estimates:

coeftab(m3,m3all)

m3 m3all
a 9.22 9.22
bA -1.88 -1.95
br -0.2 -0.2
bAr 0.30 0.39
sigma 0.93 0.93
nobs 169 170

So the estimates are very similar, but the magnitude of the interaction parameter, bAr, has gone down,
after removing Seychelles. Let’s take a look at the standard deviations and intervals of the marginal
posterior distributions:

precis(m3)

Mean StdDev 5.5% 94.5%

a 9.22 0.14 9.00 9.44
bA -1.88 0.23 -2.24 -1.52
br -0.20 0.08 -0.32 -0.08
bAr 0.30 0.14 0.08 0.52
sigma 0.93 0.05 0.84 1.01

Still reliably above zero, so seems like removing Seychelles didn't kill the interaction entirely, even
though it did diminish its strength. Computing the expected slope in Africa:

By + Bar(1) ® —0.2+ 0.3 =0.1.
And for the original fit, including Seychelles, we got:
By + Bar(1) = —0.2 + 0.39 = 0.19.

So the expected slope in Africa has been cut approximately in half, compared to the model that used
all of the data.

(b) I'm going to plot the predicted relationship for African nations, with a blue regression line for
the old fit also on the same plot. Here are the calculations you are accustomed to by now:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

post <- extract.samples(m3)

rugged.seq <- seq(from=0,to=8,by=0.1)

pred.dat <- data.frame(rugged=rugged.seq,cont_africa=1)
mu <- link(m3 , data=pred.dat)

mu.mean <- apply(mu , 2 , mean)

mu.ci <- apply(mu , 2 , PI)

And here is the code to plot it all:

dplot <- dd[dd$cont_africa==1,]

plot(log_gdp ~ rugged , data=dplot , col="slateblue" ,
pch=1ifelse(dplot$country=="Seychelles",16,1) ,
ylab="1log GDP per capita" , xlab="ruggedness")

abline(a=9.22-1.95 , b=0.19 , col="slateblue")

lines(rugged.seq , mu.mean)

lines(rugged.seq , mu.ci[l,] , lty=2)

lines(rugged.seq , mu.ci[2,] , lty=2)

And here’s the plot that results:

8 9

log GDP per capita

7

0 1 2 3 4 5 6
ruggedness

49

R code
6.12

R code
6.13

Seychelles is shown by the filled point. Just like the estimates suggested, the slope has been cut ap-
proximately in half. Notice too that the uncertainty around the line has grown, compared to the plots
in lecture and the book chapter. The predicted relationship outside of Africa (not shown) has not

changed: it is still reliably negative.

(c) To fit the other two models now:

ml <- map(
alist(
log_gdp ~ dnorm(mu , sigma) ,
mu <- a + br*rugged,
a ~ dnorm(0,100),
br ~ dnorm(0,10),
sigma ~ dunif(0,50)
)
data=d2)
m2 <- map(
alist(
log_gdp ~ dnorm(mu , sigma) ,
mu <- a + bA*cont_africa + br*rugged,

R code
6.14

R code
6.15

R code
6.16

50 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

a ~ dnorm(0,100),
c(br,bA) ~ dnorm(0,10),
sigma ~ dunif(0,50)

)

data=d2)

I've made the priors rather flat, so you might get some bad start values and have to try a few times
before the models converge. Once they do, here is the comparison:

compare(ml,m2,m3)

WAIC pWAIC dWAIC weight SE dSE
m3 463.5 4.7 0.0 0.8 15.30 NA
m2 466.2 4.0 2.8 0.2 14.36 3.86
ml 536.0 2.6 72.6 0.0 13.25 15.79

To generate the WAIC-averaged predictions:

r.seq <- seq(from=0,to=8,by=0.1)
pred.dat <- data.frame(rugged=r.seq,cont_africa=1)
mu_ensemble <- ensemble(ml,m2,m3,data=pred.dat)
mu.mean <- apply(mu_ensemble$link , 2 , mean)
mu.ci <- apply(mu_ensemble$link , 2 , PI)
dPlot <- d[d$cont_africa==1 ,]
plot(log(rgdppc_2000) ~ rugged , data=dPlot ,
pch=1ifelse(dPlot$country=="Seychelles",16,1)
col="slateblue")
lines(r.seq , mu.mean)
lines(r.seq , mu.ci[1,]
lines(r.seq , mu.ci[2,]

>

, Lty=2)
, lty=2)

You can change the 1 values for the Africa dummy variable inside of pred.dat, to make a similar
plot for nations outside of Africa. Also be sure to change the “1” in the dP1lot line that pulls out the
raw data, as well.

Here are the plots, showing model-averaged predictions for the data omitting Seychelles:

Within Africa Outside Africa
-~ |
o ° - o
o o
~®q0 =2
o - o
o 0,% - o
o _- =}
N ° o .- &
o o -- J
[- [}
8 o - 8
Q. Q.
el T
jo2l (o2
= =
g 7= 2%
(NN o 5 Tl kel
X o
O 5 0o ~
©
© T T T T T
0 1 2 3 4 5 6

rugged rugged

What are we to make of these results? I think the model comparison analysis suggests that the rela-
tionship between ruggedness and GDP is different inside and outside of Africa. However, there is
substantial uncertainty about the magnitude of the difference. The most plausible difference (condi-
tional on model/data) is shown in the plots above: about flat within Africa and about —0.2 outside
of it. But the data are consistent with both larger and smaller differences.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

And it’s worth remembering that the difference in slope is not the overlap in the marginal distribu-
tions of each slope. If you want the contrast, compute the contrast. We did that in lecture and in the

book.

7H4. (a) You could have chosen to fit a number of different models. I'm going to fit three models that
represent a basic analysis of the hypothesis: (1) A model predicting log-lang-per-capita with only a
constant, (2) a model with only mean growing season as a predictor, and (3) a model that includes

log(area) as a covariate. Then I'll compare them, using WAIC.

library(rethinking)

data(nettle)

d <- nettle

d$log_langpc <- log(dSnum.lang / d$k.pop)
d$log_area <- log(d$area)

mo <- map(
alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a + 0,
a ~ dnorm(0,100),
sigma ~ dunif(0,10)
) , data=d)
ml <- map(
alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a + bg*mean.growing.season,
a ~ dnorm(0,100),
bg ~ dnorm(0,10),
sigma ~ dunif(0,10)
) , data=d)
m2 <- map(
alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a + bg*mean.growing.season + ba*log_area,
a ~ dnorm(0,100),
c(bg,ba) ~ dnorm(0,10),
sigma ~ dunif(0,10)
) , data=d)

compare(mO,ml,m2)

WAIC pWAIC dWAIC weight SE dSE
ml 268.2 3.8 0.0 0.51 15.33 NA
m2 268.3 5.0 0.1 0.48 15.78 3.71
mo 276.1 2.8 8.0 0.01 16.88 6.02

This is very strong support for using mean growing season as a predictor of language diversity. Con-
trolling for log(area) has little effect, as can be seen by comparing the estimates from models m1 and

m2:

coeftab(ml,m2)

ml m2
(Intercept) -6.68 -3.86

R code
6.17

R code
6.18

R code
6.19

R code
6.20

52 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

mean.growing.season 0.17 0.14
log_area NA -0.2
nobs 74 74

You can check the standard errors, too, to ensure that the estimate for mean.growing.season is
reliably positive in both cases.
Plotting the predicted relationship, averaging across models:

mu.area <- mean(d$log_area)
x.seq <- seq(from=-1,to0=13,by=0.25)
new.dat <- data.frame(log_area=mu.area,mean.growing.season=x.seq)

mu <- ensemble(m@,ml,m2,data=new.dat)
mu.mean <- apply(mu$link , 2 , mean)

plot(log_langpc ~ mean.growing.season , data=d ,
col="slateblue")

mtext(paste("log(area) =",round(mu.area,2)) , 3)

lines(x.seq , mu.mean)

plot several intervals with shading

for (p in ¢(0.5,0.79,0.95)) {

mu.PI <- apply(mu$link , 2 , PI , prob=p)
shade(mu.PI , x.seq)

}

And here’s the plot:

log(area) = 12.93

-2

log_langpc
-4

-6

-8

0 2 4 6 8 10 12
mean.growing.season

Hm, that relationship doesn’t actually look very linear. Most of the error is above the line, at long
growing season values on the right side. In any event, there does seem to be some positive relationship
between the two variables, as predicted. Maybe we shouldn’t be surprised by how poor the linear
relationship represents the data. After all, there are a ton of unmeasured variables that influence
language density. For example, imperial expansions have mainly reduced language diversity, but have
done so unequally in different regions.

(b) Fitting analogous models and comparing them (m0 is same as before):

ml <- map(
alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a + bs*sd.growing.season,

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 53

a ~ dnorm(0,100),
bs ~ dnorm(0,10),
sigma ~ dunif(0,10)

) , data=d)

m2 <- map(

alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a + bs*sd.growing.season + ba*log_area,
a ~ dnorm(0,100),
c(bs,ba) ~ dnorm(0,10),
sigma ~ dunif(0,10)

) , data=d)

compare(mO,ml,m2)

WAIC pWAIC dWAIC weight SE dSE
ml 273.7 4.0 0.0 0.52 17.23 NA
m2 274.6 5.7 0.9 0.33 17.34 3.94
mo 276.1 2.8 2.4 0.15 17.06 4.65

A very similar story, although not as strong a relationship. Take a look at the marginal posterior from
m2:

. R code
precis(m2) 6.21

Mean StdDev 5.5% 94.5%

a -2.02 1.88 -5.03 0.98
bs -0.21 0.19 -0.51 0.09
ba -0.24 0.16 -0.49 0.01
sigma 1.44 0.12 1.25 1.63

Including log(area) generates considerable uncertainty about the direction of the effect of sd. growing.season.
Still, the MAP is negative, as predicted.
Plotting the model-averaged relationship:

mu.area <- mean(d$log_area) gggde

x.seq <- seq(from=-1,to=6,length.out=30)
new.dat <- data.frame(log_area=mu.area,sd.growing.season=x.seq)

mu <- ensemble(m@,ml,m2,data=new.dat)
mu.mean <- apply(mu$link , 2 , mean)

plot(log_langpc ~ sd.growing.season , data=d ,
col="slateblue")

mtext(paste("log(area) =",round(mu.area,2)) , 3)

lines(x.seq , mu.mean)

plot several intervals with shading

for (p in ¢c(0.5,0.79,0.95)) {

mu.PI <- apply(mu$link , 2 , PI , prob=p)
shade(mu.PI , x.seq)

}

R code
6.23

R code
6.24

54 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

log(area) = 12.93

0 1 2 3 4 5 6
sd.growing.season

So the relationship isn't likely flat or positive, but many slightly negative slopes are consistent with the
data (and model structure).

(c) You can do a bunch of model comparison here. What you’ll find is that the model that interacts
mean and sd of growing season does best, with some indication that including log(area) helps, and
some weight reserved to the model with only main effects of mean and sd of growing season. I'll go
ahead and just work with the interaction model, because it’s the trickiest. But modifying the later
plotting code to use ensemble should be straightforward: just replace any calls to 11nk with calls to
ensemble, and be sure to extract the link slot, as in the examples above.

Here’s the model:

m3 <- map(
alist(
log_langpc ~ dnorm(mu,sigma),
mu <- a +

bg*mean.growing.season +
bs*sd.growing.season +
bgs*mean.growing.season*sd.growing.season,
a ~ dnorm(0,100),
c(bg,bs,bgs) ~ dnorm(0,10),
sigma ~ dunif(0,10)
) , data=d)

Okay, so let’s inspect the marginal posterior:

precis(m3)

Mean StdDev 5.5% 94.5%
a -6.97 0.59 -7.92 -6.03

bg 0.30 0.07 0.18 0.41
bs 0.42 0.37 -0.17 1.02
bgs -0.11 0.05 -0.18 -0.03
sigma 1.31 0.11 1.13 1.48

Now keep in mind that we haven’t centered the predictor variables here, so interpreting the parame-
ters is hazardous. Well, interpreting coeflicients in an interaction model is almost always hazardous,
centered predictors or not. But you can see above that the interaction coeflicient is reliably negative.
What that means exactly will require some more work.

Let’s see what the predictions look like. Let’s show the interaction in a panel of six plots. The top
row will show the relationship between log-lang-per-capita and mean.growing.season, across values

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 55

of sd.growing.season. The bottom row will show log-lang-per-capita on sd.growing.season, across
values of mean.growing.season. This is just to show the two-way interaction from both perspectives.

I'm also going to use transparency, as a function of distance from the value on the top of each plot,
to show how to data change through the 3rd, un-plotted, dimension. The function col.dist in the
rethinking package handles this for you. I didn’t use it in the book, so here is an example of how
it can be helpful. You can get more details about how it works from the help ?col.dist. The key
issue is the standard deviation value, which determines how quickly color fades as individual points
move away from some reference value. The reference value in these plots will be the value of the third
variable displayed on the top margin. You’ll want to play with the standard deviation value to get a
sense of how it works. Larger values mean less fading.

This code will draw a triptych of interactions, varying mean. growing. season along the horizon-
tal axis and sd.growing. season across the plots.

pull out 10%, 50%, and 95% quantiles of sd.growing.season
these values will be used to make the three plots
sd.seq <- quantile(d$sd.growing.season,c(0.1,0.5,0.95))

now loop over the three plots
draw languages against mean.growing.season in each
mean.seq <- seq(from=-1,to=13,length.out=30)
par(mfrow=c(1,3)) # set up plot window for row of 3 plots
for (i in 1:3) {
sd.val <- sd.seq[i] # select out value for this plot
new.dat <- data.frame(
mean.growing.season = mean.seq,
sd.growing.season = sd.val)
mu <- link(m3 , data=new.dat)
mu.mean <- apply(mu , 2 , mean)
mu.PI <- apply(mu , 2 , PI)

fade point color as function of distance from sd.val
cols <- col.dist(d$sd.growing.season , sd.val , 2 , "slateblue")

plot(log_langpc ~ mean.growing.season , data=d , col=cols)

mtext(paste("sd.growing.season =",round(sd.val,2)) , 3 , cex=0.75)
lines(mean.seq , mu.mean)

shade(mu.PI , mean.seq)

And this code will produce the analogous triptych in which sd.growing.season is varied on the
horizontal axis.

pull out 10%, 50%, and 95% quantiles of mean.growing.season
top.seq <- quantile(dS$mean.growing.season,c(0.1,0.5,0.95))

now loop over the three plots
x.seq <- seq(from=-1,t0=6.5,length.out=30)
par (mfrow=c(1,3)) # set up plot window for row of 3 plots
for (i in 1:3) {
top.val <- top.seq[i] # select out value for this plot
new.dat <- data.frame(
mean.growing.season = top.val ,
sd.growing.season = x.seq)

R code
6.25

R code
6.26

56 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

mu <- link(m3 , data=new.dat)
mu.mean <- apply(mu , 2 , mean)
mu.PI <- apply(mu , 2 , PI)

fade point color as function of distance from sd.val
cols <- col.dist(dSmean.growing.season , top.val , 5 , "slateblue")

plot(log_langpc ~ sd.growing.season , data=d , col=cols)

mtext(paste('"mean.growing.season =",round(top.val,2)) , 3 , cex=0.75)
lines(x.seq , mu.mean)

shade(mu.PI , x.seq)

And here are both triptych constructions:

sd.growing.season = 0.53 sd.growing.season = 1.69 sd.growing.season = 3.54

0(‘) - (o]
(o]
T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
mean.growing.season mean.growing.season mean.growing.season
mean.growing.season = 2.45 mean.growing.season = 7.36 mean.growing.season = 11.95
(o]
o
o 4 N 4 N 4

sd.growing.season sd.growing.season sd.growing.season

So the models suggest that mean growing season increases language diversity, unless the variance in
growing season is also high (top row). Simultaneously, variance in growing season decreases language
diversity, unless the mean growing season is very short (bottom row).

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 57

7. Chapter 8 Solutions

8E1. Only (3) is required.

8E2. Gibbs sampling requires that we use special priors that are conjugate with the likelihood. This
means that holding all the other parameters constant, it is possible to derive analytical solutions for
the posterior distribution of each parameter. These conditional distributions are used to make smart
proposals for jumps in the Markov chain. Gibbs sampling is limited both by the necessity to use con-
jugate priors, as well as its tendency to get stuck in small regions of the posterior when the posterior
distribution has either highly correlated parameters or high dimension.

8E3. Hamiltonian Monte Carlo cannot handle discrete parameters. This is because it requires a
smooth surface to glide its imaginary particle over while sampling from the posterior distribution.

8E4. The effect number of samples n_eff is an estimate of the number of completely independent
samples that would hold equivalent information about the posterior distribution. It is always smaller
than the actual number of samples, because samples from a Markov chain tend to sequentially cor-
related or autocorrelated. As autocorrelation rises, n_eff gets smaller. At the limit of perfect auto-
correlation, for example, all samples would have the same value and n_eff would be equal to 1, no
matter the actual number of samples drawn.

8E5. Rhat should approach 1. How close should it get? People disagree, but it is common to judge
that any value less than 1.1 indicates convergence. But like all heuristic indicators, Rhat can be fooled.

8E6. A healthy Markov chain should be both stationary and well-mixing. The first is necessary for
inference. The second is desirable, because it means the chain is more efficient. A chain that is both
of these things should resemble horizontal noise.

A chain that is malfunctioning, as the problem asks, would not be stationary. THis means it is
not converging to the target distribution, the posterior distribution. Examples were provided in the
chapter. A virtue of Hamiltonian Monte Carlo is that it makes such chains very obvious: they tend to
be rather flat wandering trends. Sometimes they are perfectly flat.

The best test of convergence is always to compare multiple chains. So the best sketch of a malfunc-
tioning trace plot would be one that shows multiple chains wandering into different regions of the
parameter space. Figure 8.7 in the chapter, left side, provides an example.

8M1. Here is the model again, now using a uniform prior for sigma:

load and rep data ?TOde
library(rethinking)

data(rugged)

d <- rugged

dslog_gdp <- log(d$rgdppc_2000)
dd <- d[complete.cases(d$rgdppc_2000) ,]

58 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

dd.trim <- dd[, c("log_gdp","rugged","cont_africa")]

new model with uniform prior on sigma
m8.1_unif <- map2stan(
alist(
log_gdp ~ dnorm(mu,sigma),
mu <- a + bR*rugged + bA*cont_africa + bAR*rugged*cont_africa,
a ~ dnorm(0,100),
bR ~ dnorm(0,10),
bA ~ dnorm(0,10),
bAR ~ dnorm(0,10),
sigma ~ dunif(0,10)
)5
data=dd.trim , chains=2)

And here’s the model with an exponential prior on sigma:
RC%F; m8.1_exp <- map2stan(
' alist(

log_gdp ~ dnorm(mu,sigma),
mu <- a + bR*rugged + bA*cont_africa + bAR*rugged*cont_africa,
a ~ dnorm(0,100),
bR ~ dnorm(0,10),
bA ~ dnorm(0,10),
bAR ~ dnorm(0,10),
sigma ~ dexp(1l)

)5

data=dd.trim , chains=2)

Before we look at the posterior distributions for each model, it may help to visualize each prior. So
let’s do that first. Maybe the easiest way is to draw random samples from each prior distribution and
plot densities. But I'll use the curve function instead, just to provide an example of its use.
chf; curve(dcauchy(x,0,2) , from=0 , to=10 ,
xlab="sigma" , ylab="Density" , ylim=c(0,1))
curve(dunif(x,0,10) , add=TRUE , col="red")
curve(dexp(x,1) , add=TRUE , col="blue")

1.0

Density
06 0.8

0.4

0.2

0.0

sigma

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 59

Now let’s compare the posterior distributions of sigma for all three models. If you need to re-run
model m8. 1stan from the chapter, do so. What I'll do here is extract all three sets of samples and just
plot them over one another.

sigma_cauchy <- extract.samples(m8.1lstan,pars="sigma")
sigma_unif <- extract.samples(m8.1_unif,pars="sigma")
sigma_exp <- extract.samples(m8.1_exp,pars="sigma")

dens(sigma_cauchy[[1]] , xlab="sigma" , xlim=c(0.5,1.5))
dens(sigma_unif[[1]] , add=TRUE , col="red")

dens(sigma_exp[[1]] , add=TRUE , col="blue")

O -
2
=]
c
]
a
~
o
0.6 0.8 1.0 1.2 1.4
sigma

All three posterior distributions are very similar. Why? There’s a lot of data, relative to the difference
in priors. The next problem asks you to explore what happens when you make them stronger.

8M2. To address this problem, merely change the dcauchy (0,2) and dexp (1) priorsin the previous
models. The trick in this problem is that the “2” in the Cauchy is scale. As it gets bigger, the prior gets
weaker. But the “1” in the exponential distribution is an inverse scale. So as you make it bigger, the
prior gets stronger. Once you realize that, the rest is straightforward.

If you make the priors strong enough, they can easily pull the posterior distribution closer to zero.

But you’ll have to make them very strong, for this data. For example, let’s make the exponential prior
quite strong, with an expected value of 1/10:

m8.1_exp_new <- map2stan(
alist(
log_gdp ~ dnorm(mu,sigma),
mu <- a + bR*rugged + bA*cont_africa + bAR*rugged*cont_africa,
a ~ dnorm(0,100),
bR ~ dnorm(0,10),
bA ~ dnorm(0,10),
bAR ~ dnorm(0,10),
sigma ~ dexp(10)
)5
data=dd.trim , chains=2)
sigma_old <- extract.samples(m8.1_exp,pars="sigma")
sigma_new <- extract.samples(m8.1_exp_new,pars="sigma")
dens(sigma_new[[1]] , xlab="sigma")

R code
7.4

R code
7.5

60 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

dens(sigma_old[[1]] , add=TRUE , lty=2)

sigma

The dashed density is the original one, using the dexp (1) prior from the previous problem. The prior
has hardly made a difference. Why? Because the likelihood is dominating, and it doesn’t put hardly
any probably over the small values of sigma that the prior likes.
Let’s try something radically strong:
RC%?; m8.1_exp_new2 <- map2stan(
' alist(
log_gdp ~ dnorm(mu,sigma),
mu <- a + bR*rugged + bA*cont_africa + bAR*rugged*cont_africa,
a ~ dnorm(0,100),
bR ~ dnorm(0,10),
bA ~ dnorm(0,10),
bAR ~ dnorm(0,10),
sigma ~ dexp(100)
) b
data=dd.trim , chains=2)
sigma_new2 <- extract.samples(m8.1_exp_new2,pars="sigma")
dens(sigma_new2[[1]] , xlab="sigma" , xlim=c(0.65,1.1))
dens(sigma_old[[1]] , add=TRUE , lty=2)

6 8 10 12

Density

4

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Now it has moved a little.

In general it will be harder to get the posterior to move when using the Cauchy prior, because the

Cauchy has more mass in its tail. Try it out.

8M3. You could use almost any model from the chapter. But I'll use the terrain ruggedness model
again, since it was used in the other problems so far. T'll fix it at 1000 post-warmup samples for the

sake of comparison. Then I'll compare a range of warmup values.

Here’s some code to automate it all. You can do the same thing the hard way, just recoding the
model each time. But it’s a lot faster to compile the model once and reuse it.

compile model

use fixed start values for comparability of runs

m <- map2stan(
alist(

log_gdp ~ dnorm(mu,sigma),

mu <- a + bR*rugged + bA*cont_africa + bAR*rugged*cont_africa,

a ~ dnorm(0,100),
bR ~ dnorm(0,10),
bA ~ dnorm(0,10),
bAR ~ dnorm(0,10),
sigma ~ dcauchy(0,2)

)5

start=1list(a=8,bR=0,bA=0,bAR=0,sigma=1)
data=dd.trim , chains=1 , iter=1)

define warmup values to run through
warm_list <- ¢(1,5,10,100,500,1000)

first make matrix to hold n_eff results
n_eff <- matrix(NA , nrow=length(warm_Llist)

loop over warm_list and collect n_eff
for (i in 1:length(warm_Llist)) {

w <- warm_Llist[i]

m_temp <- resample(m , chains=1 ,

iter=1000+w , warmup=w , refresh=-1 , WAIC=FALSE)
n_eff[i,] <- precis(m_temp)@output$n_eff

add some names to rows and cols of result
just to make it pretty

there's always time to make data pretty

, ncol=5)

colnames(n_eff) <- rownames(precis(m_temp)Q@output)
rownames (n_eff) <- warm_list

If you inspect the matrix n_eff now, you'll see parameters in columns and warmup values in rows:

a
1 0.5007511
5 4.3256825
10 304.3737104
100 321.0008576
500 241.1348599
1000 219.7749135

bR

.5007511
.0200142
370.
394.
268.
190.

7338882
6673949
6110577
9539593

bA

.5007511
.9558464
189.
173.
277.
259.

3232743
1020514
8579786
8739707

bAR

.5007511
.8122120
262.
244,
283.
315.

6432755
2395800
0203281
2980722

13.
1000.
869.
370.
680.

sigma

.5007511

3467754
0000000
4751451
2711484
2881654

R code

62 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

So you can see that for this model and this data, very little warmup is needed. Basically anything more
than 10 is the same. This isn’t always going to be true, however. For the more complicated non-linear
models that your’ll meet in later chapters, and especially multilevel models, more warmup is often
helpful. How much? It depends, unfortunately. Models and data are just too diverse to give useful
general advice here.
But I can show you a common situation that benefits from more warmup. Let’s go back to the leg
data example from Chapter 5:
RC?S; N <- 100
height <- rnorm(N,10,2)
leg_prop <- runif(N,0.4,0.5)
leg_left <- leg_prop*height +
rnorm(N , @ , 0.02)
leg_right <- leg_prop*height + # sim right leg as proportion + error
rnorm(N , 0 , 0.02)

number of individuals

sim total height of each

leg as proportion of height

sim left leg as proportion + error

H* W o I

combine into data frame
d <- data.frame(height,leg_left,leg_right)

And now to run these data through the same process, using the model from Chapter 5 as well:

R code
79 M <- map2stan(

alist(
height ~ dnorm(mu , sigma) ,
mu <- a + bl*leg_left + br*leg_right ,
a ~ dnorm(10 , 100) ,
bl ~ dnorm(2 , 10) ,
br ~ dnorm(2 , 10) ,
sigma ~ dunif(0 , 10)
)
data=d , iter=1)

warm_list <- c(1,5,10,100,500,1000)
n_eff <- matrix(NA , nrow=length(warm_list) , ncol=4)
for (i in 1:length(warm_1list)) {
w <- warm_Llist[i]
m_temp <- resample(m , chains=1 ,
iter=1000+w , warmup=w , refresh=-1 , WAIC=FALSE)
n_eff[i,] <- precis(m_temp)@outputén_eff
}
colnames(n_eff) <- rownames(precis(m_temp)@output)
rownames (n_eff) <- warm_list
show(n_eff)

a bl br sigma
1 0.5007511 0.5007511 0.5007511 0.5007511
5 4.5461377 6.7509053 3.4498516 10.9574569
10 2.9052710 4.5635038 5.6987064 6.5577471

100 406.5540250 109.5477783 109.7709377 590.3716127
500 415.5212711 294.6830846 295.2950901 449.1176021
1000 441.6867022 336.5340548 336.3034810 346.3409875

This time, even with a simpler model and fewer observations, it took longer for the benefits of more
warmup to taper off. Efficiency improved all the way up to 1000 warmup steps, at least for the param-
eters bl and br. Why? Because in this posterior, the parameters bl and br are highly correlation,

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 63

recall. Take a look at pairs(m_temp) for example. This makes it harder to sample efficiently from
the posterior.

In complex multilevel models, there are nearly always batches of highly correlated parameters. So
being conservative about warmup often pays oft.

8H1. What this code does is sample from the priors. There is no likelihood, and that’s okay. The pos-
terior distribution is then just a merger of the priors. What is tricky about this problem though is that
the Cauchy prior for the parameter b will not produce the kind of trace plot you might expect from
a good Markov chain. This is because Cauchy is a very long tailed distribution, so it'll occasionally
make distance leaps out into the tail. We'll look at the precis output, then the trace plot, so you can
see what I mean.

Run the provided code, then inspect the marginal posterior:

precis(mp)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 0.00 0.99 -1.60 1.58 6292 1
b ©.15 13.70 -5.45 5.76 769 1
The first fact that might make you worry that something went wrong is that sampling for b has a much
lower effective sample size than a. But that’s okay. Now let’s look at the trace plot, which is what has
alarmed students in the past, when I have assigned this problem as homework:

plot(mp , n_col=2)

a n_eff = 6292 o n_eff =769
9'
~ o - kwﬁ+%w*ww&%wwkdﬁ%ﬁﬂ%ﬂ~ﬂ
o |]
o
o J
N
o)
0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

The trace plot might look a little weird to you, because the trace for b has some big spikes in it. That’s
how a Cauchy behaves, though. It has thick tails, so needs to occasionally sample way out. The
trace plot for a is typical Gaussian in shape. Since the posterior distribution does often tend towards
Gaussian for many parameters, it’s possible to get too used to expecting every trace to look like the
one on the left. But you have to think about the influence of priors in this case. The trace on the right
is just fine.

8H2. First, load and prepare the data. Note that while Chapter 5 uses dot-notation for names like
Marriage.s, while switch to using underscore-notation now, because Stan hates dots. This notation
issue can be annoying, but it'’s a common fact of scientific computing that software cares about this
stuff, so best to get used to it.

library(rethinking)
data(WaffleDivorce)
d <- WaffleDivorce

R code
7.10

R code
7.11

R code
7.12

R code
7.13

R code
7.14

R code
7.15

64 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

d$MedianAgeMarriage_s <- (d$MedianAgeMarriage-mean(d$MedianAgeMarriage))/
sd(d$MedianAgeMarriage)
d$Marriage_s <- (d$Marriage - mean(dSMarriage))/sd(d$Marriage)

Now to fit the models over again, this time using map2stan:

m5.1_stan <- map2stan(
alist(
Divorce ~ dnorm(mu , sigma) ,
mu <- a + bA * MedianAgeMarriage_s ,
a ~ dnorm(10 , 10) ,
bA ~ dnorm(@ , 1) ,
sigma ~ dunif(0 , 10)
)
data = d , chains=4)
m5.2_stan <- map2stan(
alist(
Divorce ~ dnorm(mu , sigma) ,
mu <- a + bR * Marriage_s ,
a ~ dnorm(10 , 10) ,
bR ~ dnorm(@ , 1) ,
sigma ~ dunif(0 , 10)
)
data = d , chains=4)
m5.3_stan <- map2stan(
alist(
Divorce ~ dnorm(mu , sigma) ,
mu <- a + bR*Marriage_s + bA*MedianAgeMarriage_s ,
a ~ dnorm(10 , 10) ,
bR ~ dnorm(@ , 1) ,
bA ~ dnorm(@ , 1) ,
sigma ~ dunif(0@ , 10)
)
data = d , chains=4)

Since you are possibly still getting used to Markov chains, I recommend checking the trace plots for
each model, as well as inspecting the n_eff and Rhat values for each parameter in each model.
Now to compare the models:

compare(m5.1_stan,m5.2_stan,m5.3_stan)

WAIC pWAIC dWAIC weight SE dSE
m5.1_stan 186.2 3.8 0.0 0.67 12.48 NA
m5.3_stan 187.6 4.7 1.4 0.33 12.36 0.82
m5.2_stan 199.6 3.1 13.5 0.00 9.60 9.13
The model with only age-at-marriage comes out on top, although the model with both predictors does
nearly as well. In fact, the WAIC of both models is nearly identical. I'd call this is a tie, because even
though one model does a bit better than the other, the difference between them is of no consequence.
How can we explain this? Well, look at the marginal posterior for m5.3_stan:

precis(m5.3_stan)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 65

a 9.68 0.21 9.34 10.03 1872 1
bR -0.12 0.28 -0.59 0.32 1949 1
bA -1.12 0.28 -1.56 -0.67 2072 1
sigma 1.52 0.16 1.28 1.79 1530 1

While this model includes marriage rate as a predictor, it estimates very little expected influence for
it, as well as substantial uncertainty about the direction of any influence it might have. So models
m5.3_stan and m5.1_stan make practically the same predictions. After accounting for the larger
penalty for m5.3_stan—4.7 instead of 3.8—the two models rank almost the same. This makes sense,
because you already learned back in Chapter 5 that marriage rate gets its correlation with divorce
rate through a correlation with age at marriage. So even though including marriage rate in a model
doesn’t really aid in prediction, there is enough evidence here that the parameter bR can be estimated
well enough, and including marriage rate doesn’t hurt prediction either.

Or at least that’s what WAIC expects. Only the future will tell which model is actually better for
forecasting. WAIC is not an oracle. It’s a golem.

8H3. Looking at the pairs plot for each model is probably the quickest way to see the impact of
the change in prior. The posterior distributions for bl and br are symmetric, and perfectly negatively
correlated, in m5. 8s. In the other model, with the truncated prior, they are still perfectly negatively
correlated, but now they look like mirror images, one being skewed left and the other right. See below
(left: m5. 8s; right: m5.8s2).

4 0 4 8 0.55 0.70 4 0 4 8 055 070
LLr Ll [] I

\

Ak 3
\

<

*gn

0.0

&
%

0.0

bl bl

&

&

4 0 4 8
Ll

4 0 4 8
Ll

br

007 -1 .-ﬁ‘

sigma

6 2 2 6

007 -1 .ﬁ‘

sigma

6 2 2 6

003 0,03

055 0.70
055 0.70

T T T TTTTTTT T T T TTTTTTT
0.0 1.0 6 2 2 6 0.0 1.0 6 -2 2 6

What has happened is that the posterior distributions are necessarily negatively correlated with
one another. That arises because the left and right legs contain the same information. So this is the
lack of identifiability thing returning. So when we change the prior on one of the parameters, that
information has to cascade into the posterior distribution of the other parameter as well. Otherwise
the negative posterior correlation wouldn’'t be maintained.

8H4. Inspecting WAIC for the two models, you get:

R code
7.16

compare(m5.8s,m5.8s2)

WAIC pWAIC dWAIC weight SE dSE
m5.8s2 212.1 2.6 (] 0.5 9.55 NA
m5.8s 212.1 3.2 [0} 0.5 10.14 2.32

R code
7.17

R code
7.18

R code
7.19

66 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

This is a good tie. You'll get slightly different numbers, on account of simulation variance. Note that
the model with the truncated prior is less flexible, as indicated by pwAIC. Why? Because the prior is
more informative, the variance in the posterior distribution is smaller. But the same model, m5.8s2,
also fits the sample worse, as a consequence of the more informative prior. You can see this by plotting:

plot(compare(m5.8s,m5.8s2))

WAIC
mb5.8s2 .
m5.8s *
205 210 215 220
deviance

The black dots show in-sample deviance (well, —2lppd here, the fully Bayesian deviance that WAIC
uses). Notice thatm5. 8s2 has a higher (worse) deviance in-sample. It’s less flexible, though, so the dis-
tance from it’s in-sample deviance (filled point) to its out-of-sample deviance (open circle) is smaller
than for model m5. 8s. The two models end up tied, right on the same estimated out-of-sample values.

8H5. To do as the problem asks, we'll need a new vector for the population sizes of the islands. Let’s
call it pop_size and give it randomly shuftled values from 1 to 10:

pop_size <- sample(1:10)

Now most of the same code will work, but we’ll need to extract two elements of pop_size when we
construct the probability of moving. Why? Because its population size that matters when deciding to
move, not each island’s position. Now that size and position are not the same numbers, we just have
use indexing to translate from position to population size. Here’s how it works. The new code is at
the end, where prob_move is calculated. And I've added the line above to the start, as well.

num_weeks <- 1le5
positions <- rep(0,num_weeks)
pop_size <- sample(1:10)
current <- 10
for (i in l:num_weeks) {
record current position
positions[i] <- current

flip coin to generate proposal

proposal <- current + sample(c(-1,1) , size=1l)
now make sure he loops around the archipelago
if (proposal < 1) proposal <- 10

if (proposal > 10) proposal <- 1

move?
prob_move <- pop_size[proposal]/pop_size[current]
current <- ifelse(runif(l) < prob_move , proposal , current)

To verify this is working as intended, compare the frequency in the samples of each island to each
island’s population size:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 67

compute frequencies
f <- table(positions)

plot frequencies against relative population sizes
label each point with island index
plot(as.vector(f) , pop_size , type="n" ,
xlab="frequency" , ylab="population size") # empty plot
text(, x=f , y=pop_size)

population size

~ -4 10

5000 10000 15000
frequency

Each island appears in the samples in direct proportion to its population size. Run the code a few
times and watch the index values shuffle around.

In a typical Metropolis context, remember, the island index values are parameter values and the
population sizes are posterior probabilities.

8H6. Okay this is most likely the hardest problem in the book, in any chapter. Why? Because it is
asking a lot. There wasn’t an example in the chapter of actually using the Metropolis algorithm with
data and a model. So converting the silly island hopping example to a practical model fitting example
is a huge challenge.

Really this problem is a way to sneak in this extra content, as actually writing Markov chains is
beyond the scope of the book. But if you are curious, here’s one solution.

Here’s the raw data for the globe tossing example:

WLWWWLWLW

That’s 6 waters in 9 tosses. The likelihood is binomial, and we’ll use a uniform prior, as in Chapter 2.
So this is the model:

w ~ Binomial(n, p)

p ~ Uniform(0, 1)

where w is the observed number of water and #» is the number of globe tosses. The parameter p is the
target of inference. We need a posterior distribution for it. The prior distribution is the given uniform
density form zero to one.

To get a working Metropolis algorithm for this model, think of the different values of p as the island
indexes and the product of the likelihood and prior as the population sizes. What is tricky here is that
there an infinite number of islands: every continuous value that p can take from zero to one. That’s
hardly a problem, though. We just need a different way of proposing moves, so that we can land on a
range of islands. Il make more sense, once you see the code.

R code
7.20

R code
7.21

R code
7.22

R code
7.23

68 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

num_samples <- le4
p_samples <- rep(NA,num_samples)
p <- 0.5 # initialize chain with p=0.5
for (i in 1l:num_samples) {
record current parameter value
p_samples[i] <- p

generate a uniform proposal from -0.1 to +0.1
proposal <- p + runif(1,-0.1,0.1)

now reflect off boundaries at 0 and 1

this 1is needed so proposals are symmetric

if (proposal < 0) proposal <- abs(proposal)
if (proposal > 1) proposal <- 1-(proposal-1)

compute posterior prob of current and proposal
prob_current <- dbinom(6,size=9,prob=p) * dunif(p,0,1)
prob_proposal <- dbinom(6,size=9,prob=proposal) * dunif(proposal,0,1)

move?

prob_move <- prob_proposal/prob_current
p <- ifelse(runif(l1) < prob_move , proposal , p)

That’s really all there is to it. Once the loop finishes—it'll be very very fast—take a look at the trace
plot:

plot(p_samples , type="1" , ylab="probability water")

probability water
0.6 0.8 1.0

0.4

0.2

0 2000 4000 6000 8000 10000
Index

This chain is fine, but it is more autocorrelated than a typical Stan chain. That’s why it tends to wander
around a bit. It is stationary, but it isn’t mixing very well. This is common of such a simple Metropolis
chain. But it is working.

Now look at the posterior distribution implied by these samples. I'll also compare it to the analyt-
ically derived posterior for this model:

dens(p_samples , xlab="probability water")
curve(dbeta(x,7,4) , add=TRUE , col="red")

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Density
1.0 15 20 25 3.0

0.0 05

0.2 0.4 0.6 0.8
probability water

Not bad.

69

So what would you do if the model had more than one parameter? You just add another proposal
for each parameter, accepting or rejecting each proposal independent of the others. Suppose for
example we want to do a simple linear regression with a Metropolis chain. Let’s simulate some simple
Gaussian data and then compute the posterior distribution of the mean and standard deviation using

a custom Metropolis algorithm. The model is:
y; ~ Normal(u, o)
1 ~ Normal(0, 10)
o ~ Uniform(0, 10)
This is the code:

simulate some data
100 observations with mean 5 and sd 3
y <- rnorm(160 , 5, 3)

now chain to sample from posterior
num_samples <- le4
mu_samples <- rep(NA,num_samples)
sigma_samples <- rep(NA,num_samples)
mu <- 0
sigma <- 1
for (i in l:num_samples) {
record current parameter values
mu_samples[i] <- mu
sigma_samples[i] <- sigma

proposal for mu
mu_prop <- mu + runif(1,-0.1,0.1)

compute posterior prob of mu and mu_prop

this is done treating sigma like a constant

will do calculations on log scale, as we should
so log priors get added to log likelihood
log_prob_current <- sum(dnorm(y,mu,sigma,TRUE)) +

dnorm(mu,0,10,TRUE) + dunif(sigma,0,10,TRUE)
log_prob_proposal <- sum(dnorm(y,mu_prop,sigma,TRUE)) +
dnorm(mu_prop,0,10,TRUE) + dunif(sigma,0,10,TRUE)

move?

prob_move <- exp(log_prob_proposal - log_prob_current)

R code
7.24

R code
7.25

70 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

mu <- ifelse(runif(l) < prob_move , mu_prop , mu)

proposal for sigma

sigma_prop <- sigma + runif(1,-0.1,0.1)

reflect off boundary at zero

if (sigma_prop < 0) sigma_prop <- abs(sigma_prop)

compute posterior probabilities
log_prob_current <- sum(dnorm(y,mu,sigma,TRUE)) +
dnorm(mu,0,10,TRUE) + dunif(sigma,0,10,TRUE)
log_prob_proposal <- sum(dnorm(y,mu,sigma_prop,TRUE)) +
dnorm(mu,0,10,TRUE) + dunif(sigma_prop,0,10,TRUE)
move?
prob_move <- exp(log_prob_proposal - log_prob_current)
sigma <- ifelse(runif(l) < prob_move , sigma_prop , sigma)

This code is more complex, but it is really the same strategy, just with two internal steps, one for
each parameter. You can process mu_samples and sigma_samples as usual. I'll show the sequential
samples plotted together now, so you can see how the chain wanders into the high probability region
of the posterior as the chain evolves:

plot(mu_samples , sigma_samples , type="1")

sigma_samples
3

0 1 2 3 4 5 &
mu_samples
We initialized the chain at (0, 1). It then quickly wandered up and to the right, eventually falling into
the orbit of the high density region of the posterior. That long trail into the high density region is
often called “burn in” and usually trimmed off before analysis. You don’t have to do such trimming
with Stan chains, because Stan’s warm-up phase takes care of a similar task, and Stan only returns
post-warmup samples to you.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 71

8. Chapter 10 Solutions

10E1. If p = 0.35, then log-odds are:

0.35

1 "
81035

Calculating in R:

log(0.35 / (1-0.35))

[1] -0.6190392

10E2. This one is asking for the reverse operation, going from log-odds to probability. The logistic
and inv_logit functions accomplish this. These are just two names for the same function.

logistic(3.2)

[1] 0.9608343

10E3. Proportional odds is calculated by exponentiating the coefficient. So:

exp(1.7)

[1] 5.473947

This means that each unit change in the predictor variable multiplies the odds of the event by 5.5.

To demystify this relationship a little, if the linear model L is the log-odds of the event, then the
odds of the event are just exp(L). Now we want to compare the odds before and after increasing a
predictor by one unit. We want to know how much the odds increase, as a result of the unit increase
in the predictor. We can use our dear friend algebra to solve this problem:

exp(a + 8x)Z = exp(a + B(x+ 1))

The left side is the odds of the event, before increasing x. The Z represents the proportional change
in odds that we're going to solve for. It's unknown value will make the left side equal to the right side.
The right side is the odds of the event, after increasing x by 1 unit. So we just solve for Z now. The
answer is Z = exp(/3). And that’s where the formula comes from.

10E4. An offset specifies the relative duration or distance that a count was accumulated over. It may
also be called an exposure. So if all observed counts were from uniform observation periods, then
there is no need to use an offset. But if instead some observations came from longer periods than
others, you can use an offset to adjust estimates for the fact that we expect counts from longer periods
to be bigger.

R code

R code
8.2

R code
8.3

72 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

10M1. The most basic reason is that aggregated binomial counts have to average over all of the orders,
or permutations, that are consistent with the observed count. Disaggregated binomial counts, in 0/1
form, do not have to cope with order. So for example, if we flip 2 coins and observe one head and one
tail, this is a count of 1 head in 2 trials. As aggregated data, the probability is:
2!
TP (L —p) =2p(1 = p)

where p is the probability of a head on each trial. The fraction in front is the multiplicity (same as
what was used in Chapter 9 to derive maximum entropy). It just says how many ways to get 1 head
from 2 coins, in any order. But as disaggregated data, we instead just predict each coin separately and
then multiply them together to get the joint probability of the data. So:

p(1=p)
is the entire likelihood. So the aggregated data has an extra constant in front to handle all the per-

mutations. This doesn’t influence inference, because the multiplicity constant isn’t a function of the
parameter p. But it does influence the magnitude of the likelihood and log-likelihood.

10M2. This problem is a prompt to realize that coefficients in Poisson models are not so easy to
interpret. But we can figure out the change in the mean count with a little algebra. A Poisson model
typically has a log link. So in a linear model, the mean count A is related to the linear model by:

log(A) = o + Bx
A = exp(a + f5x)

So suppose that 5 = 1.7, as the problem states. If x increases by a unit, what happens to A? We can
compute the change in A:

AN =exp(a+ B(x+ 1)) — exp(a + 8x)
= exp(a + fx)(exp(B) — 1)

Hm, not so simple. The change depends upon the entire linear model, still. This is the rule in non-
linear models.

What about the ratio of means, though? So define A, as the mean before the change and A4, as
the mean after x increases by a unit. Then the ratio of the means is:

)\;+1 — exp(a + ﬁ('x + 1)) — exp(ﬁ)
x exp(a + Bx)
This is just like the proportional change in odds we found with logistic regression. The proportional
change in the expectation for a Poisson model is given by exponentiating a coefficient.

So finally we can arrive at a firm, if not always useful, way to address the question of what a coeffi-
cient of 1.7 means. It means that the proportional change in the expected count will be exp(1.7) = 5.5,
when the corresponding predictor increases by one unit.

10M3. It is conventional to use a logit link for a binomial GLM because we need to map the con-
tinuous linear model value to a probability parameter that is bounded between zero and one. The
inverse-logit function, often known as the logistic, is one way to do this.

There are deeper reasons for using the logistic. It arises naturally when working with multinomial
probability densities. There was a hint of this in one of the Overthinking boxes in Chapter 9, in which
you saw how to derive when the binomial distribution has maximum entropy.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 73

10M4. Itis conventional to use a log link for a Poisson GLM because we need to map the continuous
linear model value to a mean that must be positive. In other words, the mean of a Poisson is bounded
at zero. The inverse function of log is exp, so exponentiating the linear model guarantees it will be
positive.

The log link for a Poisson model can also be justified by factoring the Poisson probability density
formula. This is the way so-called canonical link functions were sometimes defined. But the loglink is
also used routinely with exponential and gamma GLMs, for which there is nothing “canonical” about
the log link at all. The canonical link for the gamma and exponential is the inverse function, which
is bad news because it fails to constrain the mean to be positive.

10M5. The problem suggests using a logit link in a Poisson model, like this:
y; ~ Poisson(;)
logit(u;) = o+ Bx;
This would bound the mean p to lie between zero and one. With the addition of one more parameter
however, it could bound it to lie between zero and any arbitrary maximum:
Hi
lo =a+ Bx;
v Bxi
where M is a parameter that determines the maximum expected count.
This sort of link looks funny. In practice you never see it, because if a count variable can reach

a maximum, it is usually more appropriate to use a binomial likelihood together with the logit link.

Remember, the premise with a Poisson likelihood is that it is really binomial, but the probability is
very low and the number of trials very large. So any theoretical maximum count is never reached in
the data.

Using the logit link with a Poisson could make sense if you have reason to think that the influence
of predictors on the mean diminishes eventually. That is, if you want to stop the exponential growth.

10M6. The constraints that make both binomial and Poisson maximum entropy distributions are: (1)
discrete binary outcomes, (2) constant probability of each event across trials (or constant expected
value). These two distributions have the same constraints, because the Poisson is just a simplified
form of the binomial that applies when the probability of the focal event is very low and the number
of trials is very large.

10H1. The necessary model is found on page 313. You just need to use map instead of map2stan.
This code will fit the model:

library(rethinking)
data(chimpanzees)
d <- chimpanzees
d2 <- d
d28recipient <- NULL
ml0.4_map <- map(
alist(
pulled_left ~ dbinom(1 , p) ,
logit(p) <- alactor] + (bp + bpC*condition)*prosoc_left ,
alactor] ~ dnorm(0,10),
bp ~ dnorm(0,10),

R code
8.4

R code
8.5

R code

74 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

bpC ~ dnorm(0,10)

)
data=d2)

Be sure to fit the original model, as well, so you can compare them.
The most obvious difference between the quadratic approximation (m10.4_map) and the fully
Bayesian fit (m10.4) is the posterior for the second intercept, the one for actor number 2. Let’s com-

pare:

plot(coeftab(ml0.4,m10.4_map))

pm10.4_map
m10.4

bpC
m10.4_map
m10.4

-

-
-
-
-
-
-
-
-
——
——
-~
-
-
-
T T T T
0 10 15 20
Estimate

While it makes essentially no difference for estimating the treatment effects, the quadratic approx-
imation underestimates the uncertainty for actor 2’s handedness. Why? Because the quadratic ap-
proximation enforces symmetric uncertainty around the posterior mode, but the nature of a logistic
regression often leads to asymmetric uncertainty. In this case, there is more uncertainty on the up
side than the down side. Comparing the marginal posterior distributions helps to emphasize this:

post_map <- extract.samples(ml@.4_map)

post_map2stan <- extract.samples(ml@.4)
dens(post_map2stan$al[,2] , xlab="a[2]"

ylim=c(0,0.11) , xlim=c(-5,35))

dens(post_maps$al[,2] , lty=2 , add=TRUE)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 75

0.08

Density

0.04

0.00

a[2]

The solid density is the fully Bayesian posterior produced by map2stan. The dashed density is the
quadratic approximation produced by map. Note the long tail on the righthand side, for the fully
Bayesian posterior. This arises from the fact that basically any sufficiently large value will guarantee
a probability of 1 for the event. So an infinite number of parameter values are in principle consistent
with the data, since actor 2 never pulled the righthand lever. Both ways of fitting the model appreciate
the strong preference, but the quadratic approximation cannot appreciate the asymmetry in uncer-
tainty, so it ends up assigning too little on the upwards side and too much on the downwards side.
The fully Bayesian posterior, in contrast, has no trouble recognizing the imbalance in uncertainty.

10H2. Begin by fitting all of the models, but this time using map2stan for all of them. Why? Because
it is usually unwise to compare models that are estimated by different methods. In this case, it won't
alter the inferences. But in principle a method like quadratic approximation could produce a better
fit to sample, but be less representative of the true uncertainty implied by the model and data. In
particular, since WAIC is computed using posterior variance, and quadratic estimation often misrep-
resents that variance, you have to be careful. So let’s do them all the same way, so we don’t have to
wonder.

library(rethinking)
data(chimpanzees)

d <- chimpanzees

d2 <- d

d2$recipient <- NULL

ml0.1 <- map2stan(
alist(
pulled_left ~ dbinom(1 , p) ,
logit(p) <- a ,
a ~ dnorm(0,10)
)
data=d2 , chains=2)
ml0.2 <- map2stan(
alist(
pulled_left ~ dbinom(1 , p) ,
logit(p) <- a + bp*prosoc_left ,
a ~ dnorm(0,10) ,
bp ~ dnorm(0,10)

R code

76 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

)
data=d2 , chains=2)
ml0.3 <- map2stan(

alist(
pulled_left ~ dbinom(1 , p) ,
logit(p) <- a + (bp + bpC*condition)*prosoc_left ,
a ~ dnorm(0,10) ,
bp ~ dnorm(0,10) ,
bpC ~ dnorm(0,10)

)

data=d2 , chains=2)

ml0.4 <- map2stan(

alist(
pulled_left ~ dbinom(1 , p) ,
logit(p) <- alactor] + (bp + bpC*condition)*prosoc_left ,
alactor] ~ dnorm(0,10),
bp ~ dnorm(0,10),
bpC ~ dnorm(0,10)

)

data=d2 , chains=2 , 1iter=2500 , warmup=500)

Now compare all four models:

R code

8.8 compare(ml0.1,m10.2,m10.3,m10.4)

plot(compare(ml0.1,m10.2,ml0.3,ml0.4))

WAIC pWAIC dWAIC weight SE dSE

mlo.4 530.0 8.4 0.0 1 19.95 NA
ml0.2 680.5 2.0 150.6 0 9.32 19.23
mlo.3 682.3 3.0 152.4 0 9.40 19.17
mlO.1 688.0 1.0 158.0 0 7.15 19.94
WAIC
m10.4 | e—o—— A
m10.2 —eo0—
m10.3 _eo— |
m10.1 —©o—
550 600 650 700
deviance

Model m10. 4 easily dominates the others. This is a result of the variation among actors, which dwarfs
the variation arising from treatment. Since only model m10.4 recognizes the variation among actors,
it does much better in sample. It does so much better in sample, that even after accounting for the
expected penalty out-of-sample, it still is expected to out-perform the other, simpler models.

The caveat here is that this comparison applies only to predicting new observations for the same
chimpanzees. For new chimpanzees, we couldn’t use their individual intercepts to make predictions.
We could use the variation among chimpanzees to calibrate our predictions, though. But to do that
we'll need to actually estimate the variation itself. That will wait until Chapter 12. Near the end of
that chapter, we'll return to this kind of comparison problem.

10H3. (a) First, we need to make some 0/1 dummy variables for the categorical variables P, A, and v
in the data frame. Name them whatever you like, but here are my choices:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 77

library (rethinking) g;"de
library (MASS)
data(eagles)
d <- eagles
d$pirateL <- difelse(d$pP=="L" , 1 , 0)
d$victimL <- +difelse(dsv=="L" , 1, 0)
dspirateA <- difelse(dSA=="A" , 1, 0)
Now to fit the model both ways:
f <- alist(gfgde
y ~ dbinom(n , p),
logit(p) <- a + bP*pirateL + bV*victimL + bA*pirateA ,
a ~ dnorm(0,10),
bP ~ dnorm(0,5),
bV ~ dnorm(0,5),
bA ~ dnorm(0,5)
)
ml <- map(f , data=d)
ml.stan <- map2stan(f , data=d , warmup=1000 , iter=1le4)
precis(ml)
precis(ml.stan)
Mean StdDev 5.5% 94.5%
a 0.59 0.66 -0.47 1.65
bP 4.24 0.90 2.81 5.67
bV -4.59 0.96 -6.13 -3.06
bA 1.08 0.53 0.23 1.94
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 0.66 0.70 -0.51 1.75 3431 1
bP 4.64 1.01 3.07 6.21 2740 1
bV -5.06 1.06 -6.63 -3.37 2699 1
bA 1.14 0.56 0.23 2.02 3428 1
Hm, those estimates don't look the same. Checking the trace plot for m1.stan confirms that it fit
correctly. So something is wrong with the quadratic approximation here. Taking a look at the pairs
plot confirms that there is some serious skew here:
. R code
pairs(ml.stan) 8.11

And below is what it should look like:

R code
8.12

R code
8.13

78 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Al | %]w

=
4
¥

bV ; i
-0.38 -0.77 * - @
e
© 7 bA
~
- -0.55 0.12 0.05
o TT T T 77 T T T T
2 0 2 4 10 6 2

What has happened here is that both bP and bV are hitting ceiling and floor effects, due to the binomial
outcome. The parameter bP is hitting the ceiling, as a large pirate has so big an advantage that many
extreme values are all consistent with the data. Basically any value of bP that ensures nearly 100%
success will do. So there’s a long tail of large values on the right side of the posterior distribution for
bP. The same thing is going on with bV, but in the opposite direction, hitting the floor.

(b) Now for interpreting these estimates. We'll use the map2stan estimates here, because the
quadratic approximation was not entirely satisfactory. Remember, your estimates will be slightly
different, due to Monte Carlo error. But the effective predictions should be indistinguishable.

First, the intercept log-odds, a, indicates the probability of a successful attempt for a pirate when
all of the predictors are at zero. So that means a small immature pirate against a small victim has
probability:

logistic(0.66)

[1] 0.6592604

66% of attempts by immature small pirates on small victims are expected to succeed.
So what about the slope (5) estimates? These estimates just change the intercept for the log-odds.
So for example, the probability that a large immature pirate succeeds against a small victim would be:

logistic(0.66 + 4.64)

[1] 0.9950332

That is to say, the large pirate is almost certain to succeed, according to the model. You can generate
such predictions for all of the combinations, if you wish. And indeed, that's how the plotting of
predictions works.

But what about the proportional odds (odds ratio) interpretations? You can exponentiate each 3
estimate to get the proportional change in odds that arising from changing the corresponding dummy

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 79

variable from 0 to 1. Ignoring the confidence intervals for the moment (they’ll appear in the plots to
come), you can quickly exponentiate the 5 estimates with:

round(exp(coef(ml.stan)[2:4]) , 3)

bP bv bA

103.608 0.006 3.122
So this says that the odds (p/(1 — p)) of a successful attempt are multiplied by 104, when the pirate
becomes large. That’s a huge effect. Similarly, the odds of success are multiplied by 0.006, when the
victim becomes large. So if the pirate is large and the victim is large, the proportional change in odds
is 104 x 0.006 == 0.62 or about 40% reduction in odds. Finally, the effect of being adult is to improve
the odds, multiplying them by about 3, tripling the odds of a successful attempt. These are all relative
risk measures. For the absolute measures, it'll be nice to plot them.

There are many ways to plot the posterior predictions. I'll use a straightforward format with cases
on the horizontal and probability/count on the vertical. Here’s the code for the first plot, showing
proportion success on the vertical axis:

d$psuccess <- dSy / ds$n

p <- link(ml.stan)
<- sim(ml.stan)

<

.mean <- apply(p 2 , mean)
.PI <- apply(p , PI)
.mean <- apply(y , 2 , mean)
.PI <- apply(vy , PI)

< <X T ©
N N -

plot raw proportions success for each case

plot(d$psuccess , col=rangi2 ,
ylab="successful proportion" , xlab="case" , xaxt="n" ,
xlim=c(0.75,8.25) , pch=16)

label cases on horizontal axis
axis(1 , at=1:8 ,
labelszc(HLALH’"LASH’"LILH,HLISH,HSAL"’"SASH,HSILH’HSISH))

And here’s the second plot, showing number of successes on the vertical:

display posterior predicted probability of success
points(1:8 , p.mean)
for (i in 1:8) lines(c(i,i) , p.PI[,i])

plot raw counts success for each case

plot(d$y , col=rangi2 ,
ylab="successful attempts" , xlab="case" , xaxt="n" ,
xlim=c(0.75,8.25) , pch=16)

label cases on horizontal axis
axis(1 , at=1:8 ,
labeISzC(HLAL",HLASH’HLIL"’HLIS","SALH’HSAS"’"SIL","SISH))

display posterior predicted probability of success
points(1:8 , y.mean)

R code
8.14

R code
8.15

R code
8.16

R code
8.17

80 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

for (i in 1:8) lines(c(i,i) , y.PI[,i])

And here are the resulting plots:

1.0
®
°

. 0.8
N
o

15 20 25 30
°

successful proportion
04 0.6
[N
successful attempts
10
e

0.2
5

‘£ y (3 ¢ ¢
LAL LAS LIL LIS SAL SAS SIL SIS LAL LAS LIL LIS SAL SAS SIL SIS
case case

0

0.0

So what’s different? The biggest difference is probably that the left plot (proportions) makes the prob-
abilities more comparable, because it ignores the sample size for each case on the horizontal axis. This
has the advantage of showing, for example, that SIS attempts are predicted to be somewhat successful,
even though only 4 of them were observed. The right plot (counts), in contrast, makes it hard to see
the differing probabilities, because samples size varies so much across cases.

On the other hand, the count plot (right) has the advantage of showing additional uncertainty that
arises from the binomial process. Inspect the SIS case again, for example. The observed proportion
of SIS successes is outside and below the probability interval (left plot). However, in the bottom plot,
the model can accommodate the SIS cases, due to additional uncertainty arising from the binomial
process. In other words, an additional level of stochasticity is factored into the bottom plot, and so in
total looking also at counts might be necessary to seriously critique the model.

(c) The two models to compare are the one you fit before, with the three main effects, and the new
one, including the interaction P x A. Here is the code to fit the models and compare them:

m2.stan <- map2stan(

alist(
y ~ dbinom(n , p),
logit(p) <- a + bP*pirateL + bV*victimL +

bA*pirateA + bPA*piratelL*pirateA ,

a ~ dnorm(0,10),
bP ~ dnorm(0,5),
bV ~ dnorm(0,5),
bA ~ dnorm(0,5),
bPA ~ dnorm(0,5)

) , data=d , warmup=1000 , iter=1le4)

compare(ml.stan,m2.stan)

WAIC pWAIC dWAIC weight SE dSE
m2.stan 93.9 4.7 0.0 0.92 12.76 NA
ml.stan 98.7 4.1 4.9 0.08 13.33 4.68

That’s strong support for the interaction model, but the main effect model doesn’t completely vanish.
The model with the interaction gets 92% of the weight. Note that we can’t be too slavish to these
WAIC values and their weights, because the standard error of the difference is of the same magnitude
as the difference in WAIC. It still makes sense to bet on m2.stan, if you must bet. In this case, I

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 81

personally feel more secure appealing to actual biology to justify the interaction model. There are
good behavioral ecological reasons to expect an interaction, and there is good evidence of one. WAIC
is not necessarily the most important thing.

Let’s look at the estimates for the interaction model:

precis(m2.stan)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a -0.79 1.06 -2.44 0.92 2279 1
bP 6.60 1.47 4.23 8.83 2123 1
bv -5.30 1.19 -7.10 -3.41 2383 1
bA 3.44 1.26 1.35 5.30 2149 1
bPA -2.97 1.38 -5.11 -0.78 2163 1

So when the pirate is both large and adult, the log-odds are smaller. This seems like a weird result.
Shouldn't being large and adult help? It does. But the main effects for size and age are also turned
on, when an individual is both large and adult. So it’s hard to understand what the model is saying,
without computing predictions case by case.

So now for some plots. We'll use a prediction ensemble. I'll show the probability scale here. You
can easily modify the code, following the example from the previous section, to plot predicted counts
instead.

p <- ensemble(m2.stan,ml.stan)$link

p.mean <- apply(p , 2 , mean)
p.PI <- apply(p , 2 , PI)

plot raw proportions success for each case

plot(d$psuccess , col=rangi2 ,
ylab="successful proportion" , xlab="case" , xaxt="n"
xlim=c(0.75,8.25) , pch=16)

label cases on horizontal axis
axis(1 , at=1:8 ,
'Labe'LSzC(IILAL",IILASII’IILILII’IILIS","SALII’IISASII’IISIL","SISII))

display posterior predicted probability of success

points(1:8 , p.mean)
for (i in 1:8) lines(c(i,i) , p.PI[,i])

And here are the results.

1.0

0.8

0.6

successful proportion
0.4

0.2

% [
LAL LAS LIL LIS SAL SAS SIL SIS
case

0.0

R code
8.18

R code
8.19

R code
8.20

R code
8.21

R code
8.22

82 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Predictions, as indicated by the empty circle in each case, have gotten closer to the observed. This is
especially true for LAL, LIL, and SIS. The interaction effect allows the model to cope with the ceiling
effect better, meaning it doesn't have to use the main effect estimates to predict both middle-level
success and topped-out success.

10H4. (a) Before we start fitting, this is a classic case in which the raw predictor variables have an
inconveniently large scale. This tends to mess up map more than it does map2stan. Still, standardizing
the predictors before fitting will help both.

data(salamanders)
d <- salamanders

function to make this more convenient
stdz <- function(x) (x-mean(x))/sd(x)

d$PCTCOVER <- stdz(d$PCTCOVER)
d$FORESTAGE <- stdz(d$FORESTAGE)

To fit the Poisson regression of salamander counts against percent cover:

f <- alist(
SALAMAN ~ dpois(lambda),
log(lambda) <- a + bc*PCTCOVER,
a ~ dnorm(0,10),
bc ~ dnorm(0,1)
)
ml <- map(f , data=d)
ml.stan <- map2stan(f , data=d , warmup=1000 , iter=1le4)

precis(ml)
precis(ml.stan)

Mean StdDev 5.5% 94.5%
a 0.46 0.15 0.21 0.70
bc 1.12 0.18 0.83 1.41

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 0.43 0.16 0.18 0.68 2405 1
bc 1.15 0.19 0.84 1.44 2404 1

Looks like there’s a tiny skew in this posterior. But not so much as to cause any differences in effective
inference. If you don’t believe, inspect posterior predictions for both models.

(You could also fit the intercept-only model and compare. It'll do far worse than this model.)

So what about those estimates? The estimates for bc is positive, which means counts are predicted
to increase with cover. But by how much? Hard to say, until you convert back to the count scale. So
let’s plot the predictions, now. Here’s the code to do it. The approach is, as far scripting goes, similar
to the binomial model, because 1ink and sim automatically detect the link function you specified in
the model fitting. But if you had to do it yourself, you would use exp now instead of logistic as the
inverse link.

define values to compute over
pctcover.seq <- seq(from=-1.7,to=1,length.out=30)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 83

lambda calcs

lambda <- link(ml.stan , data=1list(PCTCOVER=pctcover.seq))
lambda.mean <- apply(lambda,2,mean)

lambda.PI <- apply(lambda,2,PI)

outcome calcs
n <- sim(ml.stan , data=1list(PCTCOVER=pctcover.seq))
n.PI <- apply(n,2,PI)

plotten sie!

plot(SALAMAN ~ PCTCOVER , data=d , col="slateblue")
lines(pctcover.seq , lambda.mean)

shade(lambda.PI , pctcover.seq)

shade(n.PI , pctcover.seq)

And here’s the resulting plot:

o
00
o
(o]
E 0 - o
= o
5 © o o
% 00
< -
~ A
o - o
-1.5 -1.0 -0.5 0.0 0.5 1.0
PCTCOVER

There is certainty a relationship between cover and density: the more cover, the more salamanders
on average. But the observed data actually seem to show two clusters of responses, with plots with
cover below 60% having similar low counts, with no obvious increasing trend, and those above 70%
cover having much higher counts. The model doesn’t really predict this observation. There also may
be more dispersion in the high-cover sites.

Probably a good place for a gamma-Poisson or multilevel model, really. Better yet, some theory
would help nominate over variables to explain the dispersion.

(b) Let’s inspect a model with both cover and forest age.

R code

f2 <- alist(8.23

SALAMAN ~ dpois(lambda),

log(lambda) ~ a + bc*PCTCOVER + bf*FORESTAGE,

a ~ dnorm(0,10),

bc ~ dnorm(0,1),

bf ~ dnorm(0,1)
)
m2.stan <- map2stan(f2 , data=d , warmup=1000 , iter=1e4)
precis(m2.stan)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

84 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

a 0.43 0.16 0.19 0.68 2733 1
bc 1.14 0.20 0.82 1.46 2650 1
bf 0.00 0.10 -0.16 0.16 3259 1

Notice that the estimate for bf is nearly zero, with small interval around it. There isn’t much associa-
tion between forest age and salamander density, while also controlling for percent cover.

Why doesn't forest age help much? It certainly does improve predictions, in the absence of percent
cover—check for yourself by fitting a model that includes only FORESTAGE as a predictor. If all we
knew was forest age, it would be a good predictor (try it!). But compared to percent cover, forest age
doesn’t help us at all. This is probably because the two predictors are correlated, but the predictive
ability of forest age arises just through its correlation with percent cover. That is to say, older forests
also tend to have more cover. But it’s cover that the salamanders are seeking, and so they are found
more in places with more cover. This is a misleading correlation, much like the Waftle House and
divorce rate thing from Chapter 5.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 85

9. Chapter 11 Solutions

11E1. An ordered categorical variable is constrained to discrete values, such as {1,2,3,4,5}, and these
values are also constrained to a fixed order of magnitudes. The distances between the values are not
however necessarily the same. So for example the amount of change required to move an a value from
1 to 2 may be different from the amount of change required to move from 2 to 3. Examples include
subjective ratings, “Likert” scales, and relative distances or durations.

An unordered categorical variable, in contrast, is not constrained to any order among the val-
ues. The different values merely represent different discrete outcomes, without any implied ordering.
These variables are the natural extension of binary outcomes to more than two categories. Examples
include choices among colors, individual identities, and individual words.

11E2. Ordered logistic regression typically uses a cumulative logit link function. This is similar to
an ordinary logit link, but in which the probability is a cumulative probability instead of a discrete
probability of a single event. As a consequence, the cumulative logit link states that the linear model
is the log-odds of the specified event or any event of lower ordered value.

11E3. Ignoring zero-inflation will tend to underestimate the rate of events. Why? Because a count
distribution with extra zeros added to it will have a lower mean. So treating such data as single-process
count data will result in a lower estimate for the mean rate.

11E4. Over-dispersion can arise simply from variation in underlying rates across units. For example,
if we count the number of ice creams sold by various ice cream shops for each day over an entire
month, the aggregated counts will likely be over-dispersed. This is because some shops sell more ice
cream than others—they do not all have the same average rate of sales across days.

Under-dispersion is considered less often. Under-dispersed count data has less variation than
expected. One common process that might produce under-dispersed counts is when sequential ob-
servations are directly correlated with one another, autocorrelation. This is the premise of Conway-
Maxwell-Poisson (aka COM-Poisson) distributions, which arise from one model of this kind, the
state-dependent queuing model, commonplace in the study of servers and production systems of many
kinds. Simply stated, when the rate at which jobs are completed depends upon how many jobs are
waiting to be completed, then counts may be highly autocorrelated. This reduces variation in the
observed counts, resulting in under-dispersion.

11M1. Log cumulative odds is defined as:
Pk
1— pk
where py is the probability of value k or any value less than k. So first we compute the proportion of
the sample that is at each unique value. We'll call these values g:

log

n<-c(12, 36 , 7, 41)
g <- n / sum(n)
q

[1] 6.12500000 0.37500000 0.07291667 0.42708333

R code
9.1

86 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Note that these values sum to 1:

R code
9.2 sum(q)

[1] 1

Now compute cumulative probability of each value. The algorithm is to take each value and add to it
all of the values to its left. The R function cumsum actually does this for us:

R code
93 P <- cumsum(q)

p

[1] 0.1250000 0.5000000 0.5729167 1.0000000
There are the p; values we need. All that remains is to take the log of the odds of each:

R cod.
6092 log(p/(1-p))

[1] -1.9459101 ©0.0000000 0.2937611 Inf

Note that the log cumulative odds of the highest value is infinity, just as in the chapter. It is always
known, because of how the data are scaled.

11M2. Using the vectors p and q from the previous problem:
R code . . .
9.5 plot(1:4 , p , xlab="rating" , ylab="cumulative proportion" ,
xlim=c(0.7,4.3) , ylim=c(0,1) , xaxt="n")
axis(1 , at=1:4 , labels=1:4)

plot gray cumulative probability lines
for (x in 1:4) lines(c(x,x) , c(0,p[x]) , col="gray" , lwd=2)

plot blue discrete probability segments
for (x in 1:4)
lines(c(x,x)+0.1 , c(p[x]-qlx],p[x]) , col="slateblue" , lwd=2)

add number labels
text(1:4+0.2 , p-q/2 , labels=1:4 , col="slateblue")

08 1.0
S

0.6

O|3

cumulative proportion
04

0.2

0.0

rating

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 87

11M3. As with the zero-inflated Poisson, the zero-inflated binomial mixes some extra zeros into
another distribution. The structure is very much the same as the ZI-Poisson. First, a single probability
determines whether or not a zero is observed. Call this probability p,. When a zero is not observed
from this first process, the binomial distribution takes over. It may also generate a zero. Call the
probability of a success from the binomial process g, and let it have n trials. Then the probability of a
zero, mixing together both processes, is:

Pr(0|po, q,n) = po + (1 — po)(1 — g)"

The logic is that either we get a zero from the first process, po of the time, or we got a zero from
the binomial, which happens only when all trials fail, (1 — q)" of the time. The probability of any
particular non-zero observation y is similarly:

Pr(ylpo, q,n) = (1 —m)ﬁq«l —)"

Compare this expression to the ZI-Poisson expression in the chapter.

11H1. The problem left some freedom to specify your own priors. So if you used different priors
than those in the solution below, don’t panic. Your priors may be fine. If you get different inferences
however, try to figure out if it was due to the different choice of priors. If you prefer your priors, be
sure to figure out a principled argument for them.

Here's a very simple Poisson model predicting deaths using only femininity as a predictor. I'm
going to standardize femininity, for the usual reasons.

library(rethinking)

data(Hurricanes)

d <- Hurricanes

d$fmnnty_std <- (d$femininity - mean(d$femininity))/sd(d$femininity)

ml <- map2stan(

alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty,
a ~ dnorm(0,10),
bf ~ dnorm(0,1)

))

data=Tlist(
deaths=d$deaths,
fmnnty=d$fmnnty_std

) , chains=4)

Before fitting the intercept-only model to compare, let’s peek at the parameters:

precis(ml)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 3.00 0.02 2.96 3.04 1812 1
bf 0.24 0.03 0.20 0.28 2090 1

So this model seems to think there is a reliably positive association between femininity of the hurri-
cane names and deaths.
Here’s the intercept only model:

R code
9.6

R code

R code

R code

R code
9.10

88 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

mO <- map2stan(
alist(
deaths ~ dpois(lambda),
log(lambda) <- a,
a ~ dnorm(0,10)
)
data=list(deaths=d$deaths) , chains=4)

Let’s compare the two models:

compare(m®,ml)

WAIC pWAIC dWAIC weight SE dSE
ml 4403.2 135.2 0.0 1 993.05 NA
mo 4439.8 80.8 36.6 0 1070.71 143.15

That’s pretty strong support for the model that includes femininity of names.

Now in order to see which hurricanes the model retrodicts well, we can plot the implied trend over
the raw data points. I'll compute and plot the expected death count, 89% interval of the expectation,
and 89% interval of the expected distribution of deaths (using Poisson sampling).

plot raw data
plot(d$fmnnty_std , d$deaths , pch=16 ,
col=rangi2 , xlab="femininity" , ylab="deaths")

compute model-based trend

pred_dat <- list(fmnnty=seq(from=-2,to=1.5,length.out=30))
lambda <- link(ml,data=pred_dat)

lambda.mu <- apply(lambda,2,mean)

lambda.PI <- apply(lambda,2,PI)

superimpose trend
lines(pred_dat$fmnnty , lambda.mu)
shade(lambda.PI , pred_dat$fmnnty)

compute sampling distribution
deaths_sim <- sim(ml,data=pred_dat)
deaths_sim.PI <- apply(deaths_sim,2,PI)

superimpose sampling interval as dashed lines

lines(pred_dat$fmnnty , deaths_sim.PI[1,] , lty=2)
lines(pred_dat$fmnnty , deaths_sim.PI[2,] , lty=2)

This is the result:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 89

3 - °
N
o
& []
N
3 [
0 w0
L
‘.‘q‘: []
© 8 |
A []
[
¢ [] []
1ol o
e e e
o eFM o5 ot o WA o
femininity

We can’t even see the 89% interval of the expected value, because it is so narrow. The sampling dis-
tribution isn't much wider itself. What you can see here is that femininity accounts for very little
of the variation in deaths, especially at the high end. There’s a lot of over-dispersion, which is very
common in Poisson models. As a consequence, this homogenous Poisson model does a poor job for
most of the hurricanes in the sample, as most of them lie outside the prediction envelop (the dashed
boundaries).

11H2. To deal with the over-dispersion seen in the previous problem, now we'll fit a Poisson model
with varying rates, a gamma-Poisson model. This code will set up the data (just as in the previous

problem) and fit the gamma-Poisson model:

library(rethinking) g;?de
data(Hurricanes)

d <- Hurricanes

dsfmnnty_std <- (d$femininity - mean(d$femininity))/sd(d$femininity)

m3 <- map2stan(
alist(
deaths ~ dgampois(lambda,scale),
log(lambda) <- a + bf*fmnnty,
a ~ dnorm(0,10),
bf ~ dnorm(0,1),
scale ~ dcauchy(0,1) # dexp would also be fine here
)5
data=Tl1ist(
deaths=d$deaths,
fmnnty=d$fmnnty_std
) , chains=4)

Inspect the marginal posterior distributions of the parameters:

. R code
precis(m3) 9.12

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 3.03 0.16 2.76 3.29 2396 1
bf 0.21 0.16 -0.03 0.47 2526 1

90 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

scale 0.45 0.06 0.36 0.55 2653 1

Note that the 89% interval for bf now overlaps zero, because it has more than 5 times the standard de-
viation as the analogous parameter in model m1. For a head-to-head comparison, let’s do a graphical
coeftab:

RE??; plot(coeftab(mi,m3))

m3 ——
m1 e

bf
m1 e
scale

m3 -
m1

00 05 10 15 20 25 3.0
Estimate

Model m3 has nearly the same posterior means for the intercept and slope bf, but much more uncer-
tainty.

How does this translate into predictions? To find out, let’s do the plotting from the previous prob-
lem over again, using model m3 now:

RE??Z # plot raw data

plot(d$fmnnty_std , d$deaths , pch=16 ,
col=rangi2 , xlab="femininity" , ylab="deaths")

compute model-based trend

pred_dat <- list(fmnnty=seq(from=-2,to=1.5,length.out=30))
lambda <- link(m3,data=pred_dat)

lambda.mu <- apply(lambda,2,mean)

lambda.PI <- apply(lambda,2,PI)

superimpose trend
lines(pred_dat$fmnnty , lambda.mu)
shade(lambda.PI , pred_dat$fmnnty)

compute sampling distribution
deaths_sim <- sim(m3,data=pred_dat)
deaths_sim.PI <- apply(deaths_sim,2,PI)

superimpose sampling interval as dashed lines

lines(pred_dat$fmnnty , deaths_sim.PI[1,] , lty=2)
lines(pred_dat$fmnnty , deaths_sim.PI[2,] , lty=2)

This is the new result:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 91

B - .
N
o
IS °
N
3 °
n O
_‘-S\—
3 °
o
<8 |
= °
°
° ° °
Q L d
______ R
lge m e == — >
Syt o ——— - _:jj!—jj:jjtjz:l‘i—“‘ _____
o - Pl ~6s "o % o oifeding ¢

-1.5 -1.0 -0.5 0.0 0.5 1.0
femininity

There is more uncertainty now about the relationship, and the prediction interval is wider. But the
predictions are still terrible.

Now for the conceptual part of this problem: Why does including varying rates, via the gamma
distribution, result in greater uncertainty in the relationship? The gamma-Poisson model allows each
hurricane to have its own unique expected death rate, sampled from a common distribution that is a
function of the femininity of hurricane names. We can actually plot this distribution from the poste-
rior distribution, for any given femininity value. T'll produce three examples, plotting 100 randomly
sampled gamma distributions of the rate of deaths for three different femininity values:

post <- extract.samples(m3)

fem <- (-1) # 1 stddev below mean
for (i in 1:100)
curve(dgamma2(x,exp(post$ali]+postsbf[i]*fem),postsscalel[i]) ,
from=0 , to=70 , xlab="mean deaths" , ylab="Density" ,
ylim=c(0,0.19) , col=col.alpha("black",0.2) ,
add=1ifelse(i==1,FALSE,TRUE))
mtext(concat("femininity = ",fem))

And just change the value assigned to fem above to make the other plots. Here are the plots:

femininity = -1 femininity = 0 femininity = 1
wn w el
= S| S
2o 2o 2o
@® . 4 @ v 4 ® v 4
g g © i
(s} [a] o
0 [Te} 0
S S 4 S
o o o
o o o
S 4 S S
o & T T T T T T T Sl T T T T T T T o b T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
mean deaths mean deaths mean deaths

Each gray curve above is a gamma distribution of mean death rates, sampled from the posterior distri-
bution of the model. This is an inherently confusing thing: a distribution sampled from a distribution.
So let’s take it again, slowly. A gamma distribution is defined by two parameters: a mean and a scale.
The mean in this model is controlled by the linear model and its two parameters, a and bf. The code

R code
9.15

R code
9.16

92 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

above takes single values of a and bf from the posterior distribution and builds a single linear model.
It’s exponentiated in the code, because this model uses a log link. And the parameter scale is the
scale, so you can see that in the code as well. 100 gamma distributions are drawn for each given value
of femininity. This visualizes the uncertainty in the posterior about the variation in death rates. Read
that again, slowly. It is a bit weird, but with a little time, it makes plenty of sense. Just like a simple
parameter like an intercept has uncertainty, and the posterior distribution measures it (given a model
and data), a function of parameters like a gamma distribution will also have uncertainty. Essentially
there are an infinite number of gamma distributions that are possible, the the Bayesian model has con-
sidered all of them and ranked them by their plausibility. Each plot above shows 100 such gamma
distributions, sampled from the posterior distribution in proportion to their plausibilities.

So now back to the explanation of why the parameters a and bf have wider posterior distributions.
Once we allow any given values of a and bf to produce many different death rates, because they feed
into a gamma distribution that produces variation, then many more distinct values of a and bf can
be consistent with the data. This results in wider posterior distributions. The same phenomenon will
reappear when we arrive at multilevel models in Chapter 12.

You might be curious how m3 compares to m1, in terms of WAIC. If so, take a look. You’ll find that
the effective number of parameters for m3 is very very large. It does fit the data better. But it’s also
very prone to overfitting. This is also a context in which DIC and WAIC very much disagree about
model ranking. In my experience, Poisson models exhibit common disagreement between DIC and
WAIC. Unlike DIC, WAIC is more data dependent. Exactly where the observations lie can make a
big difference for WAIC but not for DIC. As a result, it is possible to get large disagreement between
them, as in this example.

11H3. This was the hypothesis in the original paper: people tend to take storms with feminine names
less seriously, and so such storms are potentially more deadly, given equivalent strength. Our mis-
sion is to explore models that include both min_pressure and damage_norm as measures of storm
strength. We'll interact femininity with each, following the notion that a storm’s potential to cause
death depends upon the femininity of its name.

For example, here’s a model that interacts min_pressure with femininity. I will use homoge-
nous Poisson model here, for the moment, but you could go ahead and use gamma-Poisson models
as well.

standardize new predictor
dsmin_pressure_std <- (d$min_pressure - mean(d$min_pressure))/sd(dSmin_pressure)

dinteraction model
m_f_p_fp <- map2stan(
alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty + bp*minpress +
bfp*fmnnty*minpress,
a ~ dnorm(0,10),
c(bf,bp,bfp) ~ dnorm(0,1)
)
data=T1ist(
deaths=d$deaths,
fmnnty=d$fmnnty_std,
minpress=d$min_pressure_std
) , chains=4)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 93

And let’s go ahead and fit the same model without the interaction, with with the two main effects, for
comparison:

m_f_p <- map2stan(

alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty + bp*minpress,
a ~ dnorm(0,10),
c(bf,bp) ~ dnorm(0,1)

)5

data=Tl1ist(
deaths=d$deaths,
fmnnty=d$fmnnty_std,
minpress=d$min_pressure_std

) , chains=4)

Be sure to check that both models converged and sampled correctly. Now comparing the two with
WAIC:

compare(m_f_p,m_f_p_fp)

WAIC pWAIC dWAIC weight SE dSE
m_f_p 3490.0 211.3 0.0 1 1112.58 NA
m_f_p_fp 3571.8 270.9 81.8 0 1136.81 46.12

Well the model without the interaction seems to have a lot more support. Let’s also look at the inter-
action estimate itself:

precis(m_f_p_fp)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a 2.72 0.03 2.68 2.77 1512 1
bf 0.26 0.03 0.21 0.31 1469 1
bp -0.74 0.02 -0.77 -0.70 1430 1
bfp 0.07 0.03 0.03 0.11 1583 1

The interaction coeflicient is positive. Interpreting this is a bit tricky, because hurricanes get stronger
as their minimum pressure gets lower. So it makes sense for the main effect to be negative: storms
with larger minimum pressure cause fewer deaths. Does it also make sense for the interaction to be
positive? As usual, I advise caution with interpreting interactions from the coeflicient table. Better to
construct some counterfactual predictions and figure it out that way.

Let’s do that. T'll plot deaths against min_pressure, for both masculine and feminine storms:

minpress_seq <- seq(from=-3,to=2,length.out=30)

'masculine' storms
d_pred <- data.frame(

fmnnty=-1,

minpress=minpress_seq)
lambda_m <- link(m_f_p_fp,data=d_pred)
lambda_m.mu <- apply(lambda_m,2,mean)
lambda_m.PI <- apply(lambda_m,2,PI)

'feminine' storms
d_pred <- data.frame(

R code
9.17

R code
9.18

R code
9.19

R code
9.20

94 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

fmnnty=1,

minpress=minpress_seq)
lambda_f <- link(m_f_p_fp,data=d_pred)
lambda_f.mu <- apply(lambda_f,2,mean)
lambda_f.PI <- apply(lambda_f,2,PI)

now try plotting together

will use sqrt scale for deaths,

to make differences easier to see

cannot use log scale, bc of zeros in data

note uses of sqrt() throughout code

plot(d$min_pressure_std , sqrt(ds$deaths) ,
pch=1ifelse(d$fmnnty_std>0,16,1) , col=rangi2 ,
xlab="minimum pressure" , ylab="sqrt(deaths)")

lines(minpress_seq , sqrt(lambda_m.mu) , lty=2)

shade(sqrt(lambda_m.PI) , minpress_seq)

lines(minpress_seq , sqrt(lambda_f.mu) , lty=1)

shade(sqrt(lambda_f.PI) , minpress_seq)

15

sqrt(deaths)
10

5

-3 -2 -1 0 1 2
minimum pressure

The dashed trend is “masculine” storms, and the solid trend is “feminine” storms. So you can see
clearly here that the interaction model expects feminine storms to be a little more deadly, but the
difference between masculine and feminine storms actually decreases as pressure drops. This is not
in agreement with the hypothesis.

There’s another storm damage variable, however. Let’s repeat the above analysis, using damage_norm
this time. The variable damage_norm is an estimate of the property damage of a storm. The notion
is that this might serve as a proxy for potential to cause deaths, a better one than min_pressure be-
cause it may account for settlement patterns and population density. Here are the new models and
their WAIC comparison:

Réfgi # standardize predictor
d$damage_std <- (d$damage_norm - mean(d$damage_norm))/sd(dSdamage_norm)

dinteraction model
m_f_d_fd <- map2stan(
alist(
deaths ~ dpois(lambda),

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

log(lambda) <- a + bf*fmnnty + bd*damage +
bfd*fmnnty*damage,

a ~ dnorm(0,10),
c(bf,bd,bfd) ~ dnorm(0,1)

)

data=Tl1ist(
deaths=d$deaths,
fmnnty=d$fmnnty_std,
damage=d$damage_std

) , chains=4)

m_f_d <- map2stan(

alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty + bd*damage,
a ~ dnorm(0,10),
c(bf,bd) ~ dnorm(0,1)

))

data=T1ist(
deaths=d$deaths,
fmnnty=d$fmnnty_std,
damage=d$damage_std

) , chains=4)

95

Be sure to check that both models converged and sampled correctly. Now comparing the two with

WAIC:

compare(m_f_d , m_f_d_fd)

WAIC pWAIC dWAIC weight SE dSE
m_f_d 3216.7 130.4 0 1 794.23 NA
m_f_d_fd 3234.8 147.3 18 0 796.87 29.57

Hm, still not much support for the interaction. Let’s look at the counterfactual predictions again:

damage_seq <- seq(from=-0.6,to=5.5,length.out=30)

'masculine' storms
d_pred <- data.frame(

fmnnty=-1,

damage=damage_seq)
lambda_m <- link(m_f_d_fd,data=d_pred)
lambda_m.mu <- apply(lambda_m,2,mean)
lambda_m.PI <- apply(lambda_m,2,PI)

'feminine' storms
d_pred <- data.frame(
fmnnty=1,
damage=damage_seq)
lambda_f <- link(m_f_d_fd,data=d_pred)

lambda_f.mu <- apply(lambda_f,2,mean)
lambda_f.PI <- apply(lambda_f,2,PI)

plot
plot(d$damage_std , sqrt(dsdeaths) ,

R code
9.22

R code
9.23

R code
9.24

R code
9.25

96 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

pch=1ifelse(d$fmnnty_std>0,16,1) , col=rangi2 ,
xlab="damage" , ylab="sqrt(deaths)")
lines(damage_seq , sqrt(lambda_m.mu) , lty=2)
shade(sqrt(lambda_m.PI) , damage_seq)
lines(damage_seq , sqrt(lambda_f.mu) , lty=1)
shade(sqrt(lambda_f.PI) , damage_seq)

w
® o |
L
®
]
3
£
[on
wL{)-

o A

0 1 2 3 4 5
damage

Now we see the anticipated relationship: feminine storms (solid trend) are both stronger at all damage
values, and the difference from masculine storms increases with damage. But the effect is very small.
Look at the coefficients to see why:

precis(m_f_d_fd)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a 2.81 0.03 2.77 2.86 2070 1
bf 0.22 0.03 0.18 0.27 1716 1
bd 0.46 0.01 0.44 0.48 1981 1
bfd 0.03 0.01 0.01 0.05 1560 1

The interaction coefficient is quite small. It is reliably positive, but tiny. So it doesn’t make much
difference, until storm damage grows massive.

The models including damage_norm do better than those with min_pressure. Check the WAIC
comparison for yourself. So for a final task here (you could have done and still do much more though),
let’s consider a gamma-Poisson versions of the damage model:

dat <- list(
deaths=ds$deaths,
fmnnty=d$fmnnty_std,
damage=d$damage_std)
mgP_f_d_fd <- map2stan(
alist(
deaths ~ dgampois(lambda,scale),
log(lambda) <- a + bf*fmnnty + bd*damage +
bfd*fmnnty*damage,
a ~ dnorm(0,10),
c(bf,bd,bfd) ~ dnorm(0,1),
scale ~ dcauchy(0,1)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 97

)5
data=dat , chains=4)
precis(mgP_f_d_fd)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a 2.60 0.13 2.39 2.80 2819 1
bf 0.09 0.13 -0.11 0.30 2380 1
bd 1.25 0.22 0.91 1.59 2436 1
bfd 0.31 0.21 -0.01 0.65 2093 1
scale 0.69 0.10 0.51 0.83 2145 1

This model finds a stronger relationship with damage and a stronger interaction, but both estimates
are now much more variable. This is what we should expect from a gamma-Poisson model. The

gamma-distributed rates allow a wider range of parameter values to produce similar predictions.

What do the predictions look like now?

damage_seq <- seq(from=-0.6,to=5.5,length.out=30)

'masculine' storms
d_pred <- data.frame(
fmnnty=-1,
damage=damage_seq)
lambda_m <- link(mgP_f_d_fd,data=d_pred)

lambda_m.mu <- apply(lambda_m,2,median)
lambda_m.PI <- apply(lambda_m,2,PI)

'feminine' storms
d_pred <- data.frame(
fmnnty=1,
damage=damage_seq)
lambda_f <- link(mgP_f_d_fd,data=d_pred)

lambda_f.mu <- apply(lambda_f,2,median)
lambda_f.PI <- apply(lambda_f,2,PI)

plot

plot(d$damage_std , sqrt(dsdeaths) ,
pch=1ifelse(d$fmnnty_std>0,16,1) , col=rangi2 ,
xlab="damage" , ylab="sqrt(deaths)")

lines(damage_seq , sqrt(lambda_m.mu) , lty=2)

shade(sqrt(lambda_m.PI) , damage_seq)

lines(damage_seq , sqrt(lambda_f.mu) , lty=1)

shade(sqrt(lambda_f.PI) , damage_seq)

R code
9.26

R code
9.27

98 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

w
Do
L
®
(]
3
€
o
U)Lo_

O_

0 1 2 3 4 5
damage

This plot looks a little strange, because the overlapping prediction regions for masculine and feminine
storms create that dark wedge in the middle. But again, feminine storms are more deadly at all damage
amounts, and the difference grows with damage. But note that now predictions are all over the place,
especially for masculine storms. This is a result of allowing the gamma-distributed variation.

So what’s going on in these data? No one really knows. But I think that there just isn’t much sta-
tistical evidence for the interaction. It’s driven by few storms, and most of the variation in the data
have little to do with damage or femininity of names. Given that this is an observational, rather than
experimental, study, almost anything could be creating the correlation, weak as it is, between femi-
ninity and deaths. Why? Because there are many unmeasured confounds. So analyses like this are
heavily dependent upon how plausible you find the hypothesis. I personally find it highly implausible
that people refuse to evacuate because they imagine “Andrea” is not dangerous while “Andrew” is. If
you've even been in a hurricane evacuation, you might agree with me. But other people, including
the authors of the study, apparently do find this idea plausible.

Regardless, the data aren’t going to resolve the issue.

11H4. All that is needed here is to pre-transform the predictor damage_norm to log scale and then
replace the original version in the model or models from the previous problem. T'll fit both a main
effects model and interaction model, comparing them to the analogous models that use damage_norm
on the original scale.

One subtle issue with log transforming a predictor like this is whether or not standardize it af-
ter the transformation. I like standardized predictors, because they make fitting and interpretation
a little easier. More importantly, it makes setting informative (regularizing) priors easier. But it’s
rarely essential with these simple models. Here, I'll transform the original damage_norm and then
standardize it, but if you didn’t standardize, that’s fine. Just be cautious about the scale of your prior.

d$log_damage <- log(dSdamage_norm)
d$log_damage_std <- (d$log_damage - mean(d$log_damage))/sd(d$Slog_damage)

dat <- Tlist(
deaths=d$deaths,
fmnnty=d$fmnnty_std,
log_damage=d$log_damage_std)

capital 'D' here denotes log scale
m_f_D_fD <- map2stan(

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 929

alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty + bD*log_damage +
bfD*fmnnty*log_damage,
a ~ dnorm(0,10),
c(bf,bD,bfD) ~ dnorm(0,1)
)
data=dat , chains=4)

m_f_D <- map2stan(

alist(
deaths ~ dpois(lambda),
log(lambda) <- a + bf*fmnnty + bD*log_damage,
a ~ dnorm(0,10),
c(bf,bD) ~ dnorm(0,1)

)

data=dat , chains=4)

Now if you still have the models fit from the previous problem, we can compare the four models:

compare(m_f_d , m_f_d_fd , m_f_D , m_f_D_fD) g;;de
WAIC pWAIC dWAIC weight SE dSE
m_f_D_fD 2095.6 108.0 0.0 1 441.44 NA
m_f_D 2137.1 98.4 41.5 0 451.55 47.82
m_f_d 3216.7 130.4 1121.1 0 794.23 432.13
m_f_d_fd 3234.8 147.3 1139.2 0 796.87 434.92
The log-damage models are kickin’ it. And the interaction model comes out ahead of the main effect
model. Let’s look at it’s coeflicients, before plotting some counterfactual predictions:
precis(m_f_D_fD) gggde
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 2.18 0.04 2.11 2.24 1382 1
bf ©.01 0.04 -0.06 0.08 1193 1
bD 1.51 0.04 1.45 1.57 1211 1
bfD ©.30 0.04 0.23 0.36 1300 1
The main effect of femininity now straddles zero, but that interaction is reliably positive. As always,
some plotting is really needed to understand the implications:
R code
log_damage_seq <- seq(from=-3.2,to=2,length.out=30) 9.30

'masculine' storms
d_pred <- data.frame(

fmnnty=-1,

log_damage=1log_damage_seq)
lambda_m <- link(m_f_D_fD , data=d_pred)
lambda_m.mu <- apply(lambda_m,2,median)
lambda_m.PI <- apply(lambda_m,2,PI)

'feminine' storms
d_pred <- data.frame(

R code
9.31

100 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

fmnnty=1,
log_damage=1log_damage_seq)
lambda_f <- link(m_f_D_fD , data=d_pred)

lambda_f.mu <- apply(lambda_f,2,median)
lambda_f.PI <- apply(lambda_f,2,PI)

plot

plot(d$log_damage_std , sqrt(d$deaths) ,
pch=1ifelse(d$fmnnty_std>0,16,1) , col=rangi2 ,
xlab="1og damage (std)" , ylab="sqrt(deaths)")

lines(log_damage_seq , sqrt(lambda_m.mu) , lty=2)

shade(sqrt(lambda_m.PI) , log_damage_seq)

lines(log_damage_seq , sqrt(lambda_f.mu) , lty=1)

shade(sqrt(lambda_f.PI) , log_damage_seq)

15

sqrt(deaths)
10

5

-3 -2 -1 0 1
log damage (std)

As before, solid trend is “feminine” storms and dashed is “masculine” storms. In this perspective, it’s
only at the highest damage levels that there is a difference between masculine and feminine storms.
The feminine storms did do more damage, on average. But there’s not much difference for the majority
of storms.

You might wonder what the gamma-Poisson interaction model is like. So let’s try it:

mgP_f_D_fD <- map2stan(
alist(
deaths ~ dgampois(lambda,scale),
log(lambda) <- a + bf*fmnnty + bD*log_damage +
bfD*fmnnty*log_damage,
a ~ dnorm(0,10),
c(bf,bD,bfD) ~ dnorm(0,1),
scale ~ dcauchy(0,1)
)7
data=dat , chains=4)
precis(mgP_f_D_fD)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 2.25 0.11 2.07 2.43 2852 1
bf 0.04 0.12 -0.15 0.23 2623 1
bD 1.37 0.12 1.18 1.56 2471 1
bfD 0.17 0.13 -0.02 0.38 2852 1
scale 1.06 0.17 0.78 1.32 2772 1

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 101

As expected, the standard deviations of the coefficients have all increased, for the usual reason: allow-
ing gamma-distributed heterogeneity makes many more parameter values plausible. What do the
predictions look like? Let’s see:

R code

1 1 1
'masculine' storms 9.32

d_pred <- data.frame(

fmnnty=-1,

log_damage=1log_damage_seq)
lambda_m <- link(mgP_f_D_fD , data=d_pred)
lambda_m.mu <- apply(lambda_m,2,median)
lambda_m.PI <- apply(lambda_m,2,PI)

'feminine' storms
d_pred <- data.frame(

fmnnty=1,

log_damage=1log_damage_seq)
lambda_f <- 1link(mgP_f_D_fD , data=d_pred)
lambda_f.mu <- apply(lambda_f,2,median)
lambda_f.PI <- apply(lambda_f,2,PI)

plot

plot(d$log_damage_std , sqrt(d$deaths) ,
pch=1ifelse(d$fmnnty_std>0,16,1) , col=rangi2 ,
xlab="1log damage (std)" , ylab="sqrt(deaths)")

lines(log_damage_seq , sqrt(lambda_m.mu) , lty=2)

shade(sqrt(lambda_m.PI) , log_damage_seq)

lines(log_damage_seq , sqrt(lambda_f.mu) , lty=1)

shade(sqrt(lambda_f.PI) , log_damage_seq)

15

sqgrt(deaths)
10

5

-3 -2 -1 0 1
log damage (std)

Those four feminine super-storms on the righthand side are still pulling the feminine trend upwards,
but the gamma-distributed variation accounts for some of their distance from the mean, allowing the
median prediction (the solid trend) to rest lower than in the pure (homogenous) Poisson model.

11H5. To see whether females in these data are more bothered (rate as less permissible) scenarios
involving the contact principle (contact==1), we need an interaction effect. The reason is that just
including a main effect of male only addresses whether men are likely to rate any scenario as more
or less permissible. It doesn’t address a gender difference in any particular principle.

102 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

So we need an interaction male*contact, at least. But 'm going to make a new variable female,
so we can focus on females, like the question asks. You can do it either way.

szgg library(rethinking)
data(Trolley)
d <- Trolley

d$female <- 1 - d$male

And we can add a main effect of female and an interaction with contact. To fit the model, using
map:

R code
9.34 mla <- map(

alist(
response ~ dordlogit(phi , c(al,a2,a3,a4,a5,a6)),
phi <- bA*action + bI*intention + bC*contact +
bAI*action*intention + bCI*contact*intention +
bf*female + bfC*female*contact,
c(al,a2,a3,a4,a5,a6) ~ dnorm(0,10),
c(bA,bI,bC,bAI,bCI,bf,bfC) ~ dnorm(0,10)
)
data=d ,
start=1list(al=-2,a2=-1.5,a3=-0.5,a4=0,a5=1,a6=1.5))

And now I'll show the same model via map2stan. The only trick to be concerned with here is that
Stan does not allow a variable or parameter with the name case, so we'll need to pass in a trimmed
data list. Also be prepared for this to take more time than previous models in the book. There’s a
lot of data, and the likelihood is more complicated. Still, Stan does a great job and can handle vastly
more complex models than this one.
ch(f;l; dat <- list(
response=d$response,
action=d$action,
intention=d$intention,
contact=dS$contact,
female=d$female
)
mla_stan <- map2stan(
alist(
response ~ dordlogit(phi , cutpoints),
phi <- bA*action + bI*intention + bC*contact +
bAI*action*intention + bCI*contact*intention +
bf*female + bfC*female*contact,
cutpoints ~ dnorm(0,10),
c(bA,bI,bC,bAI,bCI,bf,bfC) ~ dnorm(@,10)
) b
data=dat , chains=3 , cores=3 ,
start=list(cutpoints=c(-2,-1.5,-0.5,0,1,1.5)))

I'll work with the map fit, but it makes no difference in this example. Let’s glance at the estimates:
R cgogg precis(mla)

Mean StdDev 5.5% 94.5%
al -2.95 0.06 -3.04 -2.86

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 103

a2 -2.25 0.05 -2.34 -2.17
a3 -1.65 0.05 -1.73 -1.57
a4 -0.59 0.05 -0.67 -0.52
a5 0.10 0.05 0.02 0.17
a6 1.02 0.05 0.94 1.10
bA -0.48 0.05 -0.56 -0.39
bI -0.28 0.06 -0.38 -0.19
bC -0.43 0.08 -0.56 -0.30
bAI -0.45 0.08 -0.58 -0.32
bCI -1.29 0.10 -1.45 -1.14
bf -0.62 0.04 -0.68 -0.55
bfC 0.21 0.09 0.07 0.35

Inspect the estimates for bf (the main effect of being female on cumulative log-odds) and bfC (the
interaction effect of being both female and in a contact scenario). The main effect is negative, —0.62,
and the interaction is positive, 0.21.

It will be easier to make the comparison between females and males, if we compute expected log-
odds for both females and males, both with and without contact treatment. Let’s just write our own
link function for the linear model phi. You could also use 1ink () as usual, but this way I get to show
you another example of doing something for yourself.

post <- extract.samples(mla)
phi.link <- function(A,I,C,f) {
post$bA*A + post$bI*I + postSbC*C + post$bAI*A*I +
postSbCI*C*I + post$bf*f + post$bfC*f*C

Now we compute posterior distributions for females and males, both with and without contact:

female.noC <- phi.link(0,0,0,1)
female.C <- phi.link(0,0,1,1)
male.noC <- phi.link(0,0,0,0)
male.C <- phi.link(0,0,1,0)

And then we can take the difference between contact and no-contact to see how much both females
and males change when contact is added:

female.diff <- female.C - female.noC
male.diff <- male.C - male.noC

For a quick comparison, use precis:

precis(data.frame(female.diff , male.diff))

Mean StdDev |0.89 0.89|
female.diff -0.22 0.09 -0.35 -0.08
male.diff -0.43 0.08 -0.56 -0.29

So females are actually less bothered by contact, in the sense that their log-odds decline less than that
of males.

So we have to conclude that females are less bothered by contact than are males. But on the other
hand, females are more bothered by all of the principles than are males, on average. So it may be that
females are just hitting a floor effect here, such they can’t be as bothered as males are, because males
start out rating everything as more permissible, on average.

R code
9.37

R code
9.38

R code
9.39

R code
9.40

R code
941

104 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Itd also help to plot the predictions, like the example in Chapter 12. Here’s the code to produce
a prediction plot for action==0, intention==0, and contact==0. You can change the kA, kI, and
kC values to produce other plots.

post <- extract.samples(mla)

kf <- 0:1
plot(1 , 1 , type="n" , xlab="female" , ylab="probability" ,
xlim=c(0,1) , ylim=c(0,1) , xaxp=c(0,1,1) , yaxp=c(0,1,2))
for (s in 1:100) {
p <- post[s,]
ak <- as.numeric(c(pal,pa2,ps$a3,p$as,psa5,p$a6))
phi <- p$bf*kf + p$bfC*kf*kC + p$SbA*kA + pSbI*kI +
pSbC*KC + pSbAI*KA*KI + p$bCI*kC*kI
pk <- pordlogit(1:6 , phi=phi , a=ak)
for (i in 1:6)
lines(0:1 , pk[,i] ,
col=col.alpha("slateblue",0.1) , lwd=0.5)
}
abline(h=0 , lty=2 , col="lightgray")
abline(h=1 , lty=2 , col="lightgray")
mtext(paste("A =",kA,", I =" ,kI,", C =",kC) , 3)

Below, I show some plots produced in this way. You can see that, overall, males (0 on the horizontal
axis) rate everything as more permissible. But the difference is smaller for the cases in which contact
is equal to 1 (righthand plots). That is, if you compare the lefthand plot to the righthand plot in each
row, the slopes of the lines becomes more flat, indicating a smaller difference between females and
males.

A=0,1=0,C=0 A=0,1=0,C=1

1
1.0

R e —

probability
0.5

probability
0.5

0.0
0.0

female female

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 105

A=0,1=1,C=0 A=0,1=1,C=1
S] <
rd 2
=R 3
837 837
[[
Q. Q.
__/4——")"F’/4-f(ff -
-_
o o
oi\ T o T T
0 1 0 1
female female

You could fit more models, if you are concerned about overfitting here. But after doing all of that, and
model-averaging the predictions, you’ll end up at the same destination as above. But you don’t have
to take my word for it. Its entirely possible that I missed something. But even if I didn't, you’ll learn
something from the exercise.

11H6. Read in the data:

library(rethinking)

data(Fish)

d <- Fish

str(d)

'data.frame': 250 obs. of 6 variables:

$ fish_caught: int 000010000 1.

$ livebait :dint 6111111101 .
$ camper :int 010101001 1.

$ persons :int 1112143431 .

$ child :int 0001021320 ...
$ hours t num 21.124 5.732 1.323 0.548 1.695 ...

I gave you to have a lot of freedom here. So I'm not expecting any particular model. But I do expect
you to have constructed a correct zero-inflated Poisson (ZIPoisson) model and use the exposure/offset
correctly. So here’s an example, using a subset of the predictors:

d$loghours <- log(d$hours)
m2a <- map2stan(
alist(
fish_caught ~ dzipois(p,mu),
logit(p) <- a® + bpO*persons + bcO*child,
log(mu) <- a + bp*persons + bc*child + loghours,
c(a®,a) ~ dnorm(0,10),
c(bp0,bcOd,bp,bc) ~ dnorm(0,1)
)
data=d , iter=1le4 , chains=2)

There are two key things to note. First, the parameters are different in the two linear models. No
parameters are shared among them. This allows the same predictors to potentially influence each
part of the process in different ways. Second, the offset Loghours is added onto the end of the linear
model for log(mu), the mean of the Poisson process producing fish. This corrects for the fact that
some visitors stayed longer, so had more opportunity to catch fish.

R code
9.42

R code
9.43

R code
9.44

R code
9.45

R code
9.46

R code
9.47

106 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Here are the marginal posterior distributions from the model above:

precis(m2a)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a0 0.77 0.56 -0.08 1.71 3765 1
a -2.30 0.15 -2.54 -2.07 3705 1
bpo -1.01 0.27 -1.44 -0.58 3655 1
bco 1.01 0.56 0.19 1.90 4082 1
bp 0.67 0.04 0.61 0.74 3720 1
bc 0.56 0.09 0.42 0.72 4630 1

Note that the parameters a0, bp®, and bco are on the logit (log-odds) scale, while the parameters a,
bp, and bc are on the log scale.

Here’s an example of generating predictions. We need to consider each component of the process
separately, and actually 1ink will respect this, because it computes the inverse-link values for all linear
models in the formula list you provided:

zip_link <- link(m2a)
str(zip_link)

List of 2

$ p : num [1:1000, 1:250] 0.506 0.709 0.333 0.589 0.419 ...

$ mu: num [1:1000, 1:250] 4.1 4.26 3.56 4.02 3.92 ...
The p matrix is probabilities of not fishing for each sample/case, and the mu matrix is the expected
number of fish caught (conditional on fishing) for each sample/case.

So what do these matrices imply about posterior predictions? You have to use the model, as always.
The p values provide predictions for excess zeros, and the mu values for the Poisson process (which
can also produce zeros). The an observation requires using both. For example, if p = 0.5and x =1
(fixed right now for ease of understand), then the implied predictive distribution is:

zeros <- rbinom(le4,1,0.5)
obs_fish <- (l-zeros)*rpois(le4,1)
simplehist(obs_fish)

6000

Frequency
4000

2000

0

Count

Now luckily sim understands all of this, because it knows the model already. So you can just:

fish_sim <- sim(m2a)
str(fish_sim)

num [1:1000, 1:250] 0 0 0 0 0 0 4 1 1 0 ...

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 107

And these simulations integrate over the posterior uncertainty, so there is one simulation for each
sample.

You could go on to summarize and plot these simulations. But what we actually want is counter-
factual posterior predictions. So let’s assume for example a party of 1 person spending 1 hour in the
park. Let’s do that now:

new data

pred_dat <- list(
loghours=1log(l), # note that this is zero, the baseline rate
persons=1,
child=06)

sim predictions - want expected number of fish, but must use both processes
fish_link <- link(m2a , data=pred_dat)

summarize

p <- fish_link$p

mu <- fish_Tlink$mu

(expected_fish_mean <- mean((1-p)*mu))
(expected_fish_PI <- PI((1-p)*mu))

[1] 0.1099065

5% 94%
0.08122458 0.13897464
What this means is that one person is expected to extract on average 0.11 fish per hour, with the
interval shown. This estimate allows for the zero-inflation, so it accounts for the probability that the
person is not fishing at all, depressing the expected value.

R code
9.48

R code
10.1

108 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

10. Chapter 12 Solutions

12E1. Option (a) will produce more shrinkage, because the prior is more concentrated. If this isn’t
obvious from the smaller standard deviation, you can always plot the two priors and compare:

curve(dnorm(x,0,1) , from=-5 , to=5 , ylab="Density")
curve(dnorm(x,0,2) , add=TRUE , lty=2)

0.2 0.3

Density

0.1

0.0

Since option (a), shown by the solid density, piles up more mass around zero, it will pull extreme
values closer to zero.

12E2. All that is really required to convert the model to a multilevel model is to take the prior for the
vector of intercepts, cigrour> and make it adaptive. This means we define parameters for its mean and
standard deviation. Then we assign these two new parameters their own priors, hyperpriors. This is
what it looks like:

y; ~ Binomial(1, p;)
logit(p;) = agrouveli] + B
Qgrove ~ Normal(@, 0y,)
B ~ Normal(0, 1)
@ ~ Normal(0, 10)
0« ~ HalfCauchy(0, 1)

The exact hyperpriors you assign don’t matter here. Since this problem has no data context, it isn't
really possible to say what sensible priors would be. Note also that an exponential prior on o, is just
as sensible, absent context, as the half-Cauchy prior.

12E3. This is very similar to the previous problem. The only trick here is to notice that there is
already a standard deviation parameter, o. But that standard deviation is for the residuals, at the top

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 109

level. We'll need yet another standard deviation for the varying intercepts:

y; ~ Normal(p;, o)
Mi = Qgroup[i] + B%i
Qlgrove ~ Normal(@, 0y,)
B ~ Normal(0, 1)
o ~ HalfCauchy(0, 1)
@ ~ Normal(0, 10)
0 ~ HalfCauchy(0, 1)

12E4. You can just copy the answer from problem 12E2 and swap out the binomial likelihood for a
Poisson, taking care to change the link function from logit to log:

y; ~ Poisson()\;)
log(Ai) = @grouefi) + B%i
Qgrovp ~ Normal(@, 0,,)

B ~ Normal(0,1)

a ~ Normal(0, 10)

0 ~ HalfCauchy(0, 1)

Under the hood, all multilevel models are alike. It doesn’t matter which likelihood function rests at
the top. Take care, however, to reconsider priors. The scale of the data and parameters is likely quite
different for a Poisson model. Absent any particular context in this problem, you can’t reccommend
better priors. But in real work, it’s good to think about reasonable values and provide regularizing
priors on the relevant scale.

12E5. The cross-classified model adds another varying intercept type. This is no harder than duplicat-
ing the original varying intercepts structure. But you have to take care now not to over-parameterize
the model by having a hyperprior mean for both intercept types. You can do this by just assigning
one of the adaptive priors a mean of zero. Suppose for example that the second cluster type is DAY:

y; ~ Poisson()\;)
log(Ai) = Qgroueli] + pay]i] + B
Qgrove ~ Normal(@, Ggrous)
Qpay ~ Normal(0, opay)
B ~ Normal(0, 1)
a ~ Normal(0, 10)
Oerovp ~ HalfCauchy(0, 1)
opay ~ HalfCauchy(0, 1)

R code
10.2

R code
10.3

R code
10.4

110 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Or you can just pull the mean intercept out of both priors and put it in the linear model:
y; ~ Poisson()\;)
log(\i) = & + Agrous[i] + Qoay[i] + BXi
Qgrove ~ Normal(0, orour)
Qpay ~ Normal(0, opay)
B ~ Normal(0, 1)
& ~ Normal(0, 10)
Oerove ~ HalfCauchy(0, 1)
opay ~ HalfCauchy(0, 1)

These are exactly the same model. Although as you’ll see later in Chapter 13, these different forms
might be more or less efficient in sampling.

12M1. Let’s load the reed frog data and look at the relevant variables:

library(rethinking)
data(reedfrogs)

d <- reedfrogs
str(d)

'data.frame': 48 obs. of 5 variables:
$ density : int 10 10 10 10 10 10 10 10 10 10 ...

$ pred : Factor w/ 2 levels "no","pred": 1111111122 ...

$ size : Factor w/ 2 levels "big","small": 1 111222211...
$ surv :dint 9 10 7 10 9 9 10 9 4 9 ...

$ propsurv: num 0.9 1 0.7 1 0.9 0.9 10.9 0.4 0.9 ...

The problem says to use pred and size. These are binary factors, so we'll need to recode them as
dummy variables.

dspred <- ifelse(d$pred=="no" , 0 , 1)

dsbig <- ifelse(d$size=="big" , 1, 0)

Now we can define and fit the models. Just to review, let’s begin again with the basic varying intercept
model from the chapter. It contains no predictors, just an intercept for each tank:

d$tank <- 1l:nrow(d)

mO <- map2stan(

alist(
surv ~ dbinom(density,p),
logit(p) <- a_tank[tank],
a_tank[tank] ~ dnorm(a,sigma_tank),
a ~ dnorm(0,10),
sigma_tank ~ dcauchy(0,1)

))

data=d , chains=4)

To this model skeleton we add predictors. Nothing will change otherwise. The varying intercepts

and their priors remain the same throughout. First a model containing only the dummy variable
indicating presence of predators:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 111

R code
m_p <- map2stan(10.5
alist(
surv ~ dbinom(density,p),
logit(p) <- a_tank[tank] + bp*pred,
bp ~ dnorm(0,1),
a_tank[tank] ~ dnorm(a,sigma_tank),
a ~ dnorm(0,10),
sigma_tank ~ dcauchy(0,1)
)
data=d , chains=4)
Next the model containing only the dummy variable indicating big tadpoles:
m_b <- map2stan(i{gde
alist(
surv ~ dbinom(density,p),
logit(p) <- a_tank[tank] + bb*big,
bb ~ dnorm(0,1),
a_tank[tank] ~ dnorm(a,sigma_tank),
a ~ dnorm(0,10),
sigma_tank ~ dcauchy(0,1)
)
data=d , chains=4)
Finally, a model containing both predictors and a model that contains their interaction:
m_p_b <- map2stan(i{;de

alist(

)5

surv ~ dbinom(density,p),

logit(p) <- a_tank[tank] + bp*pred + bb*big,
c(bp,bb) ~ dnorm(0,1),

a_tank[tank] ~ dnorm(a,sigma_tank),

a ~ dnorm(0,10),

sigma_tank ~ dcauchy(0,1)

data=d , chains=4)
m_p_b_pb <- map2stan(
alist(

)5

surv ~ dbinom(density,p),

logit(p) <- a_tank[tank] + bp*pred + bb*big + bpb*pred*big,
c(bp,bb,bpb) ~ dnorm(0,1),

a_tank[tank] ~ dnorm(a,sigma_tank),

a ~ dnorm(0,10),

sigma_tank ~ dcauchy(0,1)

data=d , chains=4)

Now wed like to inspect how the estimated variation across tanks changes from model to model.
This means comparing posterior distributions for o,y across the models. The coeftab function is
probably the quickest way to compare posterior means, at least:

R code
10.8

R code

10.9

R code
10.10

R code
10.11

112 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

coeftab(mO@,m_p,m_b,m_p_b,m_p_b_pb)

mo m_p m_b m_p_b m_p_b_pb
sigma_tank 1.64 0.83 1.63 0.79 0.75

nobs 48 48 48 48 48

You'll get a full table with all of the parameters in it, including the varying intercepts (all 48 of them).
I've just abbreviated the output above to make it easier to focus on sigma_tank. Note that adding a
predictor always decreased the posterior mean variation across tanks. Why? Because the predictors
are, well, predicting variation. This leaves less variation for the varying intercepts to mop up. In
theory, if we had in the form of predictor variables all of the relevant information that determined
the survival outcomes, there would be zero variation across tanks.

You might also notice that big reduces the variation much less than does pred. The predictor big,
in these models, doesn’t help prediction very much, so accounting for it has minimal impact on the
estimated variation across tanks.

12M2. Here is the WAIC comparison table:

compare(m@,m_p,m_b,m_p_b,m_p_b_pb)

WAIC pWAIC dWAIC weight SE dSE
m_p 1000.8 28.9 0.0 0.36 37.41 NA

m_p_b 1001.0 28.2 0.2 0.32 37.52 1.94
m_p_b_pb 1001.1 28.0 0.3 0.31 37.66 2.73
mo 1009.9 38.2 9.1 0.00 38.20 6.49
m_b 1010.2 38.2 9.4 0.00 38.22 6.58

The top three models are almost perfectly tied, suggesting that big accounts for very little. Can we
see this is the coefficients?

coeftab(m@,m_p,m_b,m_p_b,m_p_b_pb)

mo m_p m_b m_p_b m_p_b_pb

sigma_tank 1.64 0.83 1.63 0.79 0.75

bp NA -2.44 NA -2.46 -1.94
bb NA NA -0.31 -0.46 0.14
bpb NA NA NA NA -1.09
nobs 48 48 48 48 48

I abbreviated the above by clipping out the intercept parameters. Let’s focus on the beta coefficients.
Note that the posterior means for bb are smaller in absolute value than those for bp. This is consistent
with the WAIC comparison. In fact, the standard deviations on these coefficients are big enough that
the bb posterior distributions overlap zero quite a bit. Consider for example the model m_b:

precis(m_b)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
bb -0.31 0.46 -1.03 0.40 438 1
a 1.53 0.34 0.97 2.07 755 1
sigma_tank 1.63 0.22 1.26 1.94 2225 1

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 113

But before you conclude that tadpole size doesn’t matter, remember that other models, perhaps in-
cluding additional predictors, might find new life for big. Inference is always conditional on the
model.

12M3. Now we want a slightly modified version of model m@ from problem 12M1. We just replace
the Gaussian adaptive prior with a similar Cauchy prior. The

m@_Cauchy <- map2stan(i;?%e

alist(
surv ~ dbinom(density,p),
logit(p) <- a_tank[tank],
a_tank[tank] ~ dcauchy(a,scale_tank),
a ~ dnorm(0,10),
scale_tank ~ dcauchy(0,1)
)5
data=d , chains=4 , warmup=1000 , iter=3000 ,
control=1list(adapt_delta=0.99) , cores=4)

You might have some trouble sampling efficiently from this posterior, on account of the long tails of
the Cauchy. These result in the intercepts a_tank being poorly identified. You saw a simple example
of this problem in Chapter 8, when you met MCMC and learned about diagnosing bad chains. To
help with sampling, I've added the control list. This topic will come up in more detail in Chapter 13.
In any event, be sure to check the chains carefully and sample more if you need to.

The problem asked you to compare the posterior means of the a_tank parameters. Plotting the
posterior means will be a lot more meaningful than just looking at the values.
post_m@ <- extract.samples(mO) i{?ge
a_tank_m0 <- apply(post_m@$a_tank,2,mean)
post_mOC <- extract.samples(m@_Cauchy)
a_tank_m0C <- apply(post_mOCS$a_tank,2,mean)
plot(a_tank_m@ , a_tank_m@C , pch=16 , col=rangi2 ,

xlab="Gaussian prior" , ylab="Cauchy prior")

abline(a=0,b=1,1ty=2)

10

Cauchy prior
5

2 4 0 1 2 3 4
Gaussian prior
The dashed line show the values for which the intercepts are equal in the two models. You can see
that for the majority of tank intercepts, the Cauchy model actually produces posterior means that
are essentially the same as those from the Gaussian model. But the extremely large intercepts, under
the Gaussian prior, are very much more extreme under the Cauchy prior. For those tanks, on the
righthand side of the plot, all of the tadpoles survived. So using only the data from each tank alone,

114 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

the log-odds of survival are infinite. The adaptive prior applies pooling that shrinks those log-odds
inwards from infinity, thankfully. But the Gaussian prior causes more shrinkage of the extreme values
than the Cauchy prior does. That is what accounts for those 5 extreme points on the right of the plot
above.

12M4. This is much like the model in the chapter, just with the two varying intercept means inside
the two priors, instead of one mean outside both priors (inside the linear model). Since there are
two parameters for the means, one inside each adaptive prior, this model is over-parameterized: an
infinite number of different values of o and y will produce the same sum « + «y. The parameter -y is
redundant, in other words. This will produce a poorly-identified posterior. It’s best to avoid specifying
a model like this. Now you’ll see why.
Here’s the code to prepare the data and fit the model:

ﬁ;ffz library(rethinking)
data(chimpanzees)
d <- chimpanzees
d$recipient <- NULL
d$block_id <- d$block

ml2M4 <- map2stan(

alist(
pulled_left ~ dbinom(1 , p),
logit(p) <- a_actor[actor] + a_block[block_id] +

(bp + bpc*condition)*prosoc_left,

a_actor[actor] ~ dnorm(a , sigma_actor),
a_block[block_id] ~ dnorm(g , sigma_block),
c(a,g,bp,bpc) ~ dnorm(0,10),
sigma_actor ~ dcauchy(0,1),
sigma_block ~ dcauchy(0,1)

)

data=d, warmup=1000 , iter=6000 , chains=4 , cores=3)

And just to make life easier, here’s the code to re-fit the model from the chapter:

ﬁsz; ml2.5 <- map2stan(

alist(
pulled_left ~ dbinom(1 , p),
logit(p) <- a + a_actor[actor] + a_block[block_id] +

(bp + bpc*condition)*prosoc_left,

a_actor[actor] ~ dnorm(© , sigma_actor),
a_block[block_id] ~ dnorm(@ , sigma_block),
c(a,bp,bpc) ~ dnorm(0,10),
sigma_actor ~ dcauchy(0,1),
sigma_block ~ dcauchy(0,1)

)

data=d, warmup=1000 , iter=6000 , chains=4 , cores=3)

Now lets look at the precis output of each model:

th)ofg precis(ml2.5)

precis(ml2M4)

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Mean StdDev lower 0.89 upper 0.89
a 0.44 0.96 -1.00 1.94
bp 0.83 0.26 0.42 1.24
bpc -0.14 0.30 -0.61 0.34
sigma_actor 2.28 0.95 1.04 3.45
sigma_block 0.22 0.18 0.01 0.43

Mean StdDev lower 0.89 upper 0.89
a -0.06 7.06 -11.66 11.15
g 0.47 7.05 -10.32 12.35
bp 0.84 0.25 0.43 1.23
bpc -0.13 0.29 -0.62 0.30
sigma_actor 2.37 0.99 1.05 3.94
sigma_block 0.28 0.17 0.08 0.48

The new model, m12M4, samples quite poorly. The n_eff values are much lower, and the Rhat val-

n_eff
2857
9090
9395
4088
1894

n_eff
657
662
1188
2613
74
149

Rhat

S N

Rhat

1.

1.01
1.01
1.
1
1

01

.00
.05

03

115

ues are larger. You may also have noticed that it samples slowly. This is what happens when you

over-parameterize the intercept. Notice however that the inferences about the slopes are practically
identical. So even though the over-parameterized model is inefficient, it has identified the slope pa-

rameters.

12H1. To fit the fixed-effects and varying-effects models:

library(rethinking)
data(bangladesh)
d <- bangladesh

fix dindex

d$district_id <- as.integer(as.factor(d$district))

prep trimmed data list

dlist <- Tlist(
use_contraception = d$use.contraception,
district = d$district_id)

fixed effects model
m12H1f <- map2stan(
alist(
use_contraception ~ dbinom(1 , p),
logit(p) <- a_district[district],
a_district[district] ~ dnorm(0,10)
)
data=dlist)

varying effects model
ml2H1lv <- map2stan(
alist(
use_contraception ~ dbinom(1 , p),
logit(p) <- a + a_district[district],
a ~ dnorm(0,10),
a_district[district] ~ dnorm(0,sigma),
sigma ~ dcauchy(0,1)
)
data=dlist)

R code
10.17

R code
10.18

R code
10.19

R code
10.20

R code
10.21

R code
10.22

116 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Our job now is to get predicted probabilities for each district for each model. You could do this
several ways. I'm going to show you how to use link to do it. First, set up a new data list to compute
predictions for. In this list, each case is just a unique district.

pred.dat <- list(district=1:60)

The values inside use_contraception don’t matter. It just matters that they exist, so that 1ink knows
you want predictions for any linear models associated with that outcome variable.

And now we just call link for each model, passing it the new cases to compute predicted proba-
bilities for:

predl <- link(ml2H1f,data=pred.dat)
pred2 <- link(ml2H1lv,data=pred.dat)

It's worth peeking inside these to see that what they hold are 1000 proabilities for each district. That is,
the prediction for each district was computed for each of 1000 samples from the posterior distribution.

str(predl)

num [1:1000, 1:60] 0.184 0.31 0.316 0.285 0.273 ...

So that’s 1000 probabilities for each of the 60 districts. So to get average probabilities in each district:

pl.mean <- apply(predl , 2 , mean)
p2.mean <- apply(pred2 , 2 , mean)
round(pl.mean,2)

.28 0.38 0.30 0.08 0.00 0.34 0.42 0.63 0.37
.20 0.27 0.07 0.45 0.38 0.18 0.25 0.28 0.49
.54 0.29 0.50 0.46 0.50 0.54 0.53 0.22 0.33
.44 0.42 0.16 0.58 0.19 0.46 0.10 0.22 0.22

[1] 0.26 0.35 0.96 0.50 0.36 0.29 0
[16] ©.55 ©.29 0.34 0.39 0.40 0.39 0
[31] ©.45 0.21 0.43 0.66 0.50 0.35 0
[46] 0.52 0.47 0.53 0.02 0.47 0.46 0
Those are posterior average probabilities of using contraception for each district. These are the points
to plot.

Now to plot the estimated proportions using contraception. This means we take the estimated
log-odds lists and use the logistic transform on them, to convert to probability scale. This code will
do this, as they are plotted:

plot(1:60 , pl.mean , col=rangi2 , pch=16 , xlab="District" ,
ylab="probability use contraception")

points(1:60 , p2.mean)

abline(h=logistic(coef(ml2H1v)[1]) , lty=2) # plot line for 'a'

And here’s the plot:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 117

[]
[
2 |
%o
(&)
Lo s .
= ©
Qe ° o °
© ° e®ee0 8 82 ©
g | @ 50 8 g0 S ey 8
2O ooy v o o ey T
Sol0 T T Fo T 0 % o
oo (e] L ° °®
2 o
o ° [)
o | 'Y]
O T T T T T T T
0 10 20 30 40 50 60
District

The blue points are the fixed-effects estimates, and the open black ones are the varying effects. The
dashed line is the average proportion of women using contraception, in the entire sample (as esti-
mated by the varying effects model). Notice first that the black points are always closer to the dashed
line, as was the case with the tadpole example in lecture. This results from shrinkage, which results
from pooling information.

There are cases with rather extreme disagreements, though. The most obvious is district 3, which
has a fixed (blue) estimate of 1 but a varying (black) estimate of only 0.44. There are also two districts
(11 and 49) for which the fixed estimates are zero, but the varying estimates are 0.18 and 0.30. Whats
going on here? In these districts, either all sampled women used contraception or none did. Asa
result, the fixed effects estimates were silly—the parameter estimates are far from zero with very large
standard errors. The varying effects model was able to produce more rational estimates, because it
pooled information from other districts. Depending upon how many women were sampled in each
district, there was more or less shrinkage (pooling) towards to grand mean. So for example in the
case of district 3, there were only 2 women in the sample, and so there is a lot of distance between
the blue and black points. In contrast, district 11 had 21 women in the sample, and so while pooling
pulls the estimate oft of zero to 0.18, it doesn't pull it nearly as far as district 3.

Another way to think of this phenomenon is to view the same estimates arranged by number of
women in the district sample, on the horizontal axis. Then on the vertical we can plot the distance
(absolute value of the difference) between the fixed and varying estimates. Here’s what that looks like:

compute number of women sampled in each district
n_by_district <- sapply(1:60 ,
function(did) length(d$district_id[d$district_id==did]))
compute shrinkage
shrinkage <- abs(pl.mean - p2.mean)
plot(n_by_district , shrinkage , col="slateblue" ,
xlab="number of women sampled" , ylab="shrinkage by district")

R code
10.23

R code
10.24

R code
10.25

118 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

o] o
2.
53
@
e
ol o
S
a N |
féo 5 0@ o
'C\—
R AT o8
@
o | g@%ﬁfo@g@o ¥ 8w o §
o T T T T T T T
0 20 40 60 80 100 120

number of women sampled

You can think of the vertical axis as being the amount of shrinkage. The districts with fewer women
sampled show a lot more shrinkage, because there is less information in them. As a result, they are
expected to overfit more, and so they are shrunk more towards the overall mean.

12H2. First, load the data and construct a trimmed data list to use:

library(rethinking)

data(Trolley)

d <- Trolley

dat <- list(
response=d$response,
action=d$action,
intention=dS$intention,
contact=dS$contact,
id=coerce_index(ds$id))

We want to define two models. They will be identical aside from one having varying intercepts on
individuals. There are repeat measures on individuals in these data, because each individual evaluated
a range of scenarios.

Here’s the ordinary model without intercepts on individuals:

ml2H2a <- map2stan(
alist(
response ~ dordlogit(phi,cutpoints),
phi <- bA*action + bI*intention + bC*contact,
c(bA,bI,bC) ~ dnorm(0,1),
cutpoints ~ dnorm(0,10)
)
start=1list(cutpoints=seq(from=-2.5,to=1.5,length.out=6)),
data=dat , chains=3 , cores=3)

Note the trick of using seq to define the ordered start values for the cutpoints.
Now for the model with varying intercepts on individuals:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

m12H2b <- map2stan(
alist(
response ~ dordlogit(phi,cutpoints),
phi <- a_id[id] + bA*action + bI*intention + bC*contact,
a_id[id] ~ dnorm(0,sigma_id),
c(bA,bI,bC) ~ dnorm(0,1),
cutpoints ~ dnorm(0,10),
sigma_id ~ dcauchy(0,1)
)
start=1list(cutpoints=seq(from=-2.5,to=1.5,length.out=6)),
data=dat , chains=3 , cores=3)

119

R code
10.26

The subtle issue here is to realize not to include a new parameter for the mean of the varying intercepts.
Why? Because the cutpoints are the means of each level. These varying intercepts are adjustments

to those means. So we just need the standard deviation, sigma_1id.
Let’s do the quick WAIC comparison of the two models:

compare(ml2H2a,m12H2b)

WAIC pWAIC dWAIC weight SE dSE
ml2H2b 31338.7 354.8 0.0 1 177.86 NA
ml2H2a 37090.0 9.1 5751.3 0 76.17 172.54

That’s a big difference. Plotted, it is even more striking:

WAIC

m12H2b . —o—
m12H2a -

31000 32000 33000 34000 35000 36000 37000
deviance

R code
10.27

This suggests there is a lot of variation among individuals. Let’s take alook at the posterior distribution

of sigma_id:

sigma_id <- extract.samples(ml2H2b)$sigma_id
dens(sigma_id,xlab="sigma_id")

Density

2

1.7 18 19 20 21 22
sigma_id

R code
10.28

With a mode around 1.9, that’s a lot of individual variation. How can I tell? You have to keep in
mind the logit (log-odds) scale these parameters are on. A change on one unit of log-odds is a big
change in probability. To visualize how big a difference this variation makes, we can simply compute

R code
10.29

R code
10.30

R code
10.31

120 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

the predicted average response for each individual in the sample, under a similar treatment. For this,
we'll use sim. Note the trick below of including a dummy max-value response in the prediction data
frame. This is needed so that sim (as well as 11nk) knows how many levels are present in the outcome
variable.

d_pred <- data.frame(
response=7, #### needed so sim knows num levels
action=0,
intention=1,
contact=0,
id=1:331 #### 331 unique individuals
)
response <- sim(ml2H2b,data=d_pred)
str(response)

int [1:1000, 1:331] 4 7756 45366

The result is 1000 simulated responses for each of the 331 individuals. Now let’s average over the
samples and plot the points:

response.mu <- apply(response,2,mean)

plot(response.mu , xlab="4id" , ylab="average response" , ylim=c(1,7))

™~ o o 0%0 00 % o ©0 00 o 9

4 [} o [eXe]
wo @o§ooo ° 50 00OOO 0 9% 4,0

o o o o

2 A og? o 0 600
g1 ® Yo% 2y 8@ 0 0 o % °%0 ¢
oy 1o O(Iﬁgjo% o@% o 65) & oo o
[CR O o ob@
mv &g) @CO O @ 80@¢)o §%
) @ O§ oO ®
o S %o ©% 8° o
5™+ 0 oPo ©&,9000 S0 ©
> o~ 9 o 807
© o] o o ©
~ 0 O 1o @OO

o o o o o) ° o
- | o)

0 50 100 150 200 250 300

id
That’s a lot of variation in average response to the same type of scenario.

Now it’s natural to ask what accounting for this individual variation has done to our estimates of
the treatment effects. Let’s compare the posterior means of the two models:

coeftab(ml2H2a,m12H2b)

ml2H2a ml2H2b

cutpoints[1] -2.84 -3.97
cutpoints[2] -2.15 -3.05
cutpoints[3] -1.57 -2.27
cutpoints[4] -0.55 -0.79
cutpoints[5] 0.12 0.25
cutpoints[6] 1.03 1.65
bA -0.71 -0.96
bI -0.72 -0.96
bC -0.96 -1.27

sigma_id NA 1.89

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 121

nobs 9930 9930

You'll get a bunch of varying intercepts in your display as well, but I've cut those out of the above
to save space. Note that the bA, bI, and bC coefficients have all gotten further from zero, indicating
stronger effects. The variation among individuals masked some of the treatment effect, perhaps. You
should worry that the precision has changed as well, so go ahead and compare the standard deviations,
using precis perhaps. You'll see that the m12H2b estimates are just as precise. They are merely further
from zero.

12H3. The cross-classified model will add additional varying intercepts for each story in the data.
There are 12 different stories, which are repeated across individuals. So we have repeat measures on
story just as we have repeat measures on individual id.

So let’s load the data again and build the index variable for story:

library(rethinking) i{gge
data(Trolley)
d <- Trolley
dat <- list(
response=d$response,
action=d$action,
intention=dS$intention,
contact=dS$contact,
id=coerce_index(d$id),
story=coerce_index(d$story))

The following code will fit the cross-classified model. Be patient. It may take up to 10 or 15 minutes
per chain, depending upon your computer. So you definitely want to use multiple cores here, so you
can sampling from all of the chains at the same time.
m12H3 <- map2stan(i{gge
alist(
response ~ dordlogit(phi,cutpoints),
phi <- a_id[id] + a_story[story] +
bA*action + bI*intention + bC*contact,
a_id[id] ~ dnorm(0,sigma_id),
a_story[story] ~ dnorm(0,sigma_story),
c(bA,bI,bC) ~ dnorm(0,1),
cutpoints ~ dnorm(0,10),
sigma_id ~ dcauchy(0,1),
sigma_story ~ dcauchy(0,1)
)5
start=1list(cutpoints=seq(from=-2.5,to=1.5,length.out=6)),
data=dat , chains=3 , cores=3)

The first thing to do is compare this model to the two models from the previous problem. If you need
to re-fit those models (m12H2a and m12H2b), do so now. Then:

compare(ml2H2a , ml2H2b , ml12H3) i;gie

WAIC pWAIC dWAIC weight SE dSE
ml2H3 30686.7 364.4 0.0 1 179.71 NA
ml2H2b 31338.6 354.9 652.0 0 177.80 48.31
ml2H2a 37090.1 9.1 6403.4 0 76.10 175.06

R code
10.35

122 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

That looks like strong support for including varying intercepts on story, implying there is important
variation among stories with the same treatment (action, intention, contact) values.
Let’s look at the marginal posterior distributions for m12H3:

precis(ml2H3)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

bA -1.24 0.06 -1.32 -1.14 3000 1
bI -0.93 0.05 -1.02 -0.85 3000 1
bC -1.85 0.08 -1.97 -1.72 3000 1
sigma_id 1.96 0.08 1.84 2.10 3000 1
sigma_story 0.61 0.15 0.39 0.80 3000 1

The standard deviation among individuals, sigma_id, is similar to what it was in m12H2b. The poste-
rior mean standard deviation among stories, sigma_story, is about a third as large. So there’s more
variation among individuals than among stories.

Including varying intercepts on stories has always had a noticeable impact on estimates for the
treatment variables. Both bA and bC have gotten further from zero, and their 89% intervals don't
even include the previous 89% lower bounds from m12H2b. So again, variation across clusters in the
presence of repeat measures hid some of the treatment effect from us, it seems.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 123
11. Chapter 13 Solutions

13E1. To add a varying slope on x, we have to add a dimension to the adaptive prior. This will mean
that the 5 parameter becomes the average slope, and then well need a new standard deviation pa-
rameter for the slopes and a correlation parameter to estimate the correlation between intercepts and
slopes. The way this was done in the chapter, it'll look like the following. You can find an annotated
example on page 407. Keep in mind that the precise notation varies among statisticians: sometimes
(as below) vectors are in square brackets and matrices in parentheses, but others mix and match oth-
erwise, or always use one or the other. As long as it is clear in context, it'll be fine. And if anyone
gives you grief about your notation, just remind (or inform) them that notational conventions vary
and ask them which part requires clarification.

y; ~ Normal(u;, o)

Hi = Qgroue[i] + Bsnoup[i]xi
Qlgroup «
~ MVN 1 ,S
|:BGROUP:| orma < [ﬁ:| >

o« 0 oo O

- (00 UB)R(O 0’/3>
~ Normal(0, 10)

~ Normal(0, 10)

~ HalfCauchy(0, 1)

04 ~ HalfCauchy(0,1)

o ~ HalfCauchy(0, 1)

R ~ LK]Jcorr(2)

w»

Q

™

Q

If you used different priors for 8 and o3 and R, that’s fine. Just be sure your choices make sense to
you.

13E2. This is an open, imaginative problem. So instead of providing a precise answer, let me provide
the structure that is being asked for. Then I'll follow it was some brief examples.

When intercepts and slopes are correlated, it means that clusters in the data that have high baselines
also have stronger positive associations with a predictor variable. This is merely descriptive. So the
mechanistic explanations that are consistent with it are highly diverse.

A very common example comes from educational testing. In this context, clusters are individual
schools and observations are individual student test scores. Schools with high average test scores also
tend to show greater differences (a larger slope) between poor and rich students within the school.

In growth data, large individuals also tend to grow faster. So for any interval of measurement, the
repeat measures of size for individuals show a positive correlation between beginning height (inter-
cept) and the slope across time.

In financial data, for very similar reasons, large investments tend to grow faster. So again, inter-
cepts tend to be positively associated with slopes.

13E3. It possible for a varying effects model to actually have fewer effective parameters than a corre-
sponding fixed effect model when there is very little variation among clusters. This will create strong
shrinkage of the estimates, constraining the individual varying effect parameters. So even though
the varying effects model must have more actual parameters in the posterior distribution, it can be

R code
11.1

R code
11.2

R code
11.3

124 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

less flexible in fitting the data, because it adaptively regularizes. There’s really nothing special about
varying slopes in this respect. Varying intercepts work the same way.

Here’s an example. To answer this problem, you did not need to provide a computational example.
I'm just going to provide one for additional clarity.

Let’s simulate some data in which there are clusters, but they aren’t very different from one another.
For the sake of comprehension, let’s suppose the clusters are individuals and the observations are
test scores. Each individual will have a unique “ability” that influences each test score. Our goal in
estimation will be to recover these abilities.

N_individuals <- 100
N_scores_per_individual <- 10

simulate abilities
ability <- rnorm(N_individuals,0,0.1)

simulate observed test scores

sigma here large relative to sigma of ability

N <- N_scores_per_individual * N_individuals

id <- rep(1l:N_individuals,each=N_scores_per_individual)
score <- round(rnorm(N,ability[id],1) , 2)

put observable variables in a data frame
d <- data.frame(

id = -d,

score = score)

Now let’s fit a fixed effect model. This is the “unpooled” model with an intercept for each individual,
but with a fixed prior.

m_nopool <- map2stan(

alist(
score ~ dnorm(mu,sigma),
mu <- a_id[id],
a_id[id] ~ dnorm(0,10),
sigma ~ dcauchy(0,1)

)7

data=d , chains=2)

And this is the corresponding “partial pooling” model with an adaptive prior, the varying effects
model. I'm going to use the non-centered (page 419, see Overthinking box on page 422) parameter-
ization here, because this is exactly a common situation in which it is needed to efficiently sample.

m_partpool <- map2stan(

alist(
score ~ dnorm(mu,sigma),
mu <- a + z_id[id]*sigma_id,
z_id[id] ~ dnorm(0,1),
a ~ dnorm(0,10),
sigma ~ dcauchy(0,1),
sigma_id ~ dcauchy(0,1)

)

constraints=1list(sigma_id="1lower=0"),

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 125

data=d , chains=4 , cores=4)

Now let’s compare their effective parameters, as computed by WAIC. But first, let’s count the actual
parameters in each model. The model m_nopool has 100 intercepts (one for each individual) and
one standard deviation parameter, for 101 parameters total. The model m_partpool has 100 varying
intercepts, one average intercept a, and two standard deviation parameters, for 103 parameters total.
Now let’s compare:

compare(m_nopool , m_partpool) ?ﬁzde
WAIC pWAIC dWAIC weight SE dSE
m_partpool 2917.3 8.2 0.0 1 44.45 NA
m_nopool 3024.0 95.7 106.8 0 45.72 17.29
The partial pooling model only has 8 effective parameters (in this simulation—your values will differ
a bit due to simulation variance). The no-pool model has about 96 effective parameters. That's a big
difference. You can uncover why m_partpool has so many fewer effective parameters than actual
parameters by looking at the posterior for sigma_id:
precis(m_partpool) ?ﬁgde
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 0.04 0.03 -0.01 0.10 4000 1
sigma 1.04 0.02 1.00 1.08 4000 1
sigma_id 0.07 0.05 0.00 0.14 1272 1
The posterior mean is just 0.07, so that induces a lot of shrinkage. Those 100 parameters are only as
flexible as 6 or so parameters.
This whole ordeal emphasizes something very important about model “complexity”: the number
of dimensions in a model is not a relevant measure of complexity in terms of judging overfitting risk.
This should warn us off using any intuitive measure of complexity when employing Occam’s Razor
style reasoning. Just because one model makes more assumptions than another (has more parameters
or distributions), that does not always mean that it overfits more.
In statistics, “simple” just doesn’t mean what in means in plain English.
13M1. Here’s a compact form of the café robot simulation code, with the correlation rho changed to
zero:
set up parameters of population ?fgde
a <- 3.5 # average morning wait time '
b <- (-1) # average difference afternoon wait time
sigma_a <- 1 # std dev in dintercepts
sigma_b <- 0.5 # std dev in slopes
rho <- (0) # correlation between intercepts and slopes

Mu <- c(a , b)
cov_ab <- sigma_a*sigma_b*rho
Sigma <- matrix(c(sigma_a’2,cov_ab,cov_ab,sigma_b”2) , ncol=2)

simulate observations

N_cafes <- 20

library (MASS)

set.seed(6) # used to replicate example

R code
11.7

R code
11.8

126 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

vary_effects <- mvrnorm(N_cafes , Mu , Sigma)
a_cafe <- vary_effects[,1]

b_cafe <- vary_effects[,2]

N_visits <- 10

afternoon <- rep(0:1,N_visits*N_cafes/2)

cafe_id <- rep(1:N_cafes , each=N_visits)

mu <- a_cafe[cafe_id] + b_cafe[cafe_id]*afternoon
sigma <- 0.5 # std dev within cafes

wait <- rnorm(N_visits*N_cafes , mu , sigma)

package into data frame
d <- data.frame(cafe=cafe_id , afternoon=afternoon , wait=wait)

And this code will sample from the posterior distribution, using the same model as in the chapter:

ml3.1 <- map2stan(

alist(
wait ~ dnorm(mu , sigma),
mu <- a_cafe[cafe] + b_cafe[cafe]*afternoon,
c(a_cafe,b_cafe)[cafe] ~ dmvnorm2(c(a,b),sigma_cafe,Rho),
a ~ dnorm(0,10),
b ~ dnorm(0,10),
sigma_cafe ~ dcauchy(0,2),
sigma ~ dcauchy(0,2),
Rho ~ dlkjcorr(2)

)

data=d ,

iter=5000 , warmup=2000 , chains=2 , cores=2)

Now to visualize the posterior distribution of rho:

post <- extract.samples(ml3.1)
dens(post$Rho[,1,2] , xlab="rho")

©
>2 4
2
c
[
a
Yo}
@
(=)
O. L T T T
-0.5 0.0 0.5
rho

There’s the zero correlation.

I set the random number seed in the code above to 6, so you can replicate the figure above. But
for fun, go ahead and do the simulation and sampling again with the seed set to set.seed(5). You
should then see that the posterior distribution of rho is massed up above zero. This won’t happen with
most random simulations, but it's good to remember that any particular sample may be misleading.
The posterior distribution is not magic: it cannot necessarily recover the data-generating mechanism.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 127

And with real data, these models will never accurately recover the data generating mechanism. At
best, they describe it in a scientifically useful way.

13M2. The model presented in the problem uses completely independent priors for the intercepts,
Qtears> and slopes, Beaps. The consequence of this is that the model implicitly assumes no correlation
between the intercepts and slopes. It’s missing the correlation parameter. Let’s see what happens then
when in truth the the intercepts and slopes are indeed correlated but the model ignores the correlation.

First, let’s run the data simulation again, repeated here in compact form for convenience:

. R code

set up parameters of population 11.9
a <- 3.5 # average morning wait time
b <- (-1) # average difference afternoon wait time
sigma_a <- 1 # std dev 1in dintercepts
sigma_b <- 0.5 # std dev in slopes
rho <- (-0.7) # correlation between intercepts and slopes
Mu <- c(a, b)
cov_ab <- sigma_a*sigma_b*rho
Sigma <- matrix(c(sigma_a”2,cov_ab,cov_ab,sigma_b”2) , ncol=2)

simulate observations

N_cafes <- 20

library (MASS)

set.seed(5) # used to replicate example
vary_effects <- mvrnorm(N_cafes , Mu , Sigma)
a_cafe <- vary_effects[,1]

b_cafe <- vary_effects[,2]

N_visits <- 10

afternoon <- rep(0:1,N_visits*N_cafes/2)
cafe_id <- rep(1:N_cafes , each=N_visits)

mu <- a_cafe[cafe_id] + b_cafe[cafe_id]*afternoon
sigma <- 0.5 # std dev within cafes

wait <- rnorm(N_visits*N_cafes , mu , sigma)

package into data frame
d <- data.frame(cafe=cafe_id , afternoon=afternoon , wait=wait)

And here is the code to sample from the new model’s posterior distribution:

R code

ml3M2 <- map2stan(11.10

alist(
wait ~ dnorm(mu , sigma),
mu <- a_cafe[cafe] + b_cafe[cafe]*afternoon,
a_cafe[cafe] ~ dnorm(a,sigma_alpha),
b_cafe[cafe] ~ dnorm(b,sigma_beta),
a ~ dnorm(0,10),
b ~ dnorm(0,10),
sigma ~ dcauchy(0,1),
sigma_alpha ~ dcauchy(0,1),
sigma_beta ~ dcauchy(0,1)
) b
data=d ,
iter=5000 , warmup=2000 , chains=3 , cores=3)

R code
11.11

R code
11.12

128 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

And let’s sample again from the model in the chapter, so we can directly compare estimates. In the
main text, the Cauchy priors were given a scale of 2, while in the model above they are set to 1. So I'll
adjust the priors to match here. But it doesn’t make much difference.

ml3.1 <- map2stan(

alist(
wait ~ dnorm(mu , sigma),
mu <- a_cafe[cafe] + b_cafe[cafe]*afternoon,
c(a_cafe,b_cafe)[cafe] ~ dmvnorm2(c(a,b),sigma_cafe,Rho),
a ~ dnorm(0,10),
b ~ dnorm(0,10),
sigma_cafe ~ dcauchy(0,1),
sigma ~ dcauchy(0,1),
Rho ~ dlkjcorr(2)

))

data=d ,

iter=5000 , warmup=2000 , chains=3 , cores=3)

We're primarily interested in differences in the varying effects estimates. So let’s plot them together
and see if there are any differences (in posterior means):

postl <- extract.samples(ml3.1)
al <- apply(postl$a_cafe , 2 , mean)
bl <- apply(postl$b_cafe , 2 , mean)

post2 <- extract.samples(ml3M2)
a2 <- apply(post2$a_cafe , 2 , mean)
b2 <- apply(post2$b_cafe , 2 , mean)

plot(al , bl , xlab="+intercept" , ylab="slope" ,
pch=16 , col=rangi2 , ylim=c(min(b1)-0.05 , max(bl)+0.05) ,
xlim=c(min(al)-0.1 , max(al)+0.1))

points(a2 , b2 , pch=1)

o
2
®
4 ° °
@ o
o - ® g
o ' o S °©
& %0
@ © ° e
< o)
N
Q
©
‘_I T T T T T
2 3 4 5 6
intercept

The blue filled points are the posterior means from m13. 1, the original mode in the chapter that
includes the correlation between intercepts and slopes. The open points are the posterior means
from m13M2, the model that assumes no correlation between intercepts and slopes.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 129

First, notice that there is a lot of agreement here. Assuming no correlation didn’t completely
change inference. And if you look at the posterior distributions of the average effects, o and 3 and
the standard deviation parameters, they are essentially identical.

Second, notice that there are differences in the above plot, and they tend to occur at extreme inter-
cept and slope values. In the middle of the cloud of points, the blue and open circles almost perfectly
overlap. At the edges, there is more separation. This is especially true for extreme intercepts. What’s
going on here?

Model m13. 1 estimated the correlation between intercepts and slopes and it used that correlated
at the same time to adjust the intercepts and slopes. You learned this much in the chapter. The
correlation in these data is negative, so large intercepts and associated (on average) with small slopes.
So in the plot above, right of the center the blue points are displaced below the open points, because
the model used the fact that those intercepts were larger than average to push the slopes to be smaller.
Likewise, to the left of the center the intercepts are smaller than average. So the model pushes the
slopes up to become larger.

The model that includes the correlation will be, on average, more accurate. It exploits additional
information about the population in order to shrink in both dimensions.

13M3. For convenience, first let’s fit the varying slopes model from the chapter. To compare total
running times, you'll have to run this model on your machine, anyway.

library(rethinking)

data(UCBadmit)

d <- UCBadmit

dsmale <- ifelse(d$applicant.gender=="male" , 1, 0)
d$dept_id <- coerce_index(d$dept)

ml3.3 <- map2stan(

alist(
admit ~ dbinom(applications , p),
logit(p) <- a_dept[dept_id] +

bm_dept[dept_id]*male,

c(a_dept,bm_dept) [dept_id] ~ dmvnorm2(c(a,bm) , sigma_dept , Rho),
a ~ dnorm(0,10),
bm ~ dnorm(0,1),
sigma_dept ~ dcauchy(0,2),
Rho ~ dlkjcorr(2)

)

data=d , warmup=1000 , iter=5000 , chains=4)

And this is the easy way to specify the non-centered form:

m13M3 <- map2stan(
alist(
admit ~ dbinom(applications , p),
logit(p) <- a + a_dept[dept_id] +
bm + bm_dept[dept_id]*male,
c(a_dept,bm_dept) [dept_id] ~ dmvnormNC(sigma_dept , Rho),
a ~ dnorm(0,10),
bm ~ dnorm(0,1),
sigma_dept ~ dcauchy(0,2),
Rho ~ dlkjcorr(2)

R code
11.13

R code
11.14

R code
11.15

R code
11.16

130 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

data=d , warmup=1000 , iter=5000 , chains=4)

First let’s compare running times. On my machine, each chain in the original model m13. 3 took
about 1.7 seconds. In the new model m13M3, each chain took about 10 seconds to finish sampling. So
the centered version of the mode, m13. 3, sampled faster.

Now let’s compare effective sample sizes. I'll just pull out the n_eff values from the precis output
and bind them together in a matrix. This is a little tricky, because the non-centered model returns
more “parameters” in the posterior distribution, on account of also returning the internal z-scores
and Cholesky factor that was used in sampling. So we need to exclude those. And we need the same
parameters in the same order from the first model. So I'll build a parameter name list first and pass
it to both:

par_list <- c('a','bm','a_dept','b_dept','sigma_dept','Rho")
n_effl <- precis(ml3.3,2,pars=par_list)Q@output[,'n_eff']
n_eff2 <- precis(ml3M3,2,pars=par_Llist)@output[,'n_eff']
cbind(n_effl , n_eff2)

n_effl n_eff2
[1,] 5143.729 5659.551
[2,] 6783.107 9580.778
[3,] 10010.004 3372.168
[4,] 9098.312 4840.550
[5,] 9928.490 3805.146
[6,] 8934.476 3929.227
[7,] 8921.542 3586.782
[8,] 7374.170 3621.472
[9,] 8038.578 3629.475
[16,] 5116.746 3824.117
[11,] 16000.000 16000.000
[12,] 8602.085 7408.192
[13,] 8602.085 7408.192
[14,] 15534.758 15369.117

Wow, the centered version actually has higher effective sample size in almost every case. But in the
text, I said that non-centered parameterizations were good for getting more efficient sampling. What
is going on here?

The truth is that the chapter says that sometimes non-centered parameterizations are better. Other
times, the centered form is better. This is such a time. How can you guess which situation you are
in, before trying both parameterizations? Typically you can’t. But the non-centered parameterization
tends to be better when the variation across clusters is either very small—close to zero—or poorly
identified by the data.

13M4. The first thing that is required is to sampling from the Gaussian process model, as well as the
simpler Poisson models from Chapter 10. Here’s the code to sampling from the Gaussian process
model:

library(rethinking)

data(islandsDistMatrix)

Dmat <- dslandsDistMatrix

data(Kline2) # load the ordinary data, now with coordinates
d <- Kline2

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

d$society <- 1:10 # index observations
m13.7 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a + g[society] + bp*logpop,
g[society] ~ GPL2(Dmat , etasq , rhosq , 0.01),
a ~ dnorm(0,10),
bp ~ dnorm(0,1),
etasq ~ dcauchy(0,1),
rhosq ~ dcauchy(0,1)
)
data=Tl1ist(
total_tools=d$total_tools,
logpop=d$logpop,
society=d$society,
Dmat=1islandsDistMatrix),
warmup=2000 , iter=1le4 , chains=4)

And here are the models from Chapter 10, but with similar priors on the intercept a:

d$contact_high <- ifelse(d$contact=="high" , 1 , 0)
ml0.10 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a + bp*logpop +
bc*contact_high + bpc*contact_high*logpop,
a ~ dnorm(0,10),
c(bp,bc,bpc) ~ dnorm(0,1)
), data=d , chains=4)
ml0.11 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a + bp*logpop + bc*contact_high,
a ~ dnorm(0,10),
c(bp,bc) ~ dnorm(0 , 1)
), data=d , chains=4)
ml0.12 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a + bp*logpop,
a ~ dnorm(0,10),
bp ~ dnorm(0 , 1)
), data=d , chains=4)
ml0.13 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a + bc*contact_high,
a ~ dnorm(0,10),
bc ~ dnorm(0 , 1)
), data=d , chains=4)
ml0.14 <- map2stan(
alist(
total_tools ~ dpois(lambda),
log(lambda) <- a,

131

R code
11.17

R code
11.18

R code
11.19

132 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

a ~ dnorm(0,10)
), data=d , chains=4)

Now let’s compare them all using WAIC:

compare(ml0.10,m10.11,m10.12,m10.13,m10.14,m13.7)

WAIC pWAIC dWAIC weight SE dSE
ml3.7 67.5 4.1 0.0 0.99 2.19 NA

mlo.11 78.4 3.9 11.0 0.00 10.94 11.32
mle.10 80.3 4.9 12.8 0.00 11.21 11.46
mlo.12 84.7 3.9 17.2 0.00 8.99 8.21
ml0.14 140.8 7.6 73.3 0.00 31.48 32.33

ml0.13 151.2 17.2 83.7 0.00 45.23 46.72

The Gaussian process model, m13. 7, gets nearly all of the weight. However, the standard error of the
difference between it and the next highest ranked model, m10. 11, is the same as the difference itself.
And the next ranked model, m10. 10, is basically tied with m10.11. So we can’t be too cocky here.
There isn't a lot of data, after all.

But we can still learn from attempting to understand the effective number of parameter, pWAIC, as
the problem asks. Model m13. 7 has 4 parameters, and WAIC estimates its effective parameter count
at almost exactly 4. You might think this is to be expected, but look at the other models. Here’s a table
comparing each models actual parameter count and the effective parameter count:

Model parameters pwaic

ml3.7 4 4.1
mle.11 3 3.9
mle.10 4 4.9
mle.12 2 39
mle.14 1 7.6
mlo.13 2 17.2

There’s a tendency for the other Poisson models to be more flexible than you might expect from the
parameter count alone. Model 10. 14, the intercept-only model, actually ends up with almost 7 more
effective parameters than actual parameters. And modelm10. 13 ends up with a whopping 17 effective
parameters.

This is in fact a very common occurrence with Poisson GLMs. So do not be alarmed. For now, just
note that the Gaussian process model is the only model here with any form of adaptive regularization.
It is a very complex model, based upon its structure. But is actually less flexible than most of the
other models, and it is the only model that has about the same effective number of parameters as
actual parameters.

13H1. Ifyouhaven't completed the problem from Chapter 12 that uses this data set, do so first. Then,
let’s begin by reloading the data and preparing the index variable for district and building a trimmed
data list:

library(rethinking)
data(bangladesh)
d <- bangladesh

fix index - can also use coerce_index() here
d$district_id <- as.integer(as.factor(d$district))

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

rename outcome so it doesn't have a dot 1in it
dlist <- list(
use_contraception = d$use.contraception,
urban = dSurban,
district = d$district_id)

And to sample from the varying slopes model:

ml3H1 <- map2stan(
alist(
use_contraception ~ dbinom(1 , p),
logit(p) <- a + a_district[district] +
(b + b_district)*urban,
c(a,b) ~ dnorm(0,10),

c(a_district,b_district)[district] ~ dmvnorm2(0,sigma,Rho),

sigma ~ dcauchy(0,1),
Rho ~ dlkjcorr(2)

)5
data=dlist,
warmup=1000 , iter=4000 , chains=4 , cores=3)

Let’s look at the marginal posterior, omitting the varying effects:

precis(ml13H1 , pars=c("a","b","sigma","Rho") , depth=2)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a -0.72 0.10 -0.88 -0.55 4499 1
b 0.72 0.17 0.45 1.00 5070 1
sigma[1l] 0.58 0.10 0.42 0.73 2264 1
sigmal[2] ©0.79 0.21 0.47 1.12 938 1
Rho[1,1] 1.00 0.00 1.00 1.00 12000 NaN
Rho[1,2] -0.66 0.16 -0.90 -0.43 1752 1
Rho[2,1] -0.66 0.16 -0.90 -0.43 1752 1
Rho[2,2] 1.00 0.00 1.00 1.00 12000 1

133

R code
11.20

R code
11.21

So the main effect of urban residence appears to be to increase contraceptive use. Not too surpris-
ing. From the variance components, sigma[1] is the standard deviation for varying intercepts and
sigma[2] is the standard deviation for slopes. We see that there is more variation in the slope of
urban across districts than there is in the intercepts. We do have to be careful interpreting differ-
ences here, because a varying slope is multiplied by data, so the scale isn’t the same as the intercepts.
But it’s safe to say that there’s a lot of variation in slopes—urbanity has a different relationship with

contraceptive use in different districts.

Now let’s inspect the correlation between intercepts and slopes across districts. The posterior mean
of pis —0.66, with an 89% interval well below zero. Here’s the marginal posterior for p, the correlation

between intercepts and slopes in the population of districts:

post <- extract.samples(ml3H1)
dens(post$Rho[,1,2] , xlab="rho" , xlim=c(-1,1))
abline(v=0 , lty=2) # add dashed marker at zero correlation

R code
11.22

R code
11.23

R code
11.24

134 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

15 20 25

Density

1.0

0.0 05

I added a dashed marker at the zero correlation mark, to aid in interpretation.

All of this means that intercepts and slopes are negatively correlated. So larger intercepts are paired
with smaller slopes. The higher the contraceptive use in rural areas (determined entirely by the vary-
ing intercept), the smaller the difference with the urban area of the same district. This is easier to see
with two more plots. First, let’s show probability of rural use against probability of urban use for each
district:

pred.dat.rural <- list(
urban=rep(0,60),
district=1:60)
pred.dat.urban <- list(
urban=rep(1,60),
district=1:60)
pred.rural <- link(ml13Hl1 , data=pred.dat.rural)
pred.urban <- link(ml3Hl1 , data=pred.dat.urban)

means.rural <- apply(pred.rural , 2 , mean)
means.urban <- apply(pred.urban , 2 , mean)

plot(means.rural , means.urban , col="slateblue"
xlim=c(0,1) , ylim=c(0,1) ,
xlab="rural use" , ylab="urban use")
abline(a=0,b=1,1ty=2)

And we will also plot the difference between urban and rural, as a function of rural use:

plot(means.rural , means.urban-means.rural , col="slateblue"
xlab="rural use" , ylab="difference btw urban and rural")
abline(h=0,1ty=2)

This results in (showing both plots):

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 135

08 1.0

02 03 04
®
°

urban use

0.0 0.1

o 0]
B
o@g® oo
\\O o)
N
g,
N
N
[e] \\
N
N
difference btw urban and rural

-0.1
o

0.0

00 02 04 06 08 10 0.2 0.3 0.4 0.5 0.6
rural use rural use

So we might say that districts in which more rural women use contraception have urban areas more
similar to the rural areas. To say it another way, districts in which rural women use more contra-
ception are places in which the urban and rural women are more similar (closer to the dashed lines).
Districts in which urban use is highest have low rural use, but districts with the lowest urban use rates
have some of the highest rural use rates.

13H2. Here’s the code to fit the model with varying intercepts and slopes for age, clustered by Subject:

R code

library(rethinking) 11.25

data(Oxboys)
d <- Oxboys

m13H2 <- map2stan(

alist(
height ~ dnorm(mu , sigma),
mu <- a + a_subject +

(b + b_subject)*age,
a ~ dnorm(0,100),
b ~ dnorm(0,10),
c(a_subject,b_subject) [Subject] ~
dmvnorm2(0,sigma_subject,Rho_subject),

sigma_subject ~ dcauchy(0,1),
Rho_subject ~ dlkjcorr(2),
sigma ~ dcauchy(0,1)

)

data=d , warmup=1000 , iter=3000 , chains=4 , cores=3)

Let’s look at the estimates (omitting the varying effects and correlation for the moment):

precis(ml13H2 , depth=2 , pars=c("a","b","sigma_subject")) ?fgge

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a 149.30 1.66 146.57 151.88 412 1.01
b 6.50 0.35 5.98 7.06 384 1.01
sigma_subject[1] 8.08 1.15 6.30 9.86 4772 1.00
sigma_subject[2] 1.69 0.25 1.28 2.05 3700 1.00

Let’s interpret the intercept a first. Since the predictor age is standardized, the intercept is the average
height at the average age. Then the average slope b is average change in height for unit change in

136 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

standard age. So over the whole sample, which is about 2 units of standard age, the average boy grew
about 2 x 6.5 = 13cm. That’s not so easy to understand. Plotting the raw data might help:

R code

11.27 plot(height ~ age , type="n" , data=d)
for (i in 1:26) {
h <- d$height[d$Subject==1i]
a <- d$age[d$Subject==1]
lines(a , h , col=col.alpha("slateblue",0.5))
}
o |
3
. —
. =
g -
3 |
10 05 00 05 10
age
You can see here perhaps that while some boys grew more and others grew less, the average growth
was a little more than 10cm.

Let’s consider the variation in intercepts and slopes now, as the problem asks. There is substantial
variation among both intercepts and slopes. But which contributes more to variation in the data? You
can’t really say without knowing the predictor values that multiply the slopes. If for example the age
values have a very large range in the data, then a smaller standard deviation for slopes could manifest
as more variation in the data attributable to variation in slopes. But in this case, you can probably
appreciate from the plot just above that the intercepts are contributing more to differences among
boys in the total data.
13H3. Now let’s consider the correlation between intercepts and slopes, using the model fit in the
previous problem.

Iﬁ?;ﬁ precis(ml13H2 , depth=2 , pars="Rho_subject")
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
Rho_subject[1,1] 1.00 0.00 1.00 1.00 8000 NaN
Rho_subject[1,2] 0.55 0.13 0.35 0.76 5269 1
Rho_subject[2,1] 0.55 ©0.13 0.35 0.76 5269 1
Rho_subject[2,2] 1.00 0.00 1.00 1.00 7100 1
So the posterior distribution of the correlation between intercepts and slopes has a mean of 0.55 and
an 89% interval from 0.35 to 0.76. This is what it looks like:
R code .
11.29 rho <- extract.samples(ml3H2)$Rho_subject[,1,2]

dens(rho , xlab="rho" , xlim=c(-1,1))

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 137

3.0

Density
2.0

1.0

< |
=}

-1.0 -0.5 0.0 0.5 1.0
rho

This positive correlation suggests that larger intercepts are associated with larger slopes. In more
meaningful terms, this means that boys who are bigger also grow faster. You might be able to see
this in the data plot from the previously problem. The boys who were tallest at the start also grew
the fastest. The boys who were shortest at the start also grew the slowest. As a result, the difference
between the tallest and shortest boys grew over time.

To appreciate the value of this inference, consider a new sample of boys that is purely cross-sectional.
No time series has yet been observed. But on the basis of this correlation, you might predict that the
tallest boys in the new sample would grow the fastest. This would let you make better predictions,
assuming of course that this result generalizes to another sample.

13H4. To simulate, you just run the model forwards. So we extract the estimates of the parameters
and use them to define a distribution. Then we sample random values from that distribution. I'll walk
through each step.

First, it will help to write down the varying intercepts and slopes model in math form, for clarity:

H; ~ Normal(y;, o),
i = o+ Asupjecr]i] + (ﬁ + /BSUBIECT[i])Ai7

Asosieet) Normal 0 , I JQZJB)
Bsusrcr 0 POa0Os 03

So H; is the height for observation i, A; is the corresponding age for that case. ¢ defines the stan-
dard deviation of heights for a particular Subject and age combination (this is mostly going to be
measurement error, but could also be changes across ages that don’t correspond to the linear trend
that is being modeled). « is the average height at age zero across all boys, and 3 is the average slope
on age, across all boys. The varying effects asypper and Bsupsecr are the individual Subject deviations
from those averages, and finally we assume those varying effects are sampled from a bivariate normal
distribution (last line of the model above), with a variance-covariance matrix:

= (ok pog 05)
N PO Ué
I've labeled this thing S just so I can talk about it later, and you'll know exactly what I'm referring
to. Three parameters define the bivariate distribution: the standard deviation of intercepts (¢,,), the
standard deviation of slopes (0 3), and the correlation between intercepts and slopes (p).
So to simulate boys from the fit model, we need estimates for o, 3, 0, 04, 0, and p. We don’t
need to pay attention to the Qsygjecr and Ssusjecr €stimates, because we are simulating new boys, not

plotting predictions for the boys in the sample. So make some symbols to hold the posterior means
(ignoring uncertainty for the moment):

R code
11.30

R code
11.31

R code
11.32

R code
11.33

R code
11.34

138 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

post <- extract.samples(ml3H2)

rho <- mean(post$Rho[,1,2])

sb <- mean(post$sigma_subject[,2])
sa <- mean(post$sigma_subject[,1])
sigma <- mean(post$sigma)

a <- mean(postS$a)

b <- mean(post$b)

Those are p, 08, 04, 0, o, and 3, respectively. So now we can define the variance-covariance matrix
S:

S <- matrix(c(sa?2 , sa*sb*rho , sa*sb*rho , sb”2) , nrow=2)
round(S , 2)

[,11 [,2]
[1,] 64.34 7.35
[2,] 7.35 2.81

And now to sample varying intercepts and slopes from the bivariate distribution of them:

library (MASS)
ve <- mvrnorm(10 , c(0,0) , Sigma=S)
ve

[,1] [,2]
[1,] 10.26365234 3.36897685
[2,] ©0.53672770 0.55468957
[3,] -2.72012193 -0.08724327
[4,] -8.13864370 1.44000700
[5,] 1.11519674 -2.37703476
[6,] 7.83903002 2.76541405
[7,] -5.09026624 0.64593482
[8,] -0.01181788 -0.41395942
[9,] -7.00732191 -2.80120314

[10,] 11.07659433 2.86093515

Those are 10 random boys, with their own varying intercepts (first column) and slopes (second col-
umn). Remember, these values will be added to the plain o and 3 values to make predicted heights.

Now the last simulation step is to top it all off with a simulated trend for each boy. So now we make
use of o (sigma) and produce random normal heights across ages. I'll just simulate each boy’s trend
as I plot them. First, define the sequence of ages to simulate over, and then make an empty plot:

age.seq <- seq(from=-1,to=1,length.out=9)
plot(6 , @ , type="n" , xlim=range(d$age) , ylim=range(d$height) ,
xlab="age (centered)" , ylab="height")

Now to loop over the rows in ve and simulate 9 heights for each pair of parameters:

for (i in l:nrow(ve)) {
h <- rnorm(9 ,
mean=a + ve[i,1] + (b + ve[i,2])*age.seq ,
sd=sigma)
lines(age.seq , h , col=col.alpha("slateblue",0.5))

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 139

Finally, here’s what it looks like:

height
150 160 170

140

130

-1.0 -0.5 0.0 0.5 1.0
age (centered)

As always, your plot will look a little different, on account of simulation variance. Run the simulation
a few times to get a sense for this.

140 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS
12. Chapter 14 Solutions

14E1. To add measurement error on a predictor variable, just add a distributional assumption for
the observed values. In this case, we want to allow each observed log-population, log P;, to be a draw
from some distribution with an unknown true value plus error. In the chapter, the example used a
Gaussian distribution. So I'll use that again here. Specifically, assume that each observed log P; is
defined by:

log P; ~ Normal(¢;, op)
where each ¢; is an unobserved true log-population for each society i and op is the standard error of
measurement of log-population size.

To complete the model, we just add the above into the original model and replace the log P; in the
linear model with the unobserved ¢; values:

T; ~ Poisson(f;)
log p1i = a + B¢
log P; ~ Normal(¢;, op)
a ~ Normal(0, 10)
B ~ Normal(0, 1)
op ~ Exponential(1)
I added a default prior for op above. In a real analysis, youd have information about the error that

would help you either set an informative prior or (as in the chapter) use precise data for the standard
error.

14E2. Imputation is almost the same trick as measurement error. When there is no measurement at
all for a particular case in the data, the other cases which are measured provide information to define
an adaptive prior for the variable. This prior then informs the missing values. This is exactly what
was done in the chapter. Here’s what it might look like for the Oceanic societies model:

T; ~ Poisson((;)
log p1; = a + Bo;

¢; ~ Normal(¢, op)
a ~ Normal(0, 10)
B ~ Normal(0, 1)
é ~ Normal(0, 10)

op ~ Exponential(1)

Now each ¢; value is either an observed log-population value or otherwise a parameter that stands in

place of a missing value. This is just like the example in the chapter, in which the vector N was a mix
of observed neocortex percents and parameters that stood in place of missing values.

14M1. This is a subtle question. The key is recognize that the distributional assumption about the
predictor that contains missing values does not contain any information about each case. As a con-
sequence, it implicitly assumes that missing values are randomly located among the cases. Now keep
in mind that “random” only ever means that we do not know why the data turned out the way it did.
It isn’t a claim about causation, just a claim about information.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 141

14M2. First, let’s repeat fitting the models from Chapter 6, but this time we'll use weakly regularizing
priors, since they are superior. We'll also fit these models with map2stan. Remember, when using
map2stan or Stan itself, it’s good form to rename variables that contain dots. Otherwise you might
run into problems with the R side of the code interfacing with the Stan side of the code. Stan abhors
dots like nature abhors a vacuum.

library(rethinking) i;?de
data(milk)
d <- milk

dcc <- d[complete.cases(d$neocortex.perc) ,]
dat <- list(

log_mass = log(dcc$mass),

kcal = dccSkcal.per.g,

neocortex = dccSneocortex.perc/100)

m6.11 <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a,
a ~ dnorm(0,100),
sigma ~ dcauchy(0,1)
)
data=dat , chains=4)
m6.12 <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a + bn*neocortex,
a ~ dnorm(0,100),
bn ~ dnorm(0,1),
sigma ~ dcauchy(0,1)
)
data=dat , chains=4)
m6.13 <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a + bm*log_mass,
a ~ dnorm(0,100),
bm ~ dnorm(0,1),
sigma ~ dcauchy(0,1)
)
data=dat , chains=4)
m6.14 <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a + bn*neocortex + bm*log_mass,
a ~ dnorm(0,100),
c(bn,bm) ~ dnorm(0,1),
sigma ~ dcauchy(0,1)
)
data=dat , chains=4)

These models with the reduced data yield these WAIC rankings:

142 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Rigf; compare(m6.11 , m6.12 , m6.13 , m6.14)

WAIC pWAIC dWAIC weight SE dSE
m6.14 -15.5 2.6 0.0 0.91 4.95 NA
m6.13 -8.9 2.1 6.6 0.03 4.20 2.20
m6.11 -8.9 1.3 6.6 0.03 3.58 3.90
m6.12 -8.1 1.7 7.4 0.02 3.30 4.12

This is just as before: The model with both predictors does best by far, because of the masking rela-
tionship between body mass and neocortex percent.

Now let’s repeat this analysis using all of the cases with imputation on neocortex. First prepare
another trimmed data list, this time using all of the cases. We'll two different lists, because when we
fit the models that don’t have neocortex in them, Stan will still complain about the NAs in the data list.

Rcl‘;‘lg dat_full <- Llist(

log_mass = log(d$mass),

kcal = d$kcal.per.g,

neocortex = d$neocortex.perc/100)
dat_full_small <- Tlist(

log_mass = log(d$mass),

kcal = d$kcal.per.g)

To include imputation, just like in the chapter, all that’s required is to assign a distribution to the
neocortex variable. So for example here is model m6. 12 again with imputation added:

Rigfz m6.12_full <- map2stan(

alist(
kcal ~ dnorm(mu , sigma),
mu <- a + bn*neocortex,
neocortex ~ dnorm(mu_nc , sigma_nc),
mu_nc ~ dnorm(0.5,1),
sigma_nc ~ dcauchy(0,1),
a ~ dnorm(0,100),
bn ~ dnorm(0,1),
sigma ~ dcauchy(0,1)

) b

data=dat_full , chains=4)

The other models follow the same pattern. Here are the other three models, modify to use the full
data and impute neocortex values:

Rigf; m6.11_full <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a,

a ~ dnorm(0,100),
sigma ~ dcauchy(0,1)
)
data=dat_full_small , chains=4)
m6.13_full <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 143

mu <- a + bm*log_mass,
a ~ dnorm(0,100),
bm ~ dnorm(0,1),
sigma ~ dcauchy(0,1)
)
data=dat_full_small , chains=4)
m6.14_full <- map2stan(
alist(
kcal ~ dnorm(mu , sigma),
mu <- a + bn*neocortex + bm*log_mass,
neocortex ~ dnorm(mu_nc , sigma_nc),
mu_nc ~ dnorm(0.5,1),
sigma_nc ~ dcauchy(0,1),
a ~ dnorm(0,100),
c(bn,bm) ~ dnorm(0,1),
sigma ~ dcauchy(0,1)
)
data=dat_full , chains=4)

And let’s compare these models. Remember, it makes no sense to compare the four models above to
the previous four models. Why? Because they are fit to different data. We can however inspect the
two different WAIC tables and ask what impact including the additional data has had.

compare(m6.11_full , m6.12_full , m6.13_full , m6.14_full) ?;gde
WAIC pWAIC dWAIC weight SE dSE
m6.14_full -27.9 4.7 0.0 0.90 5.75 NA
m6.13_full -22.5 2.1 5.4 0.06 5.62 1.95
m6.11_full -20.9 1.4 7.0 0.03 5.24 3.80
m6.12_full -20.0 2.3 7.9 0.02 5.06 4.09
The rank order is the same, and the weights are very similar. It may easier to do a head-to-head
comparison by just plotting both tables as dot charts:
R code
plot(compare(m6.11_full,m6.12_full,m6.13_full,m6.14_full)) 12.7

plot(compare(m6.11,m6.12,m6.13,m6.14))

WAIC

m6.14_full | e
m6.13_full
m6.11_full * ©
m6.12_full -

]

deviance

WAIC

m6.14
m6.13
m6.11
m6.12

[2K

-20 -15 -10 -5
deviance

144 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

Among all the differences, a striking one is that all of the standard errors are relatively smaller when
we use the full data. This is to be expected, as there is more information. You can see this in the
coefficients as well. Consider for example the standard deviations on the regression parameters in
mé6.14_fulland m6.14:

R cod .
?;g precis(m6.14)
precis(m6.14_full,pars=c("a","bn","bm","sigma"))
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a -0.27 0.47 -1.03 0.43 741 1.00
bn 1.53 0.72 0.44 2.75 721 1.00
bm -0.07 0.03 -0.11 -9.03 794 1.00
sigma 0.15 0.03 0.10 0.19 994 1.01
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a -0.10 0.39 -0.72 0.52 902 1.01
bn 1.22 0.61 0.26 2.19 870 1.01
bm -0.05 0.02 -0.09 -9.02 1384 1.00
sigma 0.14 0.02 0.10 0.18 1467 1.00
The width of the marginal posterior is narrower in every case, and this translates into narrower inter-
vals as well.
For extra practice, I recommend repeating the above with a better imputation model, such as the
second imputation model from the examples in the chapter.
14M3. This problem is as easy as modifying the code from the chapter to have double values for the
standard error variable, Divorce. SE.
R cod . e
?3; library(rethinking)
data(WaffleDivorce)

d <- WaffleDivorce
dlist <- list(
div_obs=d$Divorce,
div_sd=d$Divorce.SE * 2 , # note times 2
R=d$Marriage,
A=d$MedianAgeMarriage)

ml4M3 <- map2stan(
alist(
div_est ~ dnorm(mu,sigma),
mu <- a + bA*A + bR*R,
div_obs ~ dnorm(div_est,div_sd),
a ~ dnorm(0,10),
bA ~ dnorm(0,10),
bR ~ dnorm(0,10),
sigma ~ dcauchy(0,2.5)
) b
data=dlist ,
start=1list(div_est=dlist$div_obs) ,

WAIC=FALSE ,

iter=5000

, warmup=1000
control=list(adapt_delta=0.99))

, chains=4

>

cores=3

>

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 145

You'll notice that this model does not sample very efficiently. Increasing the standard errors on the
outcome variable has made the posterior less well identified, and this has made sampling harder in
this case. But it does work. Draw more samples, if you have any doubts. And as always, be sure to
check the trace plot and diagnostic statistics.

Now compare the estimates produced. I'll omit the div_est estimates here.

precis(ml4.1) # original E;?ge
precis(m14M3) # double standard error
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 21.37 6.58 11.45 32.41 2784 1
bA -0.55 0.21 -0.90 -0.22 2857 1
bR 0.13 0.08 0.01 0.25 3267 1
sigma 1.13 0.21 0.78 1.44 1707 1
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 19.71 6.50 9.17 29.68 445 1.00
bA -0.56 0.21 -0.89 -0.23 418 1.00
bR 0.22 0.08 0.09 0.35 410 1.01
sigma 0.36 0.22 0.05 0.68 171 1.04
The marginal posterior for bA is unchanged. But the posterior for bR, the coefficient for marriage
rate, has almost doubled. Why? Increasing the standard errors has allowed different States to ex-
ert influence on the regression. All of the States have less certain divorce rates now, but the States
that were previously quite precisely estimated—usually very large States—are now substantially less
precise. This shifts the balance of information among the States and alters the results.
14H1. To prepare for the first model, lead the data and take a look at each variable:
library(rethinking) ?;??e
data(elephants)
d <- elephants
str(d)
'data.frame': 41 obs. of 2 variables:
$ AGE : dint 27 28 28 28 28 29 29 29 29 29 ...
$ MATINGS: int © 111300022 ...
This is a very simple set of data. AGE contains ages in years of individual male elephants. MATINGS
contains counts of matings for those individuals.
The implied Poisson model predicting MATINGS with AGE is:
ml4H1_1 <- map2stan(E;Tge

alist(
MATINGS ~ dpois(lambda),
log(lambda) <- a + bA*AGE,
a ~ dnorm(0,10),
bA ~ dnorm(0,1)

)7

data=d , chains=4)

precis(ml4H1_1)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a -1.59 0.55 -2.42 -0.65 380 1

R code
12.13

R code
12.14

146 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

bA 0.07 0.01 0.05 0.09 384 1

These chains are not very efficient, but they did converge. Take a look at the trace plot, too. Let’s plot
the implied relationship:

AGE_seq <- seq(from=20,t0=60,by=1)

lambda <- Tlink(ml4H1_1,data=11ist(AGE=AGE_seq))

lambda_mu <- apply(lambda,2,mean)

lambda_PI <- apply(lambda,2,PI)

plot(dAGE , dMATINGS , pch=16 , col=rangi2 ,
xlab="age" , ylab="matings")

lines(AGE_seq , lambda_mu)

shade(lambda_PI , AGE_seq)

30 35 40 45 50
age
That looks like a reliably positive relationship. Older elephants get more matings, on average.
Now let’s assume each AGE value was measured with Gaussian error with standard deviation 5,
as the problem suggests. Here’s the new model. The only trick to observe, as in the chapter, is to
manually add the [1] index to the predictor.

ml4H1_2 <- map2stan(
alist(
MATINGS ~ dpois(lambda),
log(lambda) <- a + bA*AGE_est[1i],
AGE ~ dnorm(AGE_est , 5),
a ~ dnorm(0,10),
bA ~ dnorm(0,1)
)5
start=1ist(AGE_est=d$AGE),
data=d , chains=4 , WAIC=FALSE)
precis(ml4H1_2)

41 vector or matrix parameters omitted in display. Use depth=2 to show them.
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a -1.63 0.64 -2.63 -0.60 1118 1

bA 0.07 0.02 0.04 0.09 1036 1

Ignoring the AGE_est parameters for the moment, the average association between MATINGS and AGE
has not changed. Why not? The measurement error is both symmetric and the same for all ages. So
this is unlike the divorce rate example in the chapter in the sense that the error is uniform. So adding
equal error to all of the predictor values doesn’t have much impact. Here, it has had essentially no
impact on inference. Chances are that real measurement error would not be uniform across all ages.
It would be much easier to distinguish among young ages than older ages, for example.

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 147

We can learn something more in this example by inspecting the posterior distributions of the AGE
values, the AGE_est parameters. Let’s extract them and compare the posterior means to the observed
values. The plot I'll construct will have AGE on the horizontal and MATINGS on the vertical, with open
points for the inferred posterior means and filled blue points for the observed, as usual. I'll connect
each pair of points for the same animal with a line segment. Since so many points overlap, I'll also
add a little jitter to the vertical scale, so we can tell individuals apart more easily. Finally, I'll plot the
mean regression trend.

post <- extract.samples(ml4H1_2)
AGE_est <- apply(post$AGE_est,2,mean)

make jittered MATINGS variable
MATINGS_j <- jitter (d$MATINGS)

observed
plot(d$SAGE , MATINGS_j , pch=16 , col=rangi2 ,
xlab="age" , ylab="matings" , xlim=c(23,55))

posterior means
points(AGE_est , MATINGS_j)

line segments
for (i in l:nrow(d))
lines(c(d$AGE[i],AGE_est[i]) , rep(MATINGS_j[i],2))

regression trend - computed earlier
lines(AGE_seq , lambda_mu)

matings

25 30 35 40 45 50 55
age

The key thing to notice here is that the observations above the regression trend have been adjusted
upwards in the posterior distribution, while the observations below the trend have been adjusted
downwards. Why? Consider an observed number of matings that is above the expectation for a given
observed age. This puts the blue point above the regression trend. For this observed age, measured
with error, the matings exceed what is expected for that age. So the model “realizes” that the actual
age of that individual is probably above what was measured and entered into the data table. So the
open points (inferred) above the trend are to the right of the blue points (measured). Likewise, a blue
point below the regression trend has a number of matings below what is expected for the measured
age. So the model realizes that the actual age is probably below the measured age. So the open points

R code
12.15

R code
12.16

R code
12.17

148 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

(inferred) below the trend are to the left of the blue points (measured). Notice also that blue points
farther from the regression trend shrink farther towards it. This is pooling, as usual.

14H2. All that’s required to fit the new models is to adjust the 5 inside the distribution assigned to
AGE. For example, let’s begin by doubling the standard error to 10. Note that increasing the standard
error makes the posterior harder to sample from, so I've added a control list and upped the iterations.

ml4H2 <- map2stan(
alist(
MATINGS ~ dpois(lambda),
log(lambda) <- a + bA*AGE_est[1i],
AGE ~ dnorm(AGE_est , 10),
a ~ dnorm(0,10),
bA ~ dnorm(0,1)
)7
start=1ist(AGE_est=d$SAGE),
data=d , chains=4 , cores=4 , warmup=2000 , iter=1le4 ,
control=1list(adapt_delta=0.99) , WAIC=FALSE)
precis(ml4H2)

41 vector or matrix parameters omitted in display. Use depth=2 to show them.
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a -0.96 0.49 -1.73 -0.19 12958 1

bA 0.05 0.01 0.03 0.07 12136 1

The posterior mean for bA has gotten closer to zero, but it’s still reliably above zero. Let’s try doubling
it again. The posterior will get increasingly difficult to sample from. But the priors are informative
enough to pull it off.

ml4H2 <- map2stan(
alist(
MATINGS ~ dpois(lambda),
log(lambda) <- a + bA*AGE_est[i],
AGE ~ dnorm(AGE_est , 20),
a ~ dnorm(0,10),
bA ~ dnorm(0,1)
)5
start=1ist(AGE_est=d$AGE),
data=d , chains=4 , cores=4 , warmup=2000 , iter=1le4 ,
control=list(adapt_delta=0.99) , WAIC=FALSE)
precis(ml4H2)

41 vector or matrix parameters omitted in display. Use depth=2 to show them.
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

a -0.18 0.33 -0.70 0.34 11760 1

bA 0.03 0.01 0.02 0.04 9976 1

Getting very close to zero, but still almost all the posterior probability mass is above zero. It seems
what the increasing error is doing is making the inferred relationship smaller in magnitude, but it
isn't creating any doubt that it is positive.

Can we pull off a standard error of 100? Let’s try:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 149

ml4H2 <- map2stan(?;?ge
alist(
MATINGS ~ dpois(lambda),
log(lambda) <- a + bA*AGE_est[1i],
AGE ~ dnorm(AGE_est , 100),
a ~ dnorm(0,10),
bA ~ dnorm(0,1)
)5
start=1ist (AGE_est=dSAGE),
data=d , chains=4 , cores=4 , warmup=2000 , iter=1le4 ,
control=1list(adapt_delta=0.99) , WAIC=FALSE)
precis(ml4H2)
41 vector or matrix parameters omitted in display. Use depth=2 to show them.
Mean StdDev lower 0.89 upper 0.89 n_eff Rhat
a 0.66 0.22 0.31 1.03 245 1.01
bA 0.00 0.00 0.00 0.01 100 1.02
Now the inferred relationship is essentially zero. But let’s plot the posterior for bA:
R code
bA <- extract.samples(ml4H2)$bA 12.19
dens(bA , xlab="bA")
o
3 -
N
o
S |
N
o
>0 1
.“E
L O
09
o |
w0
o
-0.010 0.000 0.010
bA
There are now two modes in the posterior: A major mode above zero and a minor mode an equal
distance below zero. The measurement error has gotten so large now that it becomes possible that the
relationship between age and matings is negative. But note that the vast majority of the probability
mass remains above zero, although very close to it. If you inspect the trace plot, you can see the chains
switching between these two modes:
. R code
plot(ml4H2,pars="bA" ,window=c(2000,10000),n_col=1) 12.20
bA
e}
o
=
o
o
)
<

2000 4000 6000 8000 10000

R code
12.21

R code

12.22

R code
12.23

150 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

This kind of posterior distribution is challenging to sample from. You’ll see another example in the
next problem.

14H3. Run the provided code to generate the data. It should look like this:

set.seed(100)

x <- c(rnorm(10) , NA)

y <- c(rnorm(10,x) , 100)
d <- list(x=x,y=y)

show(d)

$x
[1] -0.50219235 0.13153117 -0.07891709 0.88678481 0.11697127 0.31863009
[7] -0.58179068 0.71453271 -0.82525943 -0.35986213 NA

Sy

[1] -0.4123062 0.2278056 -0.2805510 1.6266253 0.2403508 0.2893134
[7] -0.9706449 1.2253890 -1.7390736 1.9504347 100.0000000

Ignoring the last case, with the missing x value, these two variables have a strong positive association:

precis(lm(y~x,d))

Mean StdDev 5.5% 94.5%
(Intercept) 0.24 0.28 -0.20 0.68
X 1.42 0.52 0.59 2.26

But what happens when we impute, using the known distribution for x. Here’s the model given in
the problem:

ml4H3 <- map2stan(
alist(
y ~ dnorm(mu,sigma),
mu <- a + b*x,
x ~ dnorm(0,1),
c(a,b) ~ dnorm(0,100),
sigma ~ dcauchy(0,1)
)
data=d , chains=4 , warmup=1000 , iter=4000 ,
control=1list(adapt_delta=0.99) , WAIC=FALSE)
precis(ml4H3)

Mean StdDev lower 0.89 upper 0.89 n_eff Rhat

x_impute 0.90 2.38 -2.97 3.80 215 1.03
a 4.21 6.92 -6.43 14.36 2415 1.00
b 8.94 24.88 -32.43 36.06 225 1.03
sigma 19.93 7.10 9.59 29.77 1534 1.01

Something weird is going on with both the imputed value, x_impute, and b. Look at the standard
deviations and intervals. Let’s look at the posterior distribution, focusing on the joint distribution of
b and x_impute:

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 151

pairs(ml4H3)

-20 0 20 40 10 30 50 70
X_impute ‘ ‘ ‘ <
o
4 * ” <
a
s 0.01
ol " Rt
§
i -~ <
0.86 004 °
3
I
sigma
o
w0
S -0.24 0.21 -0.15
e
4 0 4 -60 0 40

The posterior indicates that the plausible values of the b coefficient, conditional on the data and model,
are either strongly positive or equally strongly negative. And the posterior distribution for the missing
x value, x_impute, is also bimodal. And jointly, the large b values go with the large x_impute values.

What has happened here? How has imputing a single missing x changed inference so much? And
why is the posterior bimodal? Since a y value of 100 is an extremely large value, only an extremely
large x value would be consistent with both that y and the original posterior mean for 3, around 1.4.
So for y = 100, the x consistent with the parameters (inferred ignoring the missing value) would be:

y=a+ px
100 = 0.24 + 1.4x
x = (100 — 0.24)/1.4

And the answer is about x = 71. But since the prior assigned to x is relatively narrow, Normal(0, 1),
it is too implausible that the missing x is that large. So what are the alternatives? The posterior
distribution has nominated them. Let’s plot each of the modes, in terms of the implied regression
relationship.

First, let’s take the positive b samples and see what they imply. There are lots of ways to do this
in the code. I'm just going to loop over the parameters and keep just the samples where b is positive.
We'll need the samples where b is negative later, so I'll extract those into another list at the same time.

post <- extract.samples(ml4H3)
post_pos <- post
post_neg <- post

R code
12.24

R code
12.25

R code
12.26

R code
12.27

R code
12.28

152 STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS

for (i in 1:length(post)) {
post_pos[[i]] <- post[[i]][post$b>0]
post_neg[[i]] <- post[[i]][post$b<0]

Now let’s compute the regression line for the positive samples. Since we don't want to use the impu-
tation parameter in constructing the line and its confidence region, we can’t easily use 1ink here. So
we'll just do it ourselves:

x_seq <- seq(from=-2.6,t0=2.6,length.out=30)
mu_link <- function(x,post) post$a + postSb*x
mu <- sapply(x_seq , mu_link , post=post_pos)
mu_mu <- apply(mu,2,mean)

mu_PI <- apply(mu,2,PI)

Now to plot the data, including the imputed x value, but only for the positive samples still:

plot(y ~x , d, pch=16 , col=rangi2 , xlim=c(-0.85,2.5))
x_impute <- mean(post_pos$x_impute)

points(x_impute , 100)

lines(x_seq , mu_mu)

shade(mu_PI , x_seq)

And before showing the result, let’s also compute the negative relationship, so we can easily compare
them:

mu <- sapply(x_seq , mu_link , post=post_neg)

mu_mu <- apply(mu,2,mean)

mu_PI <- apply(mu,2,PI)

plot(y ~x , d, pch=16 , col=rangi2 , xlim=c(-2.4,0.9))
x_impute <- mean(post_neg$x_impute)

points(x_impute , 100)

lines(x_seq , mu_mu)

shade(mu_PI , x_seq)

Here are both plots, with the positive relationship on the left and the negative relationship on the
right:

o o
O A o o A [}
o | o |
[ee] [ee]
o | o |
© ©
> >
o | o |
< <
o | o
N N
o e »® s o 4 ® swe ©o°
-0.5 05 10 15 20 25 -2.5 -1.5 -0.5 05 1.0
X X

The only ways to make values of the missing x that are consistent with the model and data is to have
a very strong positive or negative slope. Why? Because the missing x has to be much closer to zero

STATISTICAL RETHINKING PRACTICE PROBLEM SOLUTIONS 153

than the original § value implied. This forces a steep slope on any regression relationship that will
include the case with the missing value, shown by the open point in both plots above. The positive
relationship remains more plausible than the negative one, because the other points (shown in blue)
demonstrate a positive relationship between y and x.

You may want to change the assumed distribution on x in the model, to see what impact it has.
You might even replace the mean and standard deviation of x with parameters, like the imputation
example in the chapter.

	1. Chapter 2 Solutions
	2. Chapter 3 Solutions
	3. Chapter 4 Solutions
	4. Chapter 5 Solutions
	5. Chapter 6 Solutions
	6. Chapter 7 Solutions
	7. Chapter 8 Solutions
	8. Chapter 10 Solutions
	9. Chapter 11 Solutions
	10. Chapter 12 Solutions
	11. Chapter 13 Solutions
	12. Chapter 14 Solutions

