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Abstract
1.	 Bumblebees are constantly exposed to a wide range of biotic and abiotic stresses 

which they must defend themselves against to survive. Pathogens and pesticides 
represent important stressors that influence bumblebee health, both when act-
ing alone or in combination. To better understand bumblebee health, we need to 
investigate how these factors interact, yet experimental studies to date generally 
focus on only one or two stressors.

2.	 The aim of this study is to evaluate how combined effects of four important stress-
ors (the gut parasite Nosema ceranae, the neonicotinoid insecticide thiamethoxam, 
the pyrethroid insecticide cypermethrin and the EBI fungicide tebuconazole) in-
teract to affect bumblebees at the individual and colony levels.

3.	 We established seven treatment groups of colonies that we pulse exposed to dif-
ferent combinations of these stressors for 2 weeks under laboratory conditions. 
Colonies were subsequently placed in the field for 7 weeks to evaluate the effect of 
treatments on the prevalence of N. ceranae in inoculated bumblebees, expression 
levels of immunity and detoxification-related genes, food collection, weight gain, 
worker and male numbers, and production of worker brood and reproductives.

4.	 Exposure to pesticide mixtures reduced food collection by bumblebees. All immunity-
related genes were upregulated in the bumblebees inoculated with N. ceranae when 
they had not been exposed to pesticide mixtures, and bumblebees exposed to the 
fungicide and the pyrethroid were less likely to have N. ceranae. Combined exposure 
to the three-pesticide mixture and N. ceranae reduced bumblebee colony growth, and 
all treatments had detrimental effects on brood production. The groups exposed to 
the neonicotinoid insecticide produced 40%–76% fewer queens than control colonies.

5.	 Our findings show that exposure to combinations of stressors that bumblebees 
frequently come into contact with have detrimental effects on colony health and 
performance and could therefore have an impact at the population level. These 
results also have significant implications for current practices and policies for 
pesticide risk assessment and use as the combinations tested here are frequently 
applied simultaneously in the field. Understanding the interactions between dif-
ferent stressors will be crucial for improving our ability to manage bee populations 
and for ensuring pollination services into the future.

www.wileyonlinelibrary.com/journal/jane
mailto:﻿
https://orcid.org/0000-0002-3891-9931
https://orcid.org/0000-0002-3557-1941
https://orcid.org/0000-0003-1257-3829
https://orcid.org/0000-0001-7893-4389
https://orcid.org/0000-0003-0951-9768
https://orcid.org/0000-0003-4421-2876
mailto:cristinabotias@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2656.13375&domain=pdf&date_stamp=2020-11-05


416  |    Journal of Animal Ecology BOTÍAS et al.

1  | INTRODUC TION

Emerging evidence of widespread pollinator declines at local and re-
gional scales (Nieto et al., 2015; Ollerton et al., 2014; Powney et al., 
2019) raises concerns about reduced agricultural productivity and 
sustainability in natural ecosystems (Biesmeijer,  2006; Gill et al., 
2015). Although the effects of environmental stressors on organ-
isms are usually tested individually (Vouk et al., 1987), bees are often 
simultaneously exposed to a wide variety of biotic and abiotic stress-
ors in nature (González-Varo et al., 2013). Protecting bee health is 
therefore a complex multifactorial issue that requires considering 
scenarios that include multiple stressors. Pathogens and pesticides 
have often been highlighted as key drivers of population declines in 
both wild and managed species (Goulson et al., 2015).

In agricultural environments, bees are frequently exposed to 
combinations of chemicals (David et  al.,  2016; Mullin et  al.,  2010; 
Tosi et al., 2018), some of which may produce additive, antagonistic 
or synergistic effects (Biddinger et al., 2013; Johnson et al., 2013; 
Sgolastra et al., 2017, 2018; Spurgeon et al., 2016; Zaragoza-Trello 
et al., 2020; Zhu et al., 2014). For instance, chronic exposure to a 
combination of field-relevant concentrations of two insecticides 
(neonicotinoid and pyrethroid) impaired natural foraging behaviour 
in Bombus terrestris colonies, and increased worker mortality lead-
ing to significant reductions in brood development and colony suc-
cess (Gill et al., 2012). Moreover, the toxicity of neonicotinoids and 
pyrethroids in bees can increase when they are exposed to ergos-
terol-biosynthesis-inhibiting (EBI) fungicides simultaneously (Colin 
& Belzunces, 1992; Iwasa et al., 2004; Pilling et al., 1995; Pilling & 
Jepson,  1993; Sgolastra et  al.,  2017). EBI fungicide inhibit the cy-
tochrome P450 enzymatic detoxification mechanism in insects 
which is necessary for oxidative metabolism of a variety of xeno-
biotics (Brattsten et  al.,  1994). Metabolic detoxification mediated 
by cytochrome P450s contributes significantly to bee tolerance to 
some insecticides (Beadle et al., 2019; Hayward et al., 2019; Johnson 
et al., 2006), and cytochrome P450 activity has been shown to be an 
important determinant of neonicotinoid sensitivity in bumblebees 
(Manjon et al., 2018). The inhibition of this detoxification mechanism 
may lead to insecticide residues being metabolized more slowly, 
although the effect is dose dependent, and the extent of syner-
gism in field-realistic conditions is unclear (Thompson et al., 2014). 
Therefore, the toxic effects of pesticides encountered by bees in 
the field are difficult to predict from single-compound laboratory 
studies. Exposure to EBI fungicide can also reduce the anti-feeding 
response of bees to pyrethroids, and consequently increase the 
toxicity of these insecticides by raising the levels of exposure 
(Thompson & Wilkins, 2003). Moreover, exposure to neonicotinoids 
and to EBI fungicide has been shown to alter the feeding behaviour 

of bees (Azpiazu et al., 2019; Elston et al., 2013; Kessler et al., 2015). 
Therefore, the repellency or attractiveness of the food contami-
nated with different pesticide should also be assessed to better un-
derstand the extent of exposure to certain mixtures.

Bees are also impacted by a diversity of pathogens, includ-
ing one suspected to seriously affect their health, the microspo-
ridium Nosema ceranae (Graystock, Yates, Darvill, et  al.,  2013; 
Higes, Martín-Hernández, Botías, et al., 2008), which infects 
gut epithelia of adult bees. This obligate intracellular eukaryotic 
parasite was initially detected in the Asian honeybee Apis cer-
ana (Fries et  al.,  1996), but is now globally distributed in A. mel-
lifera (Klee et al., 2007), and has been more recently detected in 
several species of solitary bees and bumblebees (Li et  al.,  2012; 
Plischuk et  al.,  2009; Ravoet et  al.,  2014). Nosema ceranae has 
been suggested to be the causative agent of an emergent infec-
tious disease in bumblebees because detrimental effects in sur-
vival, behaviour and colony growth have been reported for B. 
terrestris with spores of this microsporidium (Graystock, Yates, 
Darvill, et  al., 2013; Rotheray et al., 2017). However, the results 
of a recent study question the classification of N. ceranae as an 
emerging infectious agent for bumblebees as a new host (Gisder 
et al., 2020). The detrimental effects detected in N. ceranae PCR-
positive bumblebees may instead be due to the specific energetic 
and corresponding physiological costs that immune responses en-
tail (Ardia et al., 2012). In addition, exposure to neonicotinoid in-
secticides and some fungicides has been reported to increase the 
levels and impact of N. ceranae in honeybees (Alaux et al., 2010; 
Pettis et al., 2012, 2013), possibly due to a reduced immunocom-
petence in bees challenged by some types of pesticides (Di Prisco 
et  al.,  2013; Garrido et  al.,  2013). Understanding how environ-
mental stressors affect immune responses in bees is crucial for 
developing more informed strategies for mitigating the impacts of 
pesticides on the health of pollinators (Pamminger et al., 2018). In 
bumblebees, as in other insects, the immune responses to parasites 
have been identified, and consist of both cellular and humoral re-
sponses (Barribeau et al., 2015). Phagocytosis, encapsulation and 
melanization are related to cellular immunity (Osta et  al., 2004), 
while humoral immunity involves antimicrobial peptide (AMPs) 
synthesis (Evans,  2006). Four antimicrobial peptides which pro-
vide a broad-spectrum of activity against microorganisms, abae-
cin, apidaecin, defensin and hymenoptaecin, have been identified in  
B. terrestris during infection by trypanosomatid parasites (Barribeau 
et al., 2015; Brunner et al., 2013; Riddell et al., 2011), and during  
N. ceranae infection in honeybees (Antúnez et al., 2009; Chaimanee 
et  al.,  2013). The synthesis of these AMPs is under the control 
of two important signalling pathways, the Toll and the Imd path-
ways (Evans et  al.,  2006; Lemaitre & Hoffmann,  2007). Another 
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molecule with a potential role in defence against gut-infecting par-
asites (Schlüns et al., 2010) such as the microsporidium N. ceranae, 
in bumblebees, is hemomucin, a surface glycoprotein involved in 
inducing an immune response and found to be highly expressed in 
the midgut (Theopold et al., 1996).

Here we conducted an experiment on bumblebees B. terrestris 
to study the combined effects of chronic exposure to field-relevant 
doses of three abiotic stressors, the neonicotinoid thiamethoxam, 
the pyrethroid cypermethrin and the EBI fungicide tebuconazole, 
as well as the biotic stressor, N. ceranae. Bumblebee colonies were 
pulse exposed to the stressors in controlled laboratory conditions 
for 2 weeks and then subsequently placed in the field for a further 
7 weeks (depuration period under environmentally relevant condi-
tions). We compared the effect of simultaneous exposure to the four 
stressors and to different ternary combinations of them, by evaluat-
ing the impact of such stressors during the pulsed exposure and the 
second potential demographic impact due to failure to fully eliminate 
the toxicants and the pathogen during the depuration period. In ad-
dition, one group was exposed solely to the microsporidium N. cer-
anae in order to discern if pesticide exposure alters the prevalence 
and gene expression profile related to the immune response of inoc-
ulated bees. Thus, after the 2-week pulsed exposure period ended, 
we evaluated the prevalence of N. ceranae in bumblebee colonies. 
Next, to further explore this effect we measured gene expression in 
four AMPs (abaecin, apidaecin, defensin and hymenoptaecin), a signal 
molecule of the Toll (pelle), and Imd immune pathways (relish), and an 
immune recognition/effector gene (hemomucin) in order to evaluate 
the effect of N. ceranae inoculation on the gene expression related 
to the immune response of bumblebees, and investigate the possible 
interference of pesticides on this effect (Aufauvre et al., 2014; Di 
Prisco et  al.,  2013). We also studied the expression of two genes 
related to cytochrome P450-mediated detoxification involved in the 
defence against insecticides in bumblebees and other insects (Colgan 
et al., 2019; Huang et al., 2015; Jing et al., 2018) to test if exposure 
to the EBI fungicide tebuconazole alters the cytochrome P450 enzy-
matic detoxification mechanisms in bumblebees, presumably exac-
erbating the effect of insecticide (Azpiazu et al., 2019; Berenbaum 
& Johnson, 2015; Iwasa et al., 2004; Johnson et al., 2013; Sgolastra 
et al., 2017). Collection of pollen and nectar with and without pes-
ticides was also evaluated during the 2  weeks under laboratory- 
controlled conditions in order to assess if exposure to mixtures of 
pesticides had an effect on the feeding behaviour of bumblebees. 

Finally, colony growth and the production of workers and sexuals 
were measured during, and at the end of the depuration period re-
spectively, to determine which combinations of stressors are more 
harmful to bumblebee colonies.

2  | MATERIAL S AND METHODS

We obtained 70 early-stage bumblebee colonies of B. terrestris audax 
(Biobest, Westerlo, Belgium) on 21 May 2014, each consisting of a 
queen, brood and 10–21 workers (mean ± SD = 15.8 ± 3.16 work-
ers/colony). We confirmed that all colonies were free of the most 
prevalent parasites (Nosema bombi, N. ceranae, Trypanosomatida and 
Apicystis bombi) at the start of the experiment by microscopic exami-
nation of faeces collected from the colonies and PCR of the guts of 
20% of the workers present in each colony (Graystock, Yates, Evison, 
et al., 2013; Martín-Hernández et al., 2007). Tripanosomatids could 
not be identified to the species level because the method used for de-
tection (Meeus et al., 2010), based on amplification of the 18S rDNA 
gene alone, has been shown to be unsuitable to classify tripanoso-
matids infecting bees without sequencing (Bartolomé et  al.,  2018; 
Ravoet et al., 2015). Colonies were then randomly assigned to one of 
seven treatments (see below for details on the treatments; 10 colo-
nies/treatment). There were no significant differences between treat-
ments in the worker population or weight of colonies at the start of 
the experiment (ANOVA; worker population: F6,63 = 0.563, p = 0.758; 
mean weight = 119 ± 7.85 g, F6,63 = 0.242, p = 0.961).

The seven treatments were applied using a stepwise removal ap-
proach, consisting of exposure to three abiotic and one biotic stressor 
applied simultaneously or in different ternary combinations. These 
treatments were applied in order to determine the relative importance 
of each stressor or combination of stressors in affecting bumblebees at 
the individual and colony levels (Table 1). In comparison with factorial 
approaches, the stepwise removal approach allowed us to empirically 
test complex combinations of up to four stressors with a limited num-
ber of treatments, and thus, to simplify the otherwise unwieldy num-
ber of potential interactions by using experimental treatments that 
reflect combinations of stressors that are likely to occur in real-world 
agricultural landscapes (Côté et al., 2016). The abiotic stressors were 
the pesticides thiamethoxam (neonicotinoid insecticide), cypermethrin 
(pyrethroid insecticide) and tebuconazole (demethylation inhibitor fun-
gicide). These pesticides were selected based on their extensive use 

Group Neonicotinoid (N) Pyrethroid (P) EBI fungicide (F) N. ceranae (M)

NPFM √ √ √ √

NPF √ √ √

PFM √ √ √

NPM √ √ √

NFM √ √ √

M √

Control

TA B L E  1   Summary of the seven 
treatments applied to Bombus terrestris 
colonies in the study (10 colonies/
treatment), involving three abiotic 
pesticide stressors (the neonicotinoid 
insecticide thiamethoxam, the pyrethroid 
insecticide cypermethrin and the 
fungicide tebuconazole) and one biotic 
stressor (the microsporidian pathogen 
Nosema ceranae)
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in the UK arable crops including oilseed rape, wheat and spring barley 
(FERA, 2017), consequent prevalence on crop and field margin flowers, 
and their regular occurrence in bee food stores worldwide (Sánchez-
Bayo & Goka, 2014). The biotic stressor was the microsporidian patho-
gen N. ceranae (Table 1).

The colonies were kept in laboratory conditions (25°C, 50%–60% 
relative humidity) in complete darkness for the first 2 weeks of the 
experiment. They received 5 g of fresh pollen in each of two feeders 
and 50 g of sugar solution in each of two feeders every 2–3 days, 
with any remaining pollen and sugar solution being weighed and dis-
carded after replacement. The pollen food provided was a honeybee- 
collected polyfloral pollen blend, purchased from Biobest (Belgium) 
through Agralan Ltd (Swindon, UK), that was sterilized to ex-
clude honeybee pathogen spill-over effects by the application of 
gamma irradiation with a cobalt-60 source at dose rates between 
25 and 45  kGy (Graystock et  al.,  2016; Higes, Martín-Hernández, 
Garrido-Bailón, García-Palencia,  2008; Singh et  al.,  2010). Gamma 
irradiation has also been shown to be an effective tool to degrade 
pesticide residues in different matrices (Dessouki et al., 1999; Pargi 
& Bhatt, 2018). The sugar solution provided was 50% inverted sugar 
syrup (w/v with Ambrosia syrup, E H Thorne Ltd, and distilled water). 
Pesticide exposure started on Day 2 after arrival, when the colonies 
had acclimatized to the laboratory conditions. Nosema ceranae in-
oculation was performed on Day 5 (see below for details), such that 
bees had already been exposed to pesticide mixtures for 3 days at 
the time of inoculation. The 2-week pesticide exposure duration was 
based on the blooming period of flowering crops, when exposure 
of bumblebees to pesticide mixtures applied to the crops is more 
likely (Botías et al., 2017). Therefore, on Day 15, samples were col-
lected for analysis of gene expression and colonies were then placed 
in the field where the workers could forage under natural conditions 
for a further 7  weeks (Figure  S1). The weight of the colonies was 
measured once per week throughout the experiment. By the end of 
9 weeks, the colonies were reaching the natural ends of their lives 
(indicated by production of reproductives, and decreases in number 
of workers and colony weight; Goulson, 2010).

2.1 | Pesticide exposure

Colonies were exposed to pesticides via the pollen and sugar so-
lution provided according to their treatment group (Table  1), with 
pesticide-spiked food provided in the relevant treatments in one of 
the two pollen feeders and one of the two sugar solution feeders 
(‘pesticide feeder’), and pesticide-free food provided in the other 
feeders (‘uncontaminated feeder’) in order to simulate exposure 
in field conditions in which bees may forage on flowers with and 
without residues, and also to detect a possible inhibitory feed-
ing effect of contaminated food. Stock solutions were prepared in 
acetone of 1  mg/ml thiamethoxam (TMX) (C8H10ClN5O3S powder 
grade: PESTANAL®, analytical standard; brand: Fluka), cyperme-
thrin (CYPER) (C22H19Cl2NO3 powder; grade: PESTANAL®, analyti-
cal standard; brand: Fluka) and tebuconazole (TEB) (C16H22ClN3O 

powder; grade: PESTANAL®, analytical standard; brand: Fluka). A 
sample of each was subsequently diluted with distilled water to ob-
tain the required concentrations for the experiment (0.01 mg/ml).

Pollen was spiked according to treatment by spreading the cor-
responding volume of 0.01  mg/ml solutions of each pesticide over 
it with a micropipette to obtain the concentrations required for the 
experiment: 5 p.p.b. of thiamethoxam (Botías et al., 2015), 10 p.p.b. 
of cypermethrin (Mullin et al., 2010) and/or 36 p.p.b. of tebuconazole 
(David et  al.,  2016; Mullin et  al.,  2010). Once spiked, the pollen 
with the pesticide solutions was homogenized by means of a mortar 
and pestle. Sugar solution was spiked according to treatment with 
1.5 p.p.b. of thiamethoxam (Botías et al., 2015), 10 p.p.b. of cyperme-
thrin (Mukherjee, 2009) and/or 36 p.p.b. of tebuconazole (Büchler & 
Volkmann, 2003). The thiamethoxam concentration used was that de-
tected previously in pollen and nectar collected from flowers (Botías 
et  al.,  2015). The cypermethrin and tebuconazole concentrations 
used were those detected previously in bee food stores (beebread 
and honey), doubled to reflect the fact that beebread and honey 
are mixtures of pollen and nectar from different plants that may or 
may not contain pesticide residues. Pesticide-free food was spiked 
with the same concentration of acetone as applied to pesticide- 
contaminated food (5  µl/g). Since we were interested in measuring 
the potential feeding inhibition effect of the treatments applied, the 
location of the ‘pesticide feeder’ and the ‘uncontaminated feeder’ 
within the nests were interchanged every time the food was renewed 
in case the bumblebees preferred collecting food from a particular 
side of the nest.

2.2 | Nosema ceranae inoculation

On Day 5 of the experiment, when the colonies had been exposed to 
pesticide mixtures for 3 days, all bees within each colony were indi-
vidually marked on the thorax and fed 4 µl of a single meal of either 
30% sugar water (controls and the pathogen-free treatment NPF) or 
30% sugar water containing c. 120,000 freshly prepared N. ceranae 
spores (other treatments, Table  1; viability 98.9% based on 0.4% 
Trypan blue staining; Higes, Martín-Hernández, Garrido-Bailón, et al., 
2008) using a micropipette. The N. ceranae spores were obtained by 
homogenizing abdomens of adult honeybees from a naturally infected 
honeybee colony and purifying the homogenate by centrifugation in 
95% Percoll (Sigma-Aldrich). Identity of the parasite was confirmed by 
PCR (Martín-Hernández et al., 2012). The dose administered is typical 
of that used in honeybee studies (Alaux et al., 2010; Doublet et al., 
2014; Higes et al., 2007) and dosages of fewer than 100,000 spores 
have been found to infect bumblebees (Fürst et al., 2014; Graystock, 
Yates, Darvill, et al., 2013). Bees were starved for 4 hr before the in-
oculation of spores, and then immobilized by placing them in a cooler 
bag with ice blocks for approximately 10–15 min for ease of handling. 
Recovering bees ingested the inoculum when their proboscis was 
touched with a droplet of the spore solution at the tip of a micropi-
pette. After parasite inoculation on Day 5, colonies were monitored 
daily for worker mortality until they were placed in the field on Day 
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15, with very low mortality observed during this period (<3 workers 
in all treatments). Nosema spores were not detected in the dead bees 
collected.

2.3 | DNA and RNA extraction, pathogen 
screening and gene expression analysis

Ten days post-inoculation, five marked bees per colony were flash-
frozen in liquid nitrogen and stored at –80°C for subsequent parasite 
and gene expression analysis. The midgut is the site of infection by 
N. ceranae and also the main site of exposure to orally administered 
chemicals, so the midguts of these bees were individually dissected 
and used for the pathogen screening and gene expression analyses. 
Once dissected, midguts were immediately homogenized in 600 µl 
of buffer RTL Plus within a Pathogen Lysis Tube (Cat No./ID: 19092, 
Qiagen), grinding first with a microtube pestle and then with a Tissue 
Lyser LT (5 min at 50 Hz, Qiagen). Isolation of DNA and RNA from 
bumblebee guts was performed using the AllPrep DNA/RNA Mini 
kit (Qiagen) according to the AllPrep DNA/RNA protocol. Genomic 
DNA was removed from RNA isolated using the RNA-free DNase set 
(Qiagen) during the RNA extraction. DNA was stored at −20°C until 
pathogen screening was performed, and RNA was stored at −80°C 
until gene expression analysis started.

The presence of common bumblebee parasites (N. bombi, N. cer-
anae, Trypanosomatida, A. bombi), which are regarded as a threat 
to bumblebee health (Graystock, Yates, Evison, et  al., 2013; Meeus 
et al., 2011), was evaluated via PCR by analysing the five workers/
colony that had been collected 10 days post-inoculation with N. cer-
anae spores (N  =  50 bees per treatment group). A pool of the five 
DNA extracts per colony was analysed using PCR protocols and par-
asite-specific primers following the methods of Graystock, Yates, 
Evison, et al. (2013), except for N. ceranae detection protocols where 
we followed methods described by Martín-Hernández et al. (2007). In 
the case of the N. ceranae-positive DNA pooled extracts, PCR analysis 
was performed in individual DNA templates in order to estimate the 
percentage of bees per colony with this microsporidian parasite. At 
the end of the experiment, a further subset of five bees per colony 
were examined for pathogen presence as described above.

For the gene expression analysis, we used the RNA of one bum-
blebee per colony (10 bumblebees per treatment). Since we were 
interested in the influence of pesticide treatments on the immune 
response, and the possible interference of the EBI fungicide tebu-
conazole in the detoxification mechanisms, we only analysed bum-
blebees from treatments PFM (CYPER  +  TEB  +  N. ceranae), NPM 
(TMX + CYPER + N. ceranae), NFM (TMX + TEB + N. ceranae), M  
(N. ceranae) and control, for the gene expression assay. All the speci-
mens from groups inoculated with N. ceranae (PFM, NPM, NFM and 
M) used for gene expression were confirmed to be positive for this 
microsporidium by PCR.

The concentration and purity of RNA was determined on a Qubit 
fluorometer using a Qubit RNA HS Assay kit together with a Qubit® 
dsDNA HS Assay Kit (Qiagen), and 300  ng of total RNA was used 

for reverse transcription using the Phuson RT-PCR kit (Thermo 
Scientific). A set of seven immunity-related target genes, namely 
abaecin, apidaecin, defensin, hymenoptaecin, hemomucin, relish and 
pelle, were analysed using primers described previously (Brunner 
et al., 2013; Schlüns et al., 2010). In addition, the expression of two 
detoxification-related genes (CPR and CYP4G15) was evaluated by 
using two sets of primers, which were designed using Primer3 and 
published sequences (see Table S1 for primer specifications and pu-
tative gene function). Standard curves with three qPCR replicates at 
1:10, 1:100, 1:1,000 and 1:5,000 concentrations were generated to 
test the amplification efficiency of each primer set. The efficiency of 
all the primer sets used in our experiment were between 93.3% and 
100.2%. Each sample was tested with the reference genes AK and 
PLA2 (Horňáková et al., 2010) and all seven immunity-related genes 
and two detoxification-related genes. Three technical replicates 
were run per reaction. Reactions for qPCR were performed on an ABI 
OneStepTM RT-PCR instrument using the following program: 95°C for 
5 m, followed by 40 cycles of a 30 s at 94°C denaturation, 30 s at 
59°C annealing and 30 s at 72°C extension steps. Results were anal-
ysed using the OneStepTM analysis software. The amplification results 
from the different genes were expressed as the threshold cycle (CT) 
value, which represents the number of cycles needed to generate a 
fluorescent signal greater than a predefined threshold. Fluorescence 
was measured in the elongation step and negative controls (without 
cDNA) were included in each reaction run. Fold change in expression 
was calculated relative to expression levels in the control samples and 
using the geometric mean of reference genes AK and PLA2 as the 
endogenous control value with the 2(Δ−ΔCT) approximation method 
(Livak & Schmittgen, 2001).

2.4 | Bumblebee monitoring under field conditions

Monitoring under field conditions was timed to correspond to 
wild colony development in the region where the study was per-
formed (East Sussex, South East England, UK), with colonies being 
placed out in the field on Day 15 after the colonies arrived (Day 
13 post-exposure). The field site was situated in an orchard at 
Stanmer Organics (Brighton, East Sussex, UK), which has been Soil 
Association-certified organic for the past 10  years and is located 
within Stanmer Park Local Natural Reserve (about 5,000 ha of open 
and wooded land), that covers a larger area than the typical foraging 
range of B. terrestris (Osborne et al., 2008). Colonies were randomly 
and evenly distributed across the orchard, leaving at least 5  m of 
separation between them. All colonies were placed in shaded posi-
tions (Figure S1). At the time of placement in the field, none of the 
flowering crops (mainly oilseed rape) within 2  km were in bloom. 
Although the doors on the nest-boxes were designed to ensure none 
of the queens were able to leave the colony, the numbers of newly 
emerged queens were unequal to the number of uncapped queen 
cells in their corresponding nests, so we assumed that some of the 
queens had managed to escape and therefore did not include the 
number of queens in our analyses of colony performance. The fresh 
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weight of all colonies was recorded at the start of the experiment 
and weekly thereafter. The nests were housed in a plastic box, which 
was in turn placed within a cardboard box. Since it is not possible to 
remove the nest material from the inner plastic box without caus-
ing severe disturbance, we weighed the inner box and all biologi-
cal material within (bees, wax, brood, honey pots, etc.). In general, 
colony mortality over the course of the experiment was very low, 
with no colonies dying during the first 8  weeks. In the last week, 
five colonies died (one from group NPFM, one from group NPF, two 
from group PFM and one from group M). At the end of the experi-
ment, all colonies were freeze-killed and then dissected. The number 
of empty and capped queen cells, males, workers and empty and 
capped worker/male pupal cells (brood cells) were counted. Also, 10 
workers and 10 males were randomly collected from each colony (or 
all the bees available in colonies with <10 individuals), individually 
weighed and their thorax width was measured using digital callipers. 
A sample of five workers per colony was collected and processed for 
pathogen analysis, using methods described above.

2.5 | Statistical analysis

All data were analysed using the statistical software R, version 
3.5.1 (R Core Team, 2018). For the five colonies that collapsed in 
the field 1 week before the end of the experiment, the values of 
number of workers, males, brood cells and queen cells recorded 
upon collection from the field (in week 8) were the ones used for 
the statistical analyses. Residuals of all models were inspected to 
ensure model assumptions were met.

The differences in the collection of uncontaminated versus  
pesticides-treated pollen and sugar solution were analysed using gen-
eralized linear models (nlme package; Pinheiro & Bates, 2000). The 
differential collection of pollen or sugar solution divided by the num-
ber of individuals per colony was modelled as a function of the treat-
ment group and the time when food consumption was measured. 
The temporal correlation between errors was included in order to 
account for the repeated measures performed in each colony and 
colony was included as a random effect. In addition, the total col-
lection of pollen and sugar solution measured after 2 weeks under 
laboratory conditions was analysed using linear regression (LM; 
Gaussian error distribution), with the total collection of pollen and 
sugar solution per group entered as fixed effects. Multiple pairwise 
comparisons for total pollen and sugar solution collected were per-
formed using Tukey's post-hoc tests (using the r package multcomp; 
Westfall et al., 1999). The relative percentage of pollen or sugar solu-
tion collected per group from the uncontaminated feeder in relation 
to the pesticide feeder was calculated by using the following for-
mula: (grams of pollen or sugar solution collected from the uncon-
taminated feeder in the 10 colonies of the group × 100)/grams of 
pollen or sugar solution collected from both feeders in the 10 colo-
nies of the group. The overall percentage of food collected per group 
compared to controls was calculated using the formula: 100 − [(total 
amount of pollen or sugar solution collected by the 10 colonies of 

the group × 100)/Total grams of pollen or sugar solution collected 
by the 10 colonies of control group].

The number of bees positive for N. ceranae 10  days post-in-
oculation was compared among the treatment groups that were 
inoculated with this microsporidium using a GLM (binomial error 
distribution). A similar model was used to examine the possible 
influence of treatments on the detection of pathogens in the colo-
nies at the end of the study (modelled as the presence/absence of 
the pathogens in each colony).

Fold change in gene expression data was log-transformed to 
account for a right skew, and comparisons of all genes among the 
experimental groups were performed using model based analysis 
of multivariate data with a negative binomial error distribution 
(mvabund package; Wang et al., 2012). Multivariate linear models 
allowed us to fit the responses of all genes simultaneously (Wang 
et al., 2012; Warton et al., 2012). The summary.manylm function 
in mvabund was used to test the effects of treatments on gene 
expression using the Lawley-Hotelling trace statistic, and we cor-
rected for multiple tests using a stepdown resampling procedure. 
For multiple pairwise comparisons, differences in the fold change 
in gene expression between treatments were examined using a 
Tukey and Kramer (Nemenyi) test with Tukey-Dist approximation 
for independent samples (Wang et al., 2012).

Colony weight gain over time was analysed using a linear mixed 
effects model (LMM; Gaussian error distribution). Weight gain data 
were log-transformed prior to analysis to achieve normal error distri-
bution. Treatment, week and week2 (to account for the curved rela-
tionship of weight over time) were entered as fixed effects and the 
number of workers present at week 0 as a covariate. The interaction 
between week and treatment was included in the model and colony 
was entered as a random effect. Maximum colony weight, which was 
achieved at Week 5 in all treatment groups, was also compared among 
groups as a fitness proxy by using linear regression (LM; Gaussian error 
distribution), followed by Tukey's post-hoc tests (Westfall et al., 1999). 
The effect of treatment on the total numbers of adult workers, adult 
males, worker and male brood cells (capped and uncapped; worker 
and male cells cannot be distinguished), and queen cells (capped and 
uncapped) was assessed using generalized linear mixed effects mod-
els (GLM; Poisson error distribution), while the effect of treatment on 
the weight and thorax width of adult workers and males were anal-
ysed using (LMM; normal error distribution). All models had treatment 
as a fixed factor and the LMMs included colony as a random factor. 
Multiple pairwise comparisons for number of workers, males, brood 
cells and queen cells produced were performed by using Tukey's post-
hoc tests (Westfall et al., 1999). To evaluate the relative contribution 
of each stressor in affecting bumblebee colony fitness, we assessed 
the mean effect size of each individual stressor on the production of 
brood cells, new queens and males. To do this, we calculated the mean 
effect size of each of the treatments containing a particular stressor, 
minus the effect size of the treatment without it (e.g. average contri-
bution of N to the effects on colony fitness: mean [(NPFM − PFM); 
(NPF − PFM); (NPM − PFM); (NFM − PFM); (NPFM − M); (NPF − M); 
(NPM − M); (NFM − M)].
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3  | RESULTS

3.1 | Food collection

Bumblebees collected 27%, 16%, 24%, 24% and 19% more pollen 
respectively in colonies of groups NPFM, NPF, PFM, NPM and NFM 
from the ‘uncontaminated feeder’ than from the ‘pesticides feeder’ 
(GLM; F6,342 = 17.17, p < 0.0001; Figure 1a; Table S2), and reduced 
their overall pollen collection by 46%, 21%, 50%, 57% and 38% re-
spectively in colonies of groups NPFM, NPF, PFM, NPM and NFM 
compared to controls (LM; F6,63  =  30.90, p  <  0.0001; Figure  1b; 
Table  S3). There was a synergistic effect of pesticide mixtures 
and N. ceranae on total pollen collection, with both the colonies 
that were only inoculated with N. ceranae (M) and those exposed 
to the three-pesticide mixture (NPF), collecting significantly more 
pollen than colonies exposed to the full combination (NPFM; 
Tukey´s post-hoc test; both ps < 0.001; Table S4). Bumblebees col-
lected 9%, 6%, 5%, 7% and 4% more sugar solution respectively 
in colonies of groups NPFM, NPF, PFM, NPM and NFM from the 
‘uncontaminated feeder’ than from the ‘pesticides feeder’ (GLM; 
F6,342 = 6.001, <0.0001; Figure 1c; Table S2), and the overall sugar 
solution consumption was reduced by 21%, 9%, 13%, 11% and 14% 

respectively in colonies of groups NPFM, PFM, NPM, NFM and M, 
compared to controls (LM; F6,63 = 3.92; p = 0.002; Figure 1d; Tables 
S3 and S5). The total amount of pesticides collected per bee (esti-
mated using the number of bees present in the colony at the begin-
ning of the study) during 2 weeks in lab conditions are detailed in 
Table S6.

3.2 | Pathogen presence

Nosema ceranae was detected in 46%, 38%, 64%, 60% and 66% of 
the bees analysed from treatments NPFM, PFM, NPM, NFM and M 
respectively 10 days after spore inoculation (Figure 2a). Since we 
were interested in evaluating if pesticide mixtures had an effect 
on N. ceranae prevalence, we compared Nosema-inoculated groups 
that had been exposed to pesticide mixtures (NPFM, PFM, NPM, 
NFM) with the Nosema-inoculated group that was not exposed to 
pesticides (M). Workers from treatment NPF (TMX + CYPER + TEB) 
and the controls were confirmed to be free of this microsporidium 
by PCR. The percentage of bees with N. ceranae was significantly 
lower in treatments NPFM (TMX  +  CYPER  +  TEB  +  N. ceranae) 
and PFM (CYPER  +  TEB  +  N.  ceranae) compared to treatment 

F I G U R E  1   Food collection of Bombus terrestris bumblebee colonies exposed to combinations of pesticides and the Nosema ceranae 
parasite. (a) Differential collection of uncontaminated versus pesticide-treated pollen (g) during 13 days in laboratory conditions. (b) 
Total collection of pollen (g) per treatment group measured after 13 days in laboratory conditions. Graph shows median percentage (bar), 
interquartile ranges (boxes) and 95% CI (whiskers). (c) Differential collection of uncontaminated versus pesticide-treated sugar solution (g) 
during 13 days in laboratory conditions. (d) Total collection of sugar solution (g) per treatment group measured after 13 days in laboratory 
conditions. Graph shows median percentage (bar), interquartile ranges (boxes) and 95% CI (whiskers). NPFM = TMX + CYPER + TEB + N. 
ceranae; NPF = TMX + CYPER + TEB; PFM = TEB + CYPER + N. ceranae; NPM = TMX + CYPER + N. ceranae; NFM = TMX + TEB + N. 
ceranae; M = N. ceranae; Control = untreated. The M and Control treatment groups did not receive any pesticide in the ‘pesticide-treated’ 
feeder. Boxplots with similar letters are significantly different (p < 0.05, LMs with Gaussian error distribution)
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M (N. ceranae; GLM; respectively: estimate  =  −0.82, SE  =  0.29, 
z  =  −2.83, p  =  0.005; estimate  =  −1.15, SE  =  0.30, z  =  −3.91, 
p < 0.001; Table S7).

At the end of the experiment, after colonies had been foraging 
freely in the field for 7 weeks, N. ceranae was detected in 80%, 60%, 
40%, 80% and 60% of the colonies in treatments NPFM, PFM, NPM, 

NFM and M respectively (Figure 2b), and not detected in the colo-
nies of treatment NPF and controls. Apicystis bombi was detected in 
60%, 20%, 40% and 20% of the colonies of treatments PFM, NFM, 
M and controls respectively. Trypanosomatids were detected in all 
colonies of groups PFM, NPM, NFM, M and Control, and in 80% of 
the colonies of groups NPFM and NPM (Figure 2b). The prevalence 

F I G U R E  2   Pathogens detected in the bumblebee colonies. (a) Percentage of Bombus terrestris in which the pathogen Nosema ceranae was 
detected 10 days after inoculation with a controlled dose of N. ceranae in sugar solution (treatments NPFM, PFM, NPM, NFM and M) or pathogen-
free solution (controls and treatment NPF). Bumblebee colonies in treatments NPFM, NPF, PFM, NPM and NFM had been exposed to treatment-
specific combinations of pesticides. Graph shows median percentage (bar), interquartile ranges (boxes) and 95% CI (whiskers). Boxplots with similar 
letters are significantly different (p < 0.05; GLM with binomial error distribution). (b) Percentage of colonies where N. ceranae, Apicystis bombi 
and tripanosomatids were detected at the end of the study. The microsporidium N. bombi was not detected in any of the colonies of the study. 
NPFM = TMX + CYPER + TEB + N. ceranae; NPF = TMX + CYPER + TEB; PFM = TEB + CYPER + N. ceranae; NPM = TMX + CYPER + N. ceranae; 
NFM = TMX + TEB + N. ceranae; M = N. ceranae; Control = untreated

F I G U R E  3   Boxplots showing the effect of treatments on the expression of genes related to the immune (hemomucin, pelle, relish, abaecin, 
defensin, hymenoptaecin, apidaecin) and detoxification (CPR and CYP4G15) response of bumblebees (Bombus terrestris) after 13 days of 
exposure to pesticide treatment and 10 days post-Nosema ceranae inoculation. Fold values of expression were calculated with ∆Ct values 
(see main text) and are therefore on a scale defined by reference gene expression. Boxplots with similar letters are significantly different 
(p < 0.05; multivariate linear models, with binomial error distribution). Since we were interested in the influence of pesticide treatments on 
the immune response, and the possible interference of the EBI fungicide tebuconazole in the detoxification mechanisms, we only analysed 
bumblebees from groups PFM (TEB + CYPER + N. ceranae), NPM (TMX + CYPER + N. ceranae), NFM (TMX + TEB + N. ceranae), M (N. 
ceranae) and C (control), for the gene expression assay



     |  423Journal of Animal EcologyBOTÍAS et al.

of N. ceranae, A. bombi and trypanosomatids at the end of the study 
was not affected by treatment (Table S8).

3.3 | Gene expression

For the treatment groups examined (PFM, NPM, NFM, M), the genes 
analysed were overall differentially expressed in treated groups com-
pared to the control group (F4,45 = 38.25, p = 0.002). Hemomucin was 
upregulated in treatments PFM, NPM, NFM and M; defensin was up-
regulated in treatments PFM, NPM and M; CYP4G15 was upregulated 
in treatments NPM and M; and pelle, relish, abaecin, hymenoptaecin, 
apidaecin were upregulated in treatment M with respect to control 
colonies (<0.05 in all cases; Figure 3; Table S9). In addition, multiple 
pairwise comparisons showed upregulation of CPR in treatment NPM 
with respect to PFM (Tukey and Kramer [Nemenyi] test; p = 0.037), 
and that CYP4G15 was downregulated in treatment NFM with respect 
to M (p = 0.042), and marginally downregulated with respect to NPM 
(p = 0.075).

3.4 | Fitness parameters

The initial growth phase was followed in all colonies by a natu-
ral decline associated with the production of new reproductives 
(Figure 4a). As indicated by a negative interaction term, colonies of 
treatment NPFM gained less weight over the course of the experi-
ment compared to the control colonies (Table 2). Colonies of groups 
NPF and PFM also tended to grow less over time, but only colonies 
of group NPM were significantly bigger than controls when the 
maximum size was achieved in all groups (Week 5; LM followed by 
Tukey's post-hoc tests, p = 0.046; Table S10). Compared to control 
colonies, the number of workers was lower in treatments PFM (GLM; 
estimate ± SE = −0.18 ± 0.09, z = −2.04, p = 0. 04) and NPM (GLM; 
estimate ± SE = −0.18 ± 0.09, z = −2.04, p = 0. 04; Figure 4b), and 
the number of males was significantly reduced in colonies of treat-
ment NPM (GLM; estimate ± SE = −0.45 ± 0.13, z = −3.47, p = 0.001; 
Figure 4c), although effect sizes were small in both cases (Table 3; 
Tables S11–S13). Male numbers in NPM treatment were also smaller 
than in NPFM and PFM treatments (Tukey's post hoc test; both 

F I G U R E  4   Fitness parameters 
measured in the Bombus terrestris 
colonies. (a) Mean colony weight observed 
for the control and treatment groups at 
weekly intervals. The change in weight 
over time was significantly smaller  
(p = 0.009) in the colonies that received 
the four stressors (NPFM) compared 
to control colonies. (b) Boxplots of the 
number of workers in each treatment 
group. (c) Boxplots of the number of males 
in each treatment group. (d) Boxplots 
of the number of brood (workers and 
males) cells produced in each treatment 
group. (e) Boxplots of the number of 
queen cells produced in each treatment 
group. Boxplots with similar letters are 
significantly different (p < 0.05; GLMs 
with Poisson error distribution followed by 
Tukey ś post-hoc tests). NPFM = TMX + 
CYPER + TEB + N. ceranae; NPF =  
TMX + CYPER + TEB; PFM = TEB + CYPER 
+ N. ceranae; NPM = TMX + CYPER +  
N. ceranae; NFM = TMX + TEB +  
N. ceranae; M = N. ceranae; Control = 
Untreated
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ps  <  0.001; Table  S13). Treatments did not have an effect on the 
worker and male weight (LMM, p = 0.99 and p = 0.89, respectively), 
or on the size (thorax width) of workers and males (LMM, p = 0.89 

and p = 0.47, respectively; Table S14). All treatments had an influence 
on the number of brood (workers and males) cells produced (GLM, all 
ps < 0.05; Table 3; Table S11; Figure 4d), and this effect was stronger 

Fixed effect Estimate SE df t value p

(Intercept) 2.332 0.247 541 9.446 <0.001

NPFM 0.394 0.234 62 1.681 0.098

NPF 0.319 0.234 62 1.360 0.179

PFM 0.276 0.235 62 1.175 0.244

NPM 0.119 0.234 62 0.508 0.614

NFM 0.061 0.234 62 0.263 0.793

M 0.010 0.234 62 0.043 0.966

Week 0.961 0.065 541 14.886 <0.001

Week2 −0.091 0.006 541 −14.380 <0.001

No. workers  
at week 0

0.002 0.012 62 0.213 0.832

NPFM × week −0.241 0.092 541 −2.624 0.009

NPF × week −0.180 0.092 541 −1.963 0.050

PFM × week −0.178 0.092 541 −1.932 0.054

NPM × week −0.131 0.091 541 −1.433 0.152

NFM × week −0.077 0.091 541 −0.848 0.397

M × week 0.000 0.092 541 0.004 0.997

NPFM × week2 0.017 0.009 541 1.848 0.065

NPF × week2 0.015 0.009 541 1.654 0.099

PFM × week2 0.015 0.009 541 1.685 0.093

NPM × week2 0.006 0.009 541 0.662 0.508

NFM × week2 0.003 0.009 541 0.372 0.710

M × week2 −0.003 0.009 541 −0.339 0.735

TA B L E  2   Linear mixed effects 
model for colony weight. Effects 
that are statistically significant 
(p < 0.05) are highlighted in boldface. 
Parameter estimates are with 
reference to the control group. 
NPFM = TMX + CYPER + TEB + N. 
ceranae; NPF = TMX + CYPER + TEB; 
PFM = TEB + CYPER + N. ceranae; 
NPM = TMX + CYPER + N. ceranae; 
NFM = TMX + TEB + N. ceranae; M = N. 
ceranae; Control = Untreated

TA B L E  3   Mean and standard deviation (SD) of the number, weight, thorax width (size) of workers and males, and the number of brood 
cells and queen cells present in the colonies at the end of the experiment

Workers Males

Number of 
brood cells

Number of 
queen cellsNumber

Weight 
(g)

Size 
(mm) Number

Weight 
(g)

Size 
(mm)

NPFM Mean 26.6 0.09 4.05 17.1 0.17 5.52 34.9 3.2

TMX + CYPER + TEB +  
Nosema

SD 11.96 0.04 0.61 8.03 0.04 0.41 14.93 4.21

NPF Mean 24.6 0.08 4.11 13.1 0.16 5.46 34.3 4.6

TMX + CYPER + TEB SD 7.4 0.03 0.66 3.14 0.04 0.47 23.63 5.08

PFM Mean 23.1 0.08 4.16 16.2 0.17 5.6 55.1 11.5

CYPER + TEB + Nosema SD 5.67 0.04 0.57 6.16 0.05 0.5 25.04 7.28

NPM Mean 23.2 0.08 4.1 9.6 0.17 5.43 31.4 2.7

TMX + CYPER + Nosema SD 4.75 0.04 0.56 5.19 0.05 0.39 13.2 3.65

NFM Mean 23.7 0.08 4.16 12.6 0.16 5.5 41.5 6.8

TMX + TEB + Nosema SD 5.27 0.04 0.64 7.49 0.05 0.53 18.96 6.16

M Mean 23.8 0.08 4.16 12 0.16 5.41 45.3 8.9

Nosema SD 7.29 0.03 0.58 7.12 0.04 0.37 17.15 10.43

Control Mean 27.7 0.08 4.25 15.1 0.17 5.44 63 11.4

SD 7.51 0.03 0.7 3.57 0.04 0.48 22.15 5.06
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when the neonicotinoid was present (Tables S15 and S17). Moreover, 
colonies of groups exposed to the neonicotinoid (NPFM, NPF, NPM 
and NFM) produced fewer queen cells than control colonies (C), 
the group with the pyrethroid and the EBI fungicide (PFM), and the 
group only inoculated with N. ceranae (M; Tukey's post-hoc tests; all 
p ≤ 0.01; Table 3; Tables S16 and S17; Figure 4e).

4  | DISCUSSION

The results show that exposure to common environmental stress-
ors interact to affect bumblebees at the individual and the colony 
levels. One of the sub-lethal effects of exposure to pesticide mix-
tures was an antifeedant effect, with all bees collecting both less 
pollen and less sugar solution from the pesticide-contaminated  
feeders than uncontaminated feeders. This was regardless of 
the pesticide contaminant, indicating that at least two of the 
pesticides applied have an inhibitory effect on food consump-
tion. Furthermore, pesticide mixtures acted synergistically with 
N. ceranae to reduce total pollen collection. Bumblebee colo-
nies with low pollen consumption have previously been shown 
to gain less weight over time even when nectar availability is 
high (Rotheray et  al.,  2017), and this was true here for colonies 
of treatment NPFM (TMX  +  CYPER  +  TEB  +  N. ceranae). The 
reduced intake of pesticide-contaminated food might be due to 
avoidance or a secondary antifeedant response following inges-
tion (Thompson et al., 2015). Thiamethoxam, other neonicotinoids 
such as imidacloprid and clothianidin, and pyrethroids have pre-
viously been found to exert a repellent or antifeedant effect on 
bees (Cresswell et al., 2012; Dance et al., 2017; Elston et al., 2013; 
Laycock et al., 2014; Rieth & Levin, 1988; Thompson et al., 2015; 
Zhu et al., 2017). There is some evidence that EBI fungicide such as 
tebuconazole can reduce this effect (Thompson & Wilkins, 2003), 
and studies of neonicotinoid-fungicide mixtures have found that 
pesticide-contaminated food affects the post-consumption be-
haviour of bumblebees rather than being an olfactory repellent 
(Jiang et al., 2018). Therefore, the effects of exposure to pesticide 
mixtures are complex and difficult to infer from single compound 
tests, as confirmed by our results.

With respect to susceptibility to N. ceranae infection, the prev-
alence of N. ceranae was lower when a combination of the fungi-
cide and the pyrethroid were applied in the diet. Although previous 
research showed that exposure to fungicides increased N. ceranae 
levels in bees (Glavinic et al., 2019; Pettis et al., 2013) the suppres-
sive effect of tebuconazole on the infection of a fungal endopar-
asite in Daphnia has also been reported before (Cuco et al., 2017). 
Tebuconazole, as with all the other EBI fungicide, obtains its fun-
gicidal activity through disrupting biosynthesis of ergosterol, the 
dominant lipid in fungal cell membranes (Köller & Scheinpflug, 1987). 
Therefore, this azole fungicide may have led to a reduction in er-
gosterol necessary for N. ceranae membrane functioning, thus inhib-
iting fungal growth and possibly causing spore death (Dijksterhuis 
et al., 2011). Why the effect of the fungicide should depend on the 

presence of the pyrethroid is unclear, but previous research has 
found interactions between acute sub-lethal exposure to cyperme-
thrin and pathogen infections in honeybees (Bendahou et al., 1997), 
and no significant impact on the susceptibility of B. terrestris workers 
to the gut parasite C. bombi upon exposure to the pyrethroid lamb-
da-cyhalothrin (Baron et al., 2014). While the potential suppression 
of infection by tebuconazole and/or cypermethrin may seem pos-
itive for the host, the possible ecological consequences of this an-
tagonist interaction between pollution and disease are still poorly 
understood and may have costs in terms of host-pathogen popula-
tion dynamics (Cuco et al., 2017).

By exploring the possible interaction between pesticide ex-
posure and N. ceranae inoculation at the gene expression level, 
we found that all genes related to the immune response were up-
regulated in the group that was only inoculated with N. ceranae 
(Treatment M), indicating that the bumblebee immune system 
responded against this microsporidium. This upregulation was re-
duced in groups that were inoculated with N. ceranae spores and 
exposed to pesticide mixtures. This result suggests that pesticide 
mixtures may interfere with the transcription of some genes en-
coding defence mechanisms to pathogen challenge. Variation be-
tween genes in the strength of the effect indicates that pesticides 
may not affect the transcription of all AMPs to the same extent, 
or that different types of pesticide may alter the expression of 
specific immunity-related genes only, as reported by previous re-
search (Di Prisco et al., 2013).

When gene expression related to detoxification mechanisms 
was investigated, we found that the CPR gene was upregulated 
in treatment NPM (CYPER  + TMX  +  N. ceranae) compared to PFM 
(CYPER + TEB + N. ceranae). The CYP4G15 gene was upregulated in 
the two treatments that did not receive the EBI fungicide, M (N. cer-
anae) and NPM (CYPER + TMX + N. ceranae), compared to the con-
trols and treatment NFM (TMX + TEB + N. ceranae). This differential 
expression suggests that the EBI fungicide may have inhibited the ex-
pression of the genes related to the cytochrome P450-mediated de-
toxification (Berenbaum & Johnson, 2015; Johnson et al., 2013), but 
the cytochrome P450 monooxygenase activity should be studied to 
confirm this hypothesis. Although fungicides such as tebuconazole are 
designed to inhibit the fungal CYP51, a family of P450 enzymes in-
volved in ergosterol biosynthesis (Lepesheva & Waterman, 2007), they 
have been shown to have non-selective inhibition of P450s (Zhang 
et al., 2002), which likely results in drug–drug interactions. It remains 
to be shown if the altered transcription of these putative CYP/P450 
genes are specific detoxification-responses and whether the encoded 
enzymes are capable of metabolizing the pesticides applied, but there 
is evidence suggesting that they are involved in the defence against 
insecticides in bumblebees and other insects (Colgan et  al.,  2019; 
Huang et  al.,  2015; Jing et  al.,  2018). In treatment M, (N. ceranae 
only), upregulation of the CYP4G15 gene may indicate a specific re-
sponse to the parasite, as previously shown in B. terrestris cytochrome 
P450s which showed altered expression upon C. bombi inoculation 
(Barribeau et al., 2014). Bees respond to N. ceranae infection by pro-
ducing reactive oxygen species (ROS) in the gut, and the involvement 
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of cytochrome P450 enzymes in the transformation of toxic metabo-
lites into ROS in biological systems has been demonstrated before (He 
et  al.,  2017). Therefore, upregulation of the cytochrome P450 gene 
could indicate the involvement of this enzyme in the formation of ROS 
upon N. ceranae infection.

At the colony level, combined exposure to the three pesticides 
mixture and N. ceranae (NPFM) reduced bumblebee colony growth 
over the course of the study. Colonies that only received the three pes-
ticides (NPF) or pyrethroid + fungicide + N. ceranae (PFM) also grew 
marginally less than control colonies over time, suggesting that the 
combination of a pyrethroid + EBI fungicide produced detrimental ef-
fects on colony growth. Previous research indicates that EBI fungicide 
synergize pyrethroid toxicity in honeybees (Colin & Belzunces, 1992; 
Pilling & Jepson, 1993; Thompson & Wilkins, 2003) and bumblebees 
(Raimets et al., 2018), and our study provides evidence that the en-
hanced toxicity of this pesticide combination may translate into detri-
mental effects at the bumblebee colony level (Whitehorn et al., 2012). 
Furthermore, colonies exposed to mixtures containing neonicoti-
noid  +  pyrethroid  +  N. ceranae (NPM) were smaller at the time of 
maximum growth in all treatment groups (week 5), indicating that 
this combination may also impair colony success, as only the largest 
bumblebee colonies succeed in producing queens (Müller & Schmid-
Hempel, 1992). Indeed, colonies of group NPM produced the lowest 
number of queens (mean ± SD = 2.9 ± 3.65) in the present study. Our 
findings are of great concern given the high prevalence of N. ceranae 
detected in wild and commercial bumblebee colonies in some regions 
(Arbulo et al., 2015; Graystock, Yates, Darvill, et al., 2013; Rotheray 
et al., 2017), and the widespread use of neonicotinoid and pyrethroid 
insecticides (Botías et al., 2015; FERA, 2017).

All treatments led to a small reduction in worker and male brood 
production. Adult worker numbers were slightly lower in the groups 
in which bumblebees had been exposed to the pyrethroid + N. cer-
anae (treatments PFM and NPM), and male numbers were fewer 
when the pyrethroid and the neonicotinoid were applied in combi-
nation (NPM). Our findings are in agreement with previous research 
showing that exposure of bumblebees to neonicotinoids alone and 
in combination with pyrethroids impair brood cell and male produc-
tion (Fauser-Misslin et al., 2014; Gill et al., 2012; Rundlöf et al., 2015; 
Wintermantel et al., 2018). This may have detrimental consequences 
for colony fitness and development as the rate of colony growth 
depends on the number of adult workers (Whitehorn et al., 2012). 
However, it is worth noting that the number of workers, even in the 
control colonies (mean = 27.7 workers), was very low compared to 
what is reported for wild B. terrestris nests (c. 300–400 workers; 
Duchateau & Velthuis, 1988). Our experimental colonies may have 
performed poorly compared to natural ground-nesting colonies due 
to differences in the incubation conditions in surface versus fosso-
rial situations (Vogt, 1986a, 1986b). Furthermore, brood production 
was not only affected by exposure to pesticide mixtures, but also 
by N. ceranae inoculation (treatment M). The changes in gene ex-
pression related to immune and detoxification responses in the N. 
ceranae-challenged bumblebees may involve fitness costs that led 
to the detrimental effects observed at the individual and colony 

levels (Graystock, Yates, Darvill, et al., 2013; Rotheray et al., 2017). 
More significantly, exposure to the neonicotinoid thiamethoxam 
led to a large reduction in queen cell production, with colonies of 
treatments NFM, NPF, NPM and NPFM producing 40%, 60%, 76% 
and 72% fewer queen cells than control colonies. These findings are 
consistent with previous studies that reported a decrease in queen 
production when bumblebee colonies were exposed to neonicoti-
noids (Fauser-Misslin et al., 2014; Rundlöf et al., 2015; Whitehorn 
et al., 2012; Wintermantel et al., 2018; Woodcock et al., 2017). The 
fitness of a bumblebee colony is determined by its production of 
new queens and males (Goulson,  2010), so the fact that colonies 
exposed to field-relevant mixtures containing pyrethroids and 
neonicotinoids, and especially the latter, produced fewer males 
and queens, may lead to the most serious effects on bumblebees 
through detrimental consequences at the population level.

Our findings are worrying since the variety of chemical, physical 
and biological stressors associated with global change that represent 
potential environmental hazards to pollinators, such as bumblebees, 
has increased rapidly in recent years. According to our results, pes-
ticide mixtures including neonicotinoids, pyrethroids and EBI fungi-
cide may not be compatible with bumblebee conservation, so their 
simultaneous use in the field should be regulated to protect these 
essential pollinators. Studying the responses to field-relevant com-
binations of stressors may guide us to mitigate the detrimental con-
sequences of multiple stressor interactions on pollinator health, and 
thus, on biodiversity conservation, ecosystem functioning and for 
the global agricultural sector and food production.
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