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1  |  INTRODUC TION

Bees play a significant role in the pollination of agricultural crops 
(Klein et al., 2007; Rucker et al., 2012) and nonagricultural plants 
(Ollerton et al. 2011; Potts et al., 2016). Bumble bees are particularly 
important due to their ability to “buzz” pollinate and their ability to 
fly in low temperatures (Plowright & Laverty, 1984), which makes 
them better pollinators than honey bees for certain plants (Banda & 
Paxton, 1990). However, many bumble bee species are experiencing 

steep population declines (Cameron et al., 2011; Colla et al., 2012; 
Colla & Packer, 2008; Williams & Osborne, 2009), threatening both 
food security and critical ecosystem services (Klein et al., 2007; 
Steffan-Dewenter et al., 2005). Determining the causes of pollinator 
decline is crucial for the conservation of bees in general, and bumble 
bees in particular (Potts et al., 2016). Conservation genomics—the 
use of next generation sequencing to study the genomes, metage-
nomes and transcriptomes of species targeted for conservation—is 
an emerging field that promises to revolutionize conservation 
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Abstract
In recent years, many pollinators have experienced large population declines, which 
threaten food security and the stability of natural ecosystems. Bumble bees are par-
ticularly important because their ability to “buzz” pollinate and tolerate cooler condi-
tions make them critical pollinators for certain plants and regions. Here, we apply 
a conservation genomics approach to study the vulnerable Bombus terricola. We 
sequenced RNA from 30 worker abdomens, 18 of which were collected from agri-
cultural sites and 12 of which were collected from nonagricultural sites. We found 
transcriptional signatures associated with exposure to insecticides, with gene expres-
sion patterns suggesting that bumble bees were exposed to neonicotinoids and/or 
fipronil—two compounds known to negatively impact bees. We also found transcrip-
tional signatures associated with pathogen infections. In addition to the transcriptomic 
analysis, we carried out a metatranscriptomic analysis and detected five pathogens in 
the abdomens of workers, three of which are common in managed honey bee and 
bumble bee colonies. Our conservation genomics study provides functional support 
for the role of pesticides and pathogen spillover in the decline of B. terricola. We dem-
onstrate that conservation genomics is an invaluable tool which allows researchers 
to quantify the effects of multiple stressors that impact pollinator populations in the 
wild.
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biology (Grozinger & Zayed, 2020; Lozier & Zayed, 2017; Trapp et al., 
2017). This approach is especially useful for the conservation of na-
tive bee species, as it allows us to see “the unseen” stressors that 
impact bee populations (Grozinger & Zayed, 2020).

Bombus terricola, Kirby 1837 is native to North America (Williams 
et al., 2014) and has experienced major declines in its relative 
abundance in the last two decades (Cameron et al., 2011; Colla & 
Packer, 2008). It is now extirpated in Illinois (Grixti et al., 2009) and 
has experienced significant range declines (Jacobson et al., 2018; 
Richardson et al., 2019), especially in its southern range (Bartomeus 
et al., 2013). Currently, it is classified as “vulnerable” on the IUCN 
Red List (Hatfield et al., 2015). As with other bumble bees, several 
hypotheses for B. terricola's decline have been proposed. These 
include habitat loss, climate change, pesticide use and pathogen 
spillover—the introduction of novel pathogens from commercial 
honey bee and bumble bee colonies to native species (Goulson et al., 
2015; Grixti et al., 2009; Kent et al., 2018; Kerr et al., 2015; Szabo 
et al., 2012). Kent et al., (2018) recently sequenced the genome of B. 
terricola in an effort to understand the factors underlying its decline. 
This first population genomic analysis revealed high inbreeding and a 
low effective population size for B. terricola. Moreover, several genes 
related to immunity exhibited evidence of recent positive selection 
(Kent et al., 2018), perhaps reflecting an adaptive response to ame-
liorate stress from pathogens.

Here, we apply a transcriptomic approach to investigate tran-
scriptional signs of stress in B. terricola. RNA sequencing can detect 
changes in global gene expression associated with a wide variety 
of stressors, including pathogens, pesticide exposure and nutri-
tional stress (Grozinger & Zayed, 2020). We set up a comparison 
of B. terricola workers collected near agricultural crops and away 
from agriculture. Agriculture exposes bees to multiple stressors in-
cluding habitat degradation, pesticides and pathogens (Colla et al., 
2006; Otterstatter & Thomson, 2008; Sachman-Ruiz et al., 2015; 
Tsvetkov et al., 2017). We used the transcriptomic data set to test 
the following hypotheses. (a) If the decline of B. terricola is driven 
by exposure to pathogens, then we would expect to see patterns 
of differential expression for genes related to immunity. (b) If the 
decline is related to pesticide exposure, then we would expect to 
see changes in the expression of genes involved in detoxification. 
Finally, (c) if the decline is related to nutritional stress, then we would 
expect metabolism-related genes to show evidence of differential 
expression. Of course, if bees are experiencing multiple stressors 
simultaneously, we would expect to see a combination of these sig-
natures. For these hypotheses, we expected stronger signatures of 
stress in the agricultural sites. Agricultural landscapes probably re-
duce nutritional resources, increase pesticide exposure, and proba-
bly allow for greater spillover of pathogens from managed bees used 
for pollination (Colla et al., 2006; Otterstatter & Thomson, 2008; 
Sachman-Ruiz et al., 2015; Tsvetkov et al., 2017). In addition to this 
transcriptomic analysis, we also examined the unaligned sequenc-
ing reads to directly search for specific pathogens that may have in-
fected the sampled B. terricola workers using a database of common 

bumble bee pathogens (Alger et al., 2019; Hernández-Jarguín et al., 
2018; Ngor et al., 2020; Parmentier et al., 2016). Our study sheds 
light on the current stressors impacting declining B. terricola popula-
tions, in addition to demonstrating the utility of genomics for wildlife 
conservation.

2  |  METHODS

2.1  |  Bee collections

Bombus workers were collected by net between July 19 and August 
22, 2016 in southern Ontario, Canada. Those that were identified as 
Bombus terricola in the field were immediately frozen in liquid nitro-
gen and then transported to York University where they were stored 
at −80℃. We obtained permission from landowners to sample bum-
ble bees on their property. While B. terricola's conservation status 
is listed as “vulnerable,” this status does not require researchers to 
obtain special collecting permits. Additionally, research on insects 
does not require bio-ethics approval in Canada. Nevertheless, we 
purposefully chose to sample a relatively small number of nonrepro-
ductive workers per site to reduce our study's impact on the popula-
tion dynamics of this species.

We aimed to sample sites that were far enough apart, relative to 
typical bumble bee foraging distances, that workers from one site 
were highly unlikely to originate from the same colony as workers 
sampled from other sites. While there are no published studies on 
the foraging range of B. terricola, bumble bee foraging distance is 
related to body size (Greenleaf et al., 2007), and we used data on 
the similarly sized Bombus terrestris to estimate the foraging dis-
tance for B. terricola (Williams et al., 2014). Foraging distances of 
B. terrestris range from 96 to 800 m away from their colony (Knight 
et al., 2005; Osborne et al., 1999, 2008; Walther-Hellwig, 2000; and 
Wolf & Moritz, 2008). Our two closest collection sites are 6.65 km 
apart. We treated each collection site as independent in our analysis; 
similarities in gene expression profiles thereby reflect independent 
changes in gene expression by workers from different colonies in 
response to similar stressors acting in different sites. We further 
computed Moran's I (Gittleman & Kot, 1990; Moran, 1950) to test 
for spatial autocorrelation in our normalized gene counts in the dif-
ferentially expressed genes based on the longitudinal and latitudinal 
coordinates. We used the package “ape” (Paradis & Schliep, 2019) 
in R version 3.2.2 (R Core Team, 2005) to perform the analysis. 
We found no spatial autocorrelation in the normalized gene counts 
within the agricultural and nonagricultural sites for all differentially 
expressed genes reported herein (Moran's I, p > .1).

We classified each sampling site as agricultural or nonagricultural 
(Figure 1) based on land use patterns within a radius of 500–1000 m 
from the point of collection using GlobCover 2009 (Bontemps et al. 
2011). Locations that had no agricultural land use within 500 m and 
<10% agricultural land use within 1000 m were designated nonag-
ricultural. While our sample size is small, as is the nature of working 
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with declining and at-risk species, we note that we are still able to 
meet minimum sample size requirements for RNA sequencing anal-
yses (Conesa et al., 2016).

2.2  |  RNA extraction and analysis

RNA was extracted from the abdomens of three worker bees from 
each of the 10 sites (N = 30) using the Qiagen RNease Mini kit. We 
used abdomens as it is the tissue most likely to express genes in-
volved in detoxification (Mao et al., 2013), nutrition (Alaux et al., 
2011) and immunity (Aufauvre et al., 2014), as well as other stressors 
that impact hormone levels and ovary activation (Wang et al., 2012). 
The samples were sequenced at Gѐnome Quѐbec's Innovation 
Center using a HiSeq4000 (PE 100 bp; Illumina).

We used trimmomatic (Bolger et al., 2014) to remove adapters, 
low-quality bases and low-quality reads. An average of 23,263,068 
reads per sample survived the filtering. Quality check was per-
formed using fastqc (Bioinformatics, 2011). The data successfully 
passed fastqc quality checks for all relevant parameters. We then 
aligned the RNA sequences to the B. terricola genome (Kent et al., 

2018) using the Spliced Transcripts Alignment to a Reference (star) 
software (Dobin et al., 2013) to generated gene expression counts. 
The gene expression counts were then processed using edger 
(McCarthy et al., 2012; Robinson et al., 2010) in r version 3.2.2 (R 
Core Team, 2005). Any genes that were only expressed in one sam-
ple were filtered out, and then the remaining counts were normal-
ized. Differentially excessed genes (DEGs) were determined based 
on an Exact Test using a Benjamini and Hochberg (1995) p adjust-
ment to account for multiple testing.

Reads that were not mapped onto the B. terricola genome were 
used to investigate the presence of RNA viruses and other patho-
gens (Batty et al., 2013; Hernández-Jarguín et al., 2018; Razzauti 
et al., 2015). We aligned and counted the unmapped reads using 
star (Dobin et al., 2013) using the genomes of common bumble bee 
pathogens (Table S1; Alger et al., 2019; Parmentier et al., 2016). To 
ensure specificity, we aligned the unmapped reads using multiple 
genomes simultaneously, which ensures that ambiguous or multi-
mapped reads are not counted. The gene counts were processed 
using edger (McCarthy et al., 2012; Robinson et al., 2010) in r version 
3.2.2 (R Core Team, 2005). Any genes that were only expressed in 
one sample were filtered out. We used a generalized linear model 

F I G U R E  1  Bombus terricola workers were collected from agricultural (star) and nonagricultural (diamond) sites in Ontario, Canada [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(GLM; Nelder & Wedderburn, 1972), with site as a nested parameter, 
with a binomial family structure to analyse the prevalence data.

2.3  |  RT-qPCR

To validate pathogens detected by our metatranscriptomic analy-
sis, we diluted the previously extracted RNA to a concentration 
of 0.7 µg/20 µl. We used the iScript cDNA Synthesis Kit (Bio-Rad) 
using random primers following the manufacturer's recommended 
method. A single sample was excluded due to not having sufficient 
RNA. cDNA was stored at −20℃. All samples were run in triplicate 
with a negative control for each pathogen/gene. Each replicate 
contained 1 µl of diluted cDNA, 5 µl of SsoAdvanced SYBR Green 
Supermix (Bio-Rad), 3 µl of DEPC H2O, 0.5 µl Forward primer and 
0.5  µl Reverse primer of the corresponding pathogen/gene (Table 
S2). We carried out RT-qPCRs (real-time quantitative polymerase 
chain reactions) using a Bio-Rad Chromo4 with the following cycle 
conditions: (a) 30 s at 95℃, (b) 40 cycles of 5 s at 95℃ and 30 s at 
56℃, and (c) a melt curve analysis starting at 65℃ for 5 s repeated 
for 60 cycles with an increase of 0.5℃ each cycle.

We chose to amplify three pathogens: sacbrood virus (SBV), 
black queen cell virus (BQCV) and Lotmaria passim, since they 
showed different prevalence rates in the metatranscriptomic anal-
ysis (see below). We used actin as a reference gene (Alger et al., 
2019; McMahon et al., 2015) (Table S2), which was amplified at the 
same time as the target genes. The actin primer was designed using 
primer3 web version 4.1.0 (https://prime​r3.ut.ee/), and then we used 
blastn with the blastn-short option (Camacho et al., 2009) to search 
the primer sequences against the B. terricola genome to ensure that 
the primer bound to a unique section of the actin gene in B. terricola. 
Relative quantification (RQ) was obtained using the 2−∆∆CT method 
(Livak & Schmittgen, 2001; Pfaffl, 2001). We used a sample from 
an agricultural site, in which all of the pathogens were detected, as 
the comparator for all other samples (i.e., expression is measured 
relative to this one sample). Efficiencies for each primer were cal-
culated by diluting a sample known to contain all of the pathogens 
five times by a factor of 10 and performing qPCR in triplicate as de-
scribed above (Table S2).

We used a two-step process to analyse the pathogen data. We 
first tested whether prevalence was different between the agricul-
tural and nonagricultural sites. We used GLM, with site as a nested 
parameter (Nelder & Wedderburn, 1972) with a binomial family 
structure to analyse the prevalence data for BQCV, SBV and L. 
passim. Pathogens that show a statistical difference in prevalence 
(BQCV and SBV, see below) were not analysed for abundance be-
cause such comparisons are often not meaningful. For example, 
samples where a virus was not detected would need to be imputed 
(typically as 1 + maximum number of PCR cycles) before analysis, 
but this would lead to a left-skewed distribution. For L. passim, since 
no statistical difference was found for prevalence (see below), we 
analysed expression levels and imputed Ct values for samples with 
no visible fluorescence after 40 cycles as 41. We log2-transformed 

the RQ value and preformed the nested GLM analysis using r version 
3.2.2 (R Core Team, 2005).

2.4  |  Gene ontology analysis

Using a best-match blastx (Boratyn et al., 2012; Camacho et al., 
2009) we mapped all of the B. terricola genes onto the Drosophila 
melanogaster (fruit fly) genome version 6.16 (Adams et al., 2000; 
Hoskins et al., 2015; Myers et al., 2000) and Apis mellifera (honey 
bee) genome version 4.5 (Consortium, 2006; Elsik et al., 2014). We 
found 7,845 D. melanogaster homologues, of which 54 were DEGs, 
and 8,495 A. mellifera homologues, of which 54 were DEGs. Gene 
ontology (GO) analysis was performed using david 6.8 (Huang, 
Sherman, & Lempicki, 2008a, 2008b) using the D. melanogaster 
homologues. We selected the following annotation databases for 
the analysis: “GO Biological Process All,” “GO Molecular Function 
All,” “GO Cellular Component All,” as well as Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Pathway and Keywords. This analysis 
was corrected for multiple testing (Benjamini & Hochberg, 1995).

To gain further insight into the biological relevance of DEGs in B. 
terricola, we compared our gene lists to a large set of gene expres-
sion studies carried out on the honey bee, A. mellifera. We chose 
A. mellifera studies that used whole bees or abdomens for their 
analyses (Alaux et al., 2011; Aufauvre et al., 2014; Badaoui et al., 
2017; Brutscher et al., 2017; Corby-Harris et al., 2014; Doublet et al., 
2017; Liu et al., 2020; Rutter et al., 2019; Ryabov et al., 2016; Shi 
et al., 2017; Wang et al., 2012; Wu et al., 2017). Where required, 
the gene names were converted into the current iteration of the 
honey bee genome using hymenopteramine (Elsik et al., 2016). We 
used a hypergeometric test (Johnson et al., 2005) to determine if 
the overlap between published gene lists and our gene list was sta-
tistically different from chance after correcting for multiple testing 
using the Holm–Bonferroni method (Holm, 1979). These tests were 
performed in r version 3.6.3 (R Core Team, 2005).

3  |  RESULTS

We were able to quantify the expression of 9455 genes in the abdo-
mens of Bombus terricola workers. When contrasting gene expres-
sion in bees from agricultural vs. nonagricultural sites, we found 61 
DEGs, 36 of which were upregulated in bees collected from agri-
cultural areas (Table S3). Our list of DEGs includes homologues of 
cytochrome P450 4C1 (LOC413833), cytochrome P450 303a1 
(LOC727290) and UDP-glucuronosyltransferase 2B18 (LOC411021), 
all involved in detoxification in insects (Kanehisa & Goto, 2000). 
Additionally, we found a homologue of nicastrin (LOC552178), 
which is part of the Notch signalling pathway (Kanehisa & Goto, 
2000) and has been implicated in neurodegenerative disorders in 
vertebrates (Urban, 2016). Our DEGs also included toll-like receptor 
4 (LOC724187), which plays a role in immunity (Pålsson-McDermott 
& O'Neill, 2004).

https://primer3.ut.ee/
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A GO analysis revealed a statistically significant enrichment of 
genes involved in myofibril and muscle cell development (p <  .05, 
Table S4), muscle protein (p < .001, Table S4) and alternative splic-
ing (p =  .035, Table S4). Genes unregulated in bees collected from 
agricultural areas were also enriched within the KEGG pathway for 
biosynthesis of antibiotics (p = .006, Table S4). Genes that were up-
regulated in nonagricultural areas were not enriched for any annota-
tion terms (p > .1, Table S5).

In order to compare our study to previously published research, 
we converted our B. terricola genes to Apis mellifera homologues. 
We focused on studies that exposed honey bees to various stress-
ors and assayed gene expression in either abdomens or whole bees. 
We found a statistically significant overlap between the DEGs in B. 
terricola and those found in a study of common immune responses 
in A. mellifera (Table 1, hypergeometric test, p < .001; Doublet et al., 
2017). Furthermore, DEGs in B. terricola significantly overlapped 
with: (i) DEGs of honey bees exposed to Lotmaria passim (hyper-
geometric test, p =  .003; Liu et al., 2020); (ii) DEGs of honey bees 
exposed to both SBV and deformed wing virus (DWV; hypergeomet-
ric test, p <  .001) but not DWV alone (hypergeometric test, p = 1; 
Ryabov et al., 2016); (iii) DEGs of honey bees exposed to neonicoti-
noid insecticides (Shi et al., 2017: hypergeometric test, p = .029; Wu 
et al., 2017: hypergeometric test, p = .003) and (iv) DEGs of honey 
bees exposed to the insecticide fipronil (Aufauvre et al., 2014; hy-
pergeometric test, p  =  .023). We found no statistically significant 
overlap between B. terricola DEGs and the DEGs of honey bees ex-
posed to Nosema ceranae, several viruses (other than SBV) or poor 
diet (Table 1).

In addition to our transcriptomic analysis, we crossed referenced 
unaligned transcriptomic reads to a database of 16 bumble bee 

pathogens, and discovered five matches (Figure 2). We found that 
bumble bees from agricultural areas had a marginally higher prev-
alence of SBV (analysis of deviance type II, LR χ2 = 3.265, df = 1, 
p = .071; Agr: 0.667, NonAgr: 0.333), while bumble bees from non-
agricultural areas had a higher prevalence of Lotmaria passim (anal-
ysis of deviance type II, LR χ2 = 5.999, df = 1, p = .014; Agr: 0.0556, 
NonAgr: 0.417). The other detected pathogens did not have a statis-
tically significant difference in their prevalence rate when comparing 
agricultural from nonagricultural sites (Nosema ceranae: analysis of 
deviance type II, LR χ2 = 0.456, df = 1, p = .499; Agr: 0.833, NonAgr: 
0.917; Crithidia bombi: analysis of deviance type II, LR χ2  =  0.374, 
df = 1, p = .541; Agr: 0.556, NonAgr: 0.667; BQCV: analysis of de-
viance type II, LR χ2 = 2.486, df = 1, p = .115, Agr: 0.778, NonAgr: 
0.500).

In order to confirm our metatranscriptomic analysis, we per-
formed RT-qPCR on previously extracted samples using primers 
for three of the pathogens: BQCV, SBV and L. passim (Figure 3). We 
found that BQCV and SBV prevalence were statistically higher in the 
bees collected from agricultural areas (BQCV: analysis of deviance 
type II, LR χ2 = 8.758, df = 1, p = .003; SBV: analysis of deviance type 
II, LR χ2 = 7.308, df = 1, p = .007). L. passim prevalence did not dif-
fer between bees collected in agricultural and nonagricultural areas 
(analysis of deviance type II, LR χ2 = 0.832, df = 1, p =  .362), but 
bees collected in nonagricultural areas did have higher expression 
levels of L. passim (analysis of deviance type II, LR χ2 = 6.399, df = 1, 
p  =  .011). There was a strong and significant correlation between 
prevalence data estimated from metatranscriptomics and RT-qPCR 
analyses (Figure S1; Pearson's correlation, BQCV: t = 5.106, df = 27, 
p <  .0001, r =  .701; SBV: t = 3.840, df = 27, p <  .001, r =  .594; L. 
passim: t = 2.073, df = 27, p = .048, r = .371).

TA B L E  1  Number of differentially expressed genes (DEGs) in Bombus terricola overlapping with previously published transcriptomic 
studies exploring various stressors in honey bees

Stressor type Stressor DEG pverlap p

Pesticide (Shi et al., 2017) Thiamethoxam 8 .032*

Pesticide (Wu et al., 2017) Imidacloprid 7 .003*

Pesticide (Aufauvre et al., 2014) Fipronil 2 .025*

Pathogen (Doublet et al., 2017) Immune challenge 10 <.001*

Pathogen (Liu et al., 2020) Lotmaria passim 10 .003*

Pathogen (Ryabov et al., 2016) Sacbrood virus + deformed wing virus 24 <.001*

Pathogen (Ryabov et al., 2016) Deformed wing virus 0 1

Pathogen (Aufauvre et al., 2014) Nosema ceranae 0 1

Pathogen (Badaoui et al., 2017) Nosema ceranae 2 .294

Pathogen (Brutscher et al., 2017) Sindbis virus 13 .104

Pathogen (Brutscher et al., 2017) Double stranded RNA 3 1

Pathogen (Rutter et al., 2019) Israeli acute paralysis virus 0 1

Nutrition (Rutter et al., 2019) Chestnut vs. rockrose (less nutritious) pollen 17 .186

Nutrition (Corby-Harris et al., 2014) No pollen diet 1 .188

Nutrition (Alaux et al., 2011) No pollen diet 12 1

Nutrition (Wang et al., 2012) High and low pollen-hoarding 13 .553

*Statistically significant overlaps (p < .05).
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4  |  DISCUSSION

We used conservation genomics to gain a better understanding 
of the stressors experienced by Bombus terricola in the field. We 
found 61 DEGs in abdomens of workers collected in agricultural vs. 
nonagricultural areas. The genes that were upregulated in the bees 
collected in agricultural areas were related to muscle function and 
development, as well as biosynthesis of antibiotics. We then com-
pared our DEGs to previously published studies on transcriptomic 
responses of honey bees to various stressors. We found statistically 
significant overlaps with studies that exposed bees to pesticides and 
certain pathogens. These results point to pesticides as an important 
stressor affecting bumble bees foraging in agricultural landscapes.

Pesticides have been previously implicated in bumble bee de-
clines (Gill et al., 2012; Whitehorn et al., 2012). Neonicotinoids 

negatively impact colony growth, larval development and queen 
production in bumble bees, but research on the effects of fipronil 
on bumble bees is limited (Pisa et al., 2015). Overall, whether a link 
is present between pesticide use and bee decline in the field tends 
to depend on the bee species and the geographical location (Rundlöf 
et al., 2015; Szabo et al., 2012; Woodcock et al., 2017). Fipronil ex-
posure depends heavily on environmental conditions and, under 
certain conditions, can persist for months to years, especially in ag-
ricultural landscapes (Bonmatin et al., 2015). Tsvetkov et al., (2017) 
showed that pollen collected by honey bees from May to August 
near agricultural areas in Ontario contains neonicotinoid pesticides. 
It is therefore probable that B. terricola workers are also exposed to 
neonicotinoids during these months in Ontario. Our gene expression 
data support this. First, we have a statistically significant overlap in 
DEGs with three separate studies that exposed honey bees to ne-
onicotinoids and fipronil. Second, two of those overlapping genes 

F I G U R E  2  Pathogens detected through metatranscriptomics in Bombus terricola workers. We found an increased prevalence of Lotmaria 
passim in bees collected from nonagricultural areas (analysis of deviance type II, LR χ2 = 5.999, df = 1, p = .014) and a marginally increased 
sacbrood virus (SBV) prevalence in bees collected from agricultural areas (analysis of deviance type II, LR χ2 = 3.265, df = 1, p = .071), but 
no difference in the prevalence of Nosema ceranae (analysis of deviance type II, LR χ2 = 0.456, df = 1, p = .499), Crithidia bombi (analysis of 
deviance type II, LR χ2 = 0.374, df = 1, p = .541), or black queen cell virus (BQCV; analysis of deviance type II, LR χ2 = 2.486, df = 1, p = .115) 
between agricultural and nonagricultural areas. Mean ± SE. ns = not significant, ‡p < .1, *p < .05

F I G U R E  3  Validation of metatranscriptomic analysis of bumble bee pathogens via quantitative PCR. (a) Bombus terricola workers collected 
near agricultural areas had higher prevalence of black queen cell virus (BQCV; analysis of deviance type II, LR χ2 = 8.758, df = 1, p = .003) 
and sacbrood virus (SBV; analysis of deviance type II, LR χ2 = 7.308, df = 1, p = .007). Lotmaria passim prevalence was not statistically 
different from bees collected from agricultural and nonagricultural areas (analysis of deviance type II, LR χ2 = 0.832, df = 1, p = .362). (b) 
L. passim expression levels were higher in bees collected from nonagricultural areas (analysis of deviance type II, LR χ2 = 6.399, df = 1, 
p = .011). Mean ± SE. ns = not significant, *p < .05
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are cytochrome P450 genes (LOC551223, LOC413833), which are 
detoxification genes in honey bees and bumble bees (Berenbaum 
& Johnson, 2015; Manjon et al., 2018). Finally, the enrichment of 
muscle development GO terms could be related to neonicotinoid ex-
posure, as these pesticides cause hyperactivity (Boily et al., 2013; 
Suchail et al., 2001), cause locomotor deficits (Charreton et al., 2015) 
and impact foraging ability (Henry et al., 2012; Yang et al., 2008).

We also detected a transcriptional signal of pathogenic exposure 
affecting B. terricola workers in agricultural areas. This is supported 
by the enrichment of genes responsible for the biosynthesis of anti-
biotics and by the overlap with previous studies that exposed honey 
bee workers to various immune challenges. In addition, we de-
tected five pathogens in B. terricola: two trypanosomatids parasites, 
Crithidia bombi and Lotmaria passim (Lipa & Triggiani, 1988; Schwarz 
et al. 2015); a microsporidian parasite, Nosema ceranae (Higes et al., 
2006); and two RNA viruses, BQCV and SBV (Chen & Siede, 2007). 
We confirmed our analysis using qPCR for three of the pathogens: 
BQCV, SBV and L. passim. We found that BQCV and SBV prevalence 
was higher in workers collected from agricultural areas. This further 
supports the idea that B. terricola workers experience pathogen ex-
posure near agricultural areas.

While there is evidence that some pathogens are more prevalent 
near agriculture, L. passim's prevalence was actually higher in bees 
from nonagricultural areas, while N. ceranae and C. bombi prevalence 
was the same in both groups of bees. SBV, BQCV and N. ceranae 
are common pathogens in managed honey bee and bumble bee 
colonies (Bushmann et al. 2012; Chen et al., 2008; Chen & Siede, 
2007; Graystock et al., 2014). These findings lend further support to 
the pathogen spillover hypothesis as a driver of B. terricola's decline 
(Colla et al., 2006; Kent et al., 2018; Szabo et al., 2012).

We compared our bumble bee DEGs with DEGs that were ex-
pressed in honey bees challenged with different stressors. We did 
this because the availability of literature on honey bees is much 
greater than that on bumble bees (Trapp et al., 2017). However, we 
think these contrasts between Bombus and Apis are justified be-
cause many of the stress response pathways, such as detoxification 
and immunity, are strikingly similar between bumble bees and honey 
bees (Barribeau et al., 2015; Sadd et al., 2015). Additionally, honey 
bees and bumble bees are often exposed to the same stressors in 
the field (Rundlöf et al., 2015; Woodcock et al., 2017), including 
bumble bees being exposed to honey bee pathogens (Furst et al., 
2014; McMahon et al., 2015).

While our work highlights pesticides and pathogens as import-
ant stressors acting on current B. terricola populations, our study 
does have some limitations. We were only able to test for a small 
subset of stressors in a small portion of the species’ entire range; 
expanding the scope of conservation genomic studies will be helpful 
to fully understand how multiple stressors influence the health of 
other B. terricola populations. Moreover, we can only detect “signa-
tures” of stressors that were explored in previously published re-
search. We look forward to more studies that experientially expose 
bumble bees to various stressors followed by expression profiling 
to generate stressor-specific biomarkers (Grozinger & Zayed, 2020). 

Our current design also prevents us from detecting stressors that 
would affect bumble bees in the same manner in both agricultural 
and nonagricultural sites, such as climate change (Kerr et al., 2015); 
these would not lead to differentially expressed genes in our anal-
ysis. Finally, we cannot detect stressors that exert their effects 
on queens, males or during larval development (McFrederick & 
LeBuhn, 2006). However, despite these limitations, we believe that 
the transcriptomic approach we used here does provide valuable 
insights into the probable stressors acting on declining B. terricola 
populations, and can be used to inform conservation management 
of the species. Moreover, the diagnostic power of conservation ge-
nomics will only improve for wildlife species as more transcriptomic 
literature becomes available.

Like several other bumble bee species, B. terricola is declining rap-
idly in North America (Cameron et al., 2011; Colla & Packer, 2008). 
Using a transcriptomics approach, we found that B. terricola workers 
in agricultural areas exhibit transcriptional signatures of exposure 
to pesticides and pathogens. Pathogens have been implicated in B. 
terricola previously (Kent et al., 2018; Szabo et al., 2012), but, here, 
we were able to detect several specific pathogens that may be con-
tributing to B. terricola's decline. We also present the first evidence 
that B. terricola workers are experiencing xenobiotic stressors in the 
field. This is significant, because pesticides are known to impact 
colony development and function (Rundlöf et al., 2015; Whitehorn 
et al., 2012), and impact the individual immune response of workers 
(O’Neal et al., 2018). We think our study clearly demonstrates the 
value of genomics in conservation, by allowing researchers to an-
swer previously untraceable questions about the multiple stressors 
influencing wildlife populations in various habitats.
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