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 Collinearity refers to the non independence of predictor variables, usually in a regression-type analysis. It is a common 
feature of any descriptive ecological data set and can be a problem for parameter estimation because it infl ates the vari-
ance of regression parameters and hence potentially leads to the wrong identifi cation of relevant predictors in a statisti-
cal model. Collinearity is a severe problem when a model is trained on data from one region or time, and predicted to 
another with a diff erent or unknown structure of collinearity. To demonstrate the reach of the problem of collinearity 
in ecology, we show how relationships among predictors diff er between biomes, change over spatial scales and through 
time. Across disciplines, diff erent approaches to addressing collinearity problems have been developed, ranging from 
clustering of predictors, threshold-based pre-selection, through latent variable methods, to shrinkage and regularisation. 
Using simulated data with fi ve predictor-response relationships of increasing complexity and eight levels of collinearity we 
compared ways to address collinearity with standard multiple regression and machine-learning approaches. We assessed 
the performance of each approach by testing its impact on prediction to new data. In the extreme, we tested whether the 
methods were able to identify the true underlying relationship in a training dataset with strong collinearity by evaluating 
its performance on a test dataset without any collinearity. We found that methods specifi cally designed for collinearity, 
such as latent variable methods and tree based models, did not outperform the traditional GLM and threshold-based 
pre-selection. Our results highlight the value of GLM in combination with penalised methods (particularly ridge) and 
threshold-based pre-selection when omitted variables are considered in the fi nal interpretation. However, all approaches 
tested yielded degraded predictions under change in collinearity structure and the  ‘ folk lore ’ -thresholds of correlation 
coeffi  cients between predictor variables of |r|  �    0.7 was an appropriate indicator for when collinearity begins to severely 
distort model estimation and subsequent prediction. Th e use of ecological understanding of the system in pre-analysis 
variable selection and the choice of the least sensitive statistical approaches reduce the problems of collinearity, but cannot 
ultimately solve them.     
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  Collinearity describes the situation where two or more 
predictor variables in a statistical model are linearly related 
(sometimes also called multicollinearity: Alin 2010). Many 
statistical routines, notably those most commonly used in 
ecology, are sensitive to collinearity (Stewart 1987, Belsley 
1991, Chatfi eld 1995): parameter estimates may be unstable, 
standard errors on estimates infl ated and consequently infer-
ence statistics biased. But even for less sensitive methods, 
two key problems arise under collinearity: variable eff ects 
cannot be separated and extrapolation is likely to be seri-
ously erroneous (Meloun et   al. 2002, p. 443). Th is means, 
for example, that if we want to explain net primary produc-
tivity (NPP) using mean annual temperature and annual 
precipitation, and we fi nd that temperature and precipita-
tion are negatively linearly related, we will not be able to 
separate the eff ects of the two factors. Using one will partly 
explain the eff ect of the other. NPP might be limited only by 
precipitation but we may not be able to ascertain this rela-
tionship because temperature is collinear with precipitation: 
our model might contain both variables or perhaps only 
temperature. We will make incorrect inferences and predic-
tion may be compromised. Suppose we want to predict the 
eff ect of climate change on NPP and our climate scenarios 
indicate no change in precipitation but an increase in tem-
perature. Since our regression wrongly includes temperature, 
we would erroneously predict a change in NPP. 

Collinearity is a problem recognised by most introduc-
tory textbooks on statistics, where it is often described as 
a special case of model non-identifi ability. As demonstrated 
in the example above, it cannot be solved: if two highly 
collinear variables are both correlated with Y, without fur-
ther information the  ‘ true ’  predictor cannot be identifi ed. 
Nevertheless, there are approaches for exploring it and work-
ing with it. Despite the relevance of the problem and the 
variety of available methods to address it, most ecological 
studies have not embraced measures to address collinearity 
(Graham 2003, Smith et   al. 2009). Th e main reasons for this 
are likely to be: 1) belief that common statistical methods 
are unaff ected by collinearity; 2) uncertainty about which 
method to use; 3) unsuitability of a method given the type 
of data to be analysed; 4) lack of interpretability of results 
when using approaches that combine variables; or 5) inacces-
sible software. Th e issue is by no means restricted to ecology 
(Murray et   al. 2006, Kiers and Smilde 2007, Mikolajczyk 
et   al. 2008). 

 In this paper we aim at facilitating better understand-
ing of collinearity and of methods for dealing with it, by 
reviewing and testing existing approaches and providing 
relevant software. Th e review is structured into fi ve parts. 
In the fi rst we refl ect on when collinearity is, or is not, a 
problem. Th e second illustrates spatio-temporal variation in 
relationships between environmental variables that are com-
monly used as explanatory variables in regression analyses. 
Th e third part introduces the diff erent methods we review, 
starting with diagnostics, through  ‘ pre-analysis clean-up 
methods ’  to methods that incorporate collinearity or are tol-
erant to the problem (Supplementary material Appendix 1.1 
for details on their implementation). In the fourth part we 
carry out a large simulation study to compare all reviewed 
methods. We provide complementary case studies on real 
data in Supplementary material Appendix 1.2. Th e fi fth part 

discusses our fi ndings with respect to the scattered literature 
on collinearity. Most importantly it provides advice for the 
appropriate choice of an approach and supporting informa-
tion for its application (e.g. parameterization). Finally we 
close with suggestions for further research.  

 Part I. When is collinearity a problem? 

 To avoid ambiguity, we fi rst clarify the meaning and context 
of collinearity that we are studying here. We are consider-
ing collinearity in the context of a statistical model that is 
used to estimate the relationship between one response vari-
able and a set of predictor ( ‘ independent ’  or  ‘ explanatory ’ ) 
variables. Examples include regression models of all types, 
classifi cation and regression trees as well as neural networks. 
Ecologists might be interested in understanding the factors 
aff ecting some observed response, or they might want to fi t 
a model (i.e.  ‘ train ’  it) and predict new cases. Th e impact of 
collinearity varies with application. 

 In all real world data, there is some degree of collinear-
ity between predictor variables. Collinearity exists for several 
reasons. Most commonly, collinearity is intrinsic, meaning 
that collinear variables are diff erent manifestations of the 
same underlying, and in some cases, immeasurable process 
(or latent variable). For example, we could try to explain the 
jumping distance of a collembolan by the length of its furca, 
its body length or its weight. Since they are all representations 
of body size, they will all be highly correlated. Collinearity 
also arises in compositional data (data where the whole 
set of information is described by relative quantities: 
Aichison 2003), such as soil fractions which sum to 100% 
and hence are not independent of each other. More sand nec-
essarily means less clay or silt. Collinearity may also be inci-
dental, meaning that variables may be collinear by chance, 
for example when sample size is low, because not all combi-
nations of environmental conditions exist in the study area 
or when very many variables are involved (as in hyperspectral 
remote sensing data, Schmidt et   al. 2004). It is important to 
highlight that the best way to deal with incidental collinear-
ity is to avoid it by a well-designed sampling strategy that 
covers representative geographic and environmental space. 

 Perfect collinearity occurs if predictors are exact linear 
functions of each other (e.g. age and date of birth) and is 
simply a case of model misspecifi cation  –  one variable needs 
to be omitted. Mathematically, collinearity in predictors is a 
case of extreme non-orthogonality and has several undesir-
able consequences in least squares regression (i.e. models of 
the form  Y   �   Xb   �   e , with response vector  Y , predictor set 
 X , parameter estimates  b  and residual error  e ). In these,  b  is 
estimated as  b   �  ( X T  X    )  � 1  X  T  Y . Since the columns of the 
design matrix  X  are nearly linearly dependent,  X  T  X  is nearly 
singular and the estimation equation for the regression 
parameters is ill-conditioned. Th erefore, parameter estimates 
 b  will be unstable, i.e. small changes in the data may cause 
large changes in  b  (Dobson 2002, p. 94). 

 In traditional regression models, parameter estimation 
is a key part of model fi tting and interpretation. Models 
are often used for hypothesis testing, probing the statisti-
cal signifi cance of the eff ect of predictors on the response. 
High collinearity between predictors means that variables in 
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the collinear set share substantial amounts of information. 
Coeffi  cients can be estimated, but with infl ated standard 
errors (see Wheeler 2007, for spatial regression examples). 
Small changes in the data set can strongly aff ect results so 
the model tends to be unstable (high variance), and the rela-
tive importance of variables is diffi  cult to assess. Th e infl ated 
errors result in inaccurate tests of signifi cance for the predic-
tors, meaning that important predictors may not be signifi -
cant, even if they are truly infl uential (see Ohlem ü ller et   al. 
2008, for an example where three hypotheses are indistin-
guishable due to collinearity). Problems are exacerbated if 
stepwise selection methods are used (Harrell 2001, Meloun 
et   al. 2002), because if one, rather than another, collinear 
predictor is dropped from the model, the selection process 
may proceed on a wrong trajectory. 

 Some of the newer modelling methods, especially those 
in machine learning where parameter estimation methods 
are quite diff erent or where recursive partitioning provides 
the basis for fi tting the model, do not attempt to pro-
vide interpretable parameter estimates and standard errors 
(Hastie et   al. 2009). Nevertheless, they share with traditional 
methods the problems that the model is sensitive to slight 
changes in the data set, and that, as a consequence of variable 
contributions being spread across collinear sets, it is diffi  cult 
to interpret the fi nal model and to separate the eff ects of col-
linear variables (Shana et   al. 2006). 

 Th ere are some situations in which the eff ects of col-
linearity have limited impact. If the main use of the model 
is to predict new cases within the range of the sampled 
data (i.e. to interpolate), the model will do this reliably as 
long as the collinearity between variables remains constant 
(Harrell 2001). However, extrapolation beyond the geo-
graphic or environmental range of sampled data is prone to 
serious errors, because patterns of collinearity are likely to 
change. Obvious examples include use of statistical models 
to predict distributions of species in new geographic regions 
or changed climatic conditions (Th uiller 2004, Ara ú jo and 
Rahbek 2006), and these motivated our interest here in the 
problem of predicting to changed collinearity structures. 

 What can we do about this? Th e most important step is 
to understand the problems of collinearity and to know your 
data well enough to be aware of patterns of collinearity in 
both training and prediction data sets. Th is paper aims to 
contribute substantially to this step and to compare meth-
ods for identifying and dealing with collinearity. Some other 
broad advice is relevant. In any regression-style model, the 
results will be most informative if predictors that are directly 
relevant to the response are used, i.e. proximal predictors 
are strongly preferable over distal ones (Austin 1980, 2002). 
Th is general concept leads to careful consideration of can-
didate predictor sets in the light of ecological knowledge, 
rather than amassing whatever data can be found and chal-
lenging the model to make sense of it. 

 However, are collinear variables necessarily redundant? 
No. For example, a butterfl y larva feeding on a plant will 
profi t from warm temperatures because it accelerates its 
development, but also because the plant provides more food, 
since photosynthesis is temperature-dependent Th us, both 
direct and indirect temperature eff ects and their collinear 
representations  ‘ degree-days ’  and  ‘ leaf photosynthetic activity ’  
are ecologically proximal predictors and sound components 

of the response  ‘ larval size ’  (see also Hamilton 1987, for a 
statistical argument). However, as we illustrate in our sim-
ulation experiment, collinearity will not be problematic if 
the correct form of the functional relationship is known. 
For the butterfl y example the collinearity problem may 
be minimized by representing the functional relationship 
in a structurally more realistic way, e.g. using Bayesian 
methods (HilleRisLambers et   al. 2006, Gelman and Hill 
2007). However, collinearity may bias parameter estimation 
in Bayesian approaches and extrapolation to diff erent col-
linearity structures would still not be sensible.  

 Part II. Spatio-temporal patterns in 
collinearity 

 Recent interest in predicting to new times and places raises 
the question of the impact of changing collinearity structures 
for these applications. Collinearity between environmental 
variables is not constant in space (Fig. 1, which uses correla-
tion coeffi  cients as an approximate indicator of collinearity). 
As an additional twist, collinearity in biogeographical data 
may diff er across spatial scales, making it diffi  cult to eluci-
date at which spatial scale each environmental driver is act-
ing (Murwira and Skidmore 2005, Battin and Lawler 2006, 
Wheeler 2007). 

 Consider, for example, the environmental information 
contained within a Landsat TM satellite image of the cereal-
steppe habitats centred on Castro Verde in Baixo Alentejo, 
Portugal (Fig. 2). By applying principal components analysis 
to all seven wavelength bands (data re-sampled to 100 m 
pixels) we know that the correlation between any two com-
ponents across the whole image must be zero. Yet within 
this, local correlations calculated within moving windows of 
diff erent sizes reveal complex and varying patterns of related-
ness (Fig. 2). 

 Temporal variations in the relationships between climatic 
variables span time scales from daily over seasonal to decadal 
fl uctuations. Figure 3 shows that correlations may vary by 
0.2 over decades, and even change their sign. Stronger cor-
relations are less likely to vary as much, because they are 
causally linked and the causation does not change (e.g. the 
correlation between temperature and vapour pressure defi -
cit, where the Pearson correlation coeffi  cient  r  for these four 
stations is around 0.8, but the fl uctuations only 0.1; data 
not shown).  

 Part III. Methods for dealing with 
collinearity 

 We do not think that the problem of collinearity can be 
solved, for logical reasons: without mechanistic ecologi-
cal understanding, collinear variables cannot be separated 
by statistical means. Nevertheless, we might expect some 
approaches to be superior with regard to robust model fi tting 
and prediction. As a general rule of thumb, a good strategy is 
to select variables that a) are ecologically relevant, b) are fea-
sible to collect data on and c) are closer to the mechanism (in 
the sequence resource-direct-indirect-proxy variables: Harrell 
2001, Austin 2002). Th en, if the statistical method suggests 
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Figure 1.     Changing collinearity structure of climate variables between eco-zones. Correlation matrix of the following six bioclimatic 
variables ( �  www.worldclim.org  � ): mean annual temperature, temperature seasonality (standard deviation), mean temperature of coldest 
quarter, annual precipitation, precipitation of driest month, precipitation seasonality (coeffi  cient of variation). Th e upper triangular part 
of the matrix shows Pearson correlation coeffi  cients, while the lower part shows Spearman coeffi  cients. Th e diagonal elements are one 
by defi nition and displayed in grey.  

deleting an ecologically reasonable or important variable, 
prominence should be given to ecology. Despite such careful 
selection, we might still end up with a set of collinear vari-
ables, either because there are several ecologically important 
variables for a phenomenon under study (e.g. chemical com-
position of forage), or because we do not yet know which 
of the predictors are important. Th e key challenge is now to 
extract or combine variables meaningfully, as explored in the 
following sections. 

 For technical details, types of response and predictor vari-
ables that can be used, key references and example studies in 
ecology please refer to the Supplementary material Appendix 
1.1. Since the realm of regression methods is vast, we have 
focussed on methods commonly used or likely to have prom-
ise; the review and following case study is not exhaustive. All 
code for data generation is available in the Supplementary 
material Appendix 2 and interested readers can apply it to 
any method we failed to cover. Th e Supplementary mate-
rial Appendix 1.3 contains a short outline on a number of 
excluded approaches.    

 Detect it: diagnostics 

 When are variables collinear? Th e statistical literature off ers 
several quantifi cations of collinearity (Table 1), with the 
most common being the pairwise correlation coeffi  cient 
( r ), the condition index (the square root of the ratio of 
each eigenvalue to the smallest eigenvalue of X), the vari-
ance infl ation factor (VIF) and its generalised version (gVIF: 
Fox and Monette 1992), and the variance decomposition 
proportions (VD, which gives more specifi c information on 
the eigenvectors ’  contribution to collinearity: Belsley et   al. 
1980, Brauner and Shacham 1998). While these methods 

calculate one value per variable pair (with the exception of 
the VD where the number of calculated values equals the 
square of the number of variables), there are also approaches 
that estimate a single value to describe the degree of col-
linearity in the full dataset ( ‘ variable set indices ’ ). Most com-
monly used are the determinant of the correlation matrix 
(det( R )) and the condition number (CN, the square root 
of the ratio of the largest and the smallest eigenvalue of  X ). 
Th ere is some confusion in the literature regarding the terms 
condition index and the condition number. Sometimes, the 
condition index is defi ned as the ratio of the largest to the 
smallest eigenvalue instead of the condition number. We 
follow here the defi nitions given by Rawlings et   al. 1998). 
Code for all of these is supplied in the Supplementary mate-
rial Appendix 2. 

 Th e most useful class of indices depends on the complex-
ity of the dataset. Variable-set indices are preferable when 
quickly checking for collinearity in datasets with large num-
bers of explanatory variables. Per-variable-indices give a more 
detailed picture of the number of variables involved and the 
degree of collinearity. Sometimes the per-variable-indices may 
indicate collinearity although the variable-set indices miss it.   

 Removing collinearity prior to analysis 

 Th e fi rst assemblage of collinearity methods, and also the 
largest, comprises approaches that remove collinearity from 
the variable set or modify the variables set such that col-
linearity is removed before the analysis. Th is assemblage 
divides into two groups, which diff er rather fundamentally 
in their approach. Th e fi rst group of pre-analysis clean-up 
methods identifi es which variables are clustering together 
and thus form a proxy-set (section Identify clusters/proxy 
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 Identify clusters/proxy sets 
 Th ere exist numerous methods to cluster variables, from 
which we selected the most common ones. At this point a 
conceptual decision arises: whether the response variable ( y ) 
should be used when identifying clusters. Harrell (2001) 
argues that the response should be ignored, because the clus-
ters represent the grouping of explanatory variables in rela-
tion to themselves, not grouping of variables in their relation 
to the response. In the following we will explicitly mention 
whenever  y  is used as input. 

 Principal component analysis (PCA) is one of the most 
common ways to remove correlations in a variable set and 
to reduce collinearity (as correlation may serve as an indi-
cator of collinearity). It can only be applied to continuous 
variables, though there are closely related ordination meth-
ods such as correspondence analysis that can deal with other 
kinds of variables. PCA produces orthogonal (i.e. perfectly 
uncorrelated) axes as output, so without clustering, the 
PC-axes may be used directly in subsequent analyses in place 
of the original variables. We discuss this approach later in the 
section Latent variable modelling. To use PCA for clustering, 
the PCA should be applied to the correlation matrix (rather 
than the covariance matrix, which is distorted by the diff er-
ent scale of variables). Methods exist for applying clustering 
directly to the components or to rotations of them (Booth 
et   al. 1994). We only used the direct approach, as described 
in detail in the Supplementary material Appendix 1.1. Th e 
general idea is to work progressively through the PCA axes, 
study the loadings of the variables onto the axes, and identify 
groupings. Variables with absolute loadings larger than 0.32 
form the  ‘ proxy groups ’  or clusters of interest (Booth et   al. 
1994). Th e value 0.32 is chosen because it represents 10% of 
the variance for the variable being explained by the PC-axes 
(Tabachnick and Fidell 1989). Note that PCA is sensitive 
to outliers (extreme values), transformations, missing data 
and assumes multi-normal distributions. In practice, the 
technique is relatively robust when used for description (as 
opposed to hypothesis testing) so long as the data are con-
tinuous, not strongly skewed and without too many outliers. 
Other ordination techniques (PCoA, nMDS, (D)CA) can 
be employed analogously and may be more suitable for any 
given data.  K -means clustering is equivalent to PCA-based 
clustering (Zha et   al. 2001, Ding and He 2004). 

 Cluster analysis is the partitioning of a set of explana-
tory variables into subsets, i.e. clusters are based on distance 
between variables (Jain et   al. 1999). Clustering can be per-
formed bottom-up (agglomerative) or top-down (divisive). 
Unfortunately the results depend strongly on which of 
the many clustering algorithms and which of the many 
distance-metrics are used (Lebart et   al. 1995). Th e most 
commonly recommended ones are Ward-clustering based 
on the correlation matrix or a Hoeff ding-clustering (Lebart 
et   al. 1995, Harrell 2001), but new methods such as 
self-organising maps (Kohonen 2001) and other machine-
learning algorithms may be superior (Hastie et   al. 2009). 
Because hierarchical cluster analysis provides a full cluster 
tree, a distance-threshold has to be specifi ed to form the 
actual clusters. 

 Iterative variance infl ation factor analysis (iVIF) is a 
method based on the quantifi cation of collinearity by VIF 
(Booth et   al. 1994). VIFs are the diagonal elements of the 

  Figure 2.     Correlations between environmental characteristics 
change with spatial resolution. Moving window Pearson correla-
tions between principal components 1 and 2 of a Landsat TM scene 
for southern Portugal (pixel size 100  �  100 m). Window size 
increases from 500  �  500 m (top), through 1.1  �  1.1 km (middle) 
to 2.1  �  2.1 km (bottom). For the full image (i.e. a single window) 
the correlation is zero.  

sets). Once a cluster is identifi ed, several ways to proceed are 
possible, and they are discussed below (section Dealing with 
clusters). Th e second group does not go through clusters to 
arrive at new data sets (section Cluster-independent meth-
ods), but uses a variety of other methods to get from the col-
linear input to the non-collinear output data. Several of the 
methods presented below use correlation as an indicator for 
collinearity. We note that correlation and collinearity are not 
the same: collinearity means linearly related, whereas data 
with varying amounts of linear relatedness can have the same 
correlation coeffi  cient. Nevertheless, high absolute correla-
tion coeffi  cients usually indicated high linear relatedness.  
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(PCs); 2) represent the cluster by the variable closest to the 
cluster centroid; or 3) represent the cluster by the variables 
with highest univariate predictive value for the response. 

 PCA on cluster variables is the most common way to 
create  ‘ cluster scores ’  (Harrell 2001). As long as all princi-
pal components are used in the subsequent regression, the 
analysis will be unbiased (F. Harrell pers. comm. in R-help). 
Where subsets of PCs are chosen, the resulting bias may 
be tolerable if the selected axes explain most of the clus-
ter inertia. Th e advantage is that this approach based on 
composite-axis-score integrates all variables of the cluster, 
but the disadvantage is that PCs will often be diffi  cult to 
interpret. 

 Selecting a  ‘ central ’  variable from the cluster overcomes 
the interpretation problems, but inevitably introduces a 
bias by omitting certain variables (Fraley and Raftery 1998). 

inverse of the correlation matrix. Iterative VIF analysis works, 
essentially, by comparing the VIF values of a set of predic-
tor variables with and without an additional explanatory 
variable. All the variables that show an increase of the VIF 
value above a certain threshold are grouped with the newly 
added variable into one cluster (proxy-set in the terms of 
Booth et   al. 1994). Th e iterative formula guarantees that all 
variable combinations are tested. Th e method identifi es dif-
ferent groups compared with a classifi cation based on pair-
wise VIF values because it also considers the VIF of groups 
of more than two variables.   

 Dealing with clusters 
 Once clusters are identifi ed there are several ways to handle 
them, the three most common being: 1) perform a PCA based 
on variables in the cluster and use the principal components 

  

Figure 3.     Smoothed time-series of the correlation between mean daily temperature and precipitation for four US-American cities. System-
atic seasonal variation was removed by Loess decomposition (contributing about twice as much as the long-term trend depicted here). 
Moving window width is 30 d (data courtesy to Peter E. Th ornton, Oak Ridge National Laboratories:  �  www.daymet.org  � ).  

  Table 1. Collinearity diagnostics: indices and their critical values.  

Method Description Threshold

Absolute value of correlation 
coeffi cients (|r|) 1 

If pairwise correlations exceed a threshold collinearity is high; 
suggestion for thresholds: 0.5   – 0.7

 �    0.7

Determinant of correlation 
matrix (D)

Product of the eigenvalue; if D is close to 0 collinearity is high,
if D is close to 1 there is no collinearity in the data

–

Condition index (CI) 2 Measure of severity of multi-collinearity associated with  j th eigenvalues; 
the CIs of a correlation matrix are the square-roots of the ratios of the 
largest eigenvalue divided by the one in focus; all CIs equal or 
larger than 30 (or between 10 and 100?) are  ‘ large ’  and critical

 �    30

Condition number (CN) Overall summary of multi-collinearity: highest condition index  �    30
Kappa (K) CN squared 5
Variance-decomposition 

proportions (VD) 1,3 
Variance proportions of  i th variable attributable to the  j th eigenvalue; 

no variable should attribute more than 0.5 to any one eigenvalue
Variance infl ation factor 

  (VIF) 3,4 
1/(1 �  r  i  2 ) with  r  i  2  the determination coeffi cient of the prediction of all 

other variables for the  i th variable; diagonal elements of R  � 1 , with 
R  – 1  the inverse of the correlation matrix (VIF  �    1 if orthogonal); 
values  �    10 ( r  i  2   �    0.9) indicates variance over 10 times as large 
as case of orthogonal predictors

 �    10

Tolerance 1/VIF  �    0.1

   1: (Booth et   al. 1994); 2: (Belsley et   al. 1980, Johnston 1984, Douglass et   al. 2003); 3: (Belsley 1991, pp. 27 – 28); 4: (Hair et   al. 1995).   
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a standard stepwise model simplifi cation cannot be used, 
because after removing a variable, all variables of lower 
importance have to be re-calculated. Th e interpretation of 
variables changes from  ‘ there is a positive eff ect of precipi-
tation ’  to  ‘ there is a precipitation eff ect additional to the 
contribution it already made through its relationship with 
temperature ’ . Conceptually, sequential regression is related 
to semi-partial correlation analysis (Bortz 1993) and path 
analysis, methods where variables can act through their rela-
tionships with other variables (Grace 2006).    

 Modelling with latent variables 

 Some methods are designed to incorporate collinear variables. 
Th e methods described in this section deal with collinearity 
by constructing so-called  ‘ latent ’  variables, i.e. unobserved 
variables which underlie the observed collinear variables. As 
a result of the methods used, most variance in the observed 
explanatory variables is concentrated in the fi rst few new 
latent variables and usually the less important latent vari-
ables are discarded, leading to a reduction in dimensions. 
Methods diff er in how the latent variables are derived, 
whether the response variable is included in this derivation 
and how many latent variables are extracted. 

 Principal component regression (PCR) simply uses the 
PCs as explanatory variables and is restricted to linear fi ts to 
those variables. Often only those PCs are used that cumu-
latively explain over 90% of the variance. Th en a stepwise 
procedure simplifi es the model further. Ridge principal com-
ponent regression (Vigneau et   al. 1997) is a special case of 
PCR, where the PCs are not used in an ordinary regression 
model, but in a penalised regression model. For details on 
penalisation see section Tolerant methods below. 

 Partial least squares (PLS) iteratively modifi es the load-
ings of the explanatory variables on a PCA in order to maxi-
mise the fi t of the PCA regression onto the response variable 
 y  (Abdi 2003). It thus keeps the PLS-axes orthogonal, but 
they no longer represent maximum variance in  X . Th e inten-
tion of this approach is that the chosen latent variables are 
relevant not only for  X , but also for  y,  though Hastie et   al. 
(2009) show that the variance in X still tends to dominate. 

 In ordinary PLS, rotations of principal components are 
fi tted to the response variable. By changing the rotation in 
an iterative procedure, the best linear fi t to the response is 
found. Penalised partial least squares uses a non-linear fi t, 
based on splines, to fi nd the best rotation and hence best 
PLS-components (Kr ä mer et   al. 2007). PPLS can hence be 
seen as a combination of PLS and generalised additive mod-
els (GAMs). However, GAMs are very fl exible models, which 
may overfi t the data considerably (i.e. have high performance 
on training data, but low on test data). To overcome this 
problem, parameters are penalised, leading to a more robust 
model. Th is process is also discussed in the statistical litera-
ture as shrinkage or regularisation (Harrell 2001, Reineking 
and Schr ö der 2006). For more details on penalisation refer 
to the section   Tolerant methods   below. 

 Constrained principal component analysis (CPCA: 
Vigneau et   al. 2002) works in a similar way to PLS, but is 
not iterative. To fi nd the best rotation of  X  it requires the 
estimation of a tuning parameter, which balances fi t to  y  

Th e variables closest (e.g. in terms of Euclidean distance) to 
the multidimensional cluster centre is an obvious candidate. 

 Using the  ‘ best regressor ’  from the variables in a cluster has 
the disadvantage of using the response to determine which 
variables are selected. Th is circularity of using  y  in the ana-
lysis may infl ate type I errors (Harrell 2001). However, since 
an exploratory data analysis commonly precedes the ana-
lysis anyway, the best-regressor-approach ( ‘ data snooping ’ ) 
may not distort the analysis too badly compared to com-
pletely ignoring collinearity. 

 Note that although some methods may seem more appro-
priate because they use  ‘ interpretable ’  variables rather than 
composite-axis-scores, this is deceptive: in whichever way 
we represent a cluster, the variable used represents all other 
variables of the cluster and should not be interpreted only 
at face value. Renaming the retained variable to refl ect its 
multiple identities is a sensible precaution.   

 Cluster-independent methods 
 Two main options exist to bypass the identifi cation of clusters 
and either directly use the collinear input variables during 
the analysis or to produce a less collinear set of predictors. 

 Select variables correlated |r|  �    0.7 is the most commonly 
applied method across diff erent fi elds of science, albeit with 
various thresholds. Th is only has an unambiguous interpre-
tation when a clear diff erence in ecological importance exists 
between correlated variables. Where this is not the case, non-
linear univariate pre-scans of each variable ( ‘ data snooping ’ ) 
can be used to determine the sequence of importance (see 
Murray and Conner 2009, for a review of methods using 
only linear approaches). Although a threshold of 0.7 is the 
most common, also more restrictive (e.g. 0.4 in Suzuki et   al. 
2008) and less restrictive (0.85 in Elith et   al. 2006) thresh-
olds have been used. 

 Sequential regression (Graham 2003) aims to create 
new purged explanatory variables by reciprocally subtract-
ing the common variation from the less important variables. 
It linearly regresses explanatory variables against each other 
and uses the residuals to represent them. Note that while 
this approach is sometimes also called  ‘ residual regression ’  
(Graham 2003), it is fundamentally diff erent from the rightly 
criticised approach of  ‘ regression of residuals ’  (Freckleton 
2002). In sequential regression the predictors are regressed, 
while in  ‘ regression of residuals ’  the residuals of the inde-
pendent variable are used in a second-step regression. In 
practice, sequential regression comprises the following two 
steps: 1) identify a sequence of importance for the explana-
tory variables. Preferably, this should be done through 
ecological reasoning. If the data are ecologically indistin-
guishable (e.g. concentration of trace minerals in the soil), 
nonlinear univariate regressions on the response variable can 
be used to determine the order of importance. 2) Calculate 
the independent contribution of each explanatory variable. 
Th e fi rst (most important) variable will remain as it is. Th e 
second variable will be regressed against the fi rst, and the 
residuals of this regression represent the independent contri-
bution of the second variable after accounting for the eff ect 
of the fi rst. Th e third variable will now be regressed against 
the fi rst and the residuals of the second, and so forth. Th e 
resulting variables are orthogonal, but conditional. Th ey 
cannot be interpreted without the previous variables. Also 
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 Penalised regressions account both for the number 
of parameters  p  in a model and their absolute estimates   

b  : model complexity�
�1

⏐ ⏐b
l

j
j

p

∑ . Th e degree of penalisation

diff ers between approaches: In ridge regression   l    �    2 
(also called  ‘ L2-norm ’ : Hoerl and Kennard 1970), in LASSO 
regression   l    �    1 ( ‘ L1-norm ’ : Tibshirani 1996) and in OSCAR 
(see below)   l   is optimised using the L 1 -norm together 
with the pairwise L � -norm (Bondell and Reich 2007). Th e 
combination of L 1  and L 2  norms is called the elastic net (Zou 
and Hastie 2005) and is similar to OSCAR (Bondell and 
Reich 2007). Depending on the form of the penalty, the 
regression coeffi  cients are shrunk and/or selected. While all 
methods mentioned lead to shrinkage of the regression coef-
fi cients towards zero, ridge regression performs neither selec-
tion nor grouping, while LASSO selects but does not group 
parameters. Shrinkage of the coeffi  cients towards zero leads 
to an estimation bias, but also to a smaller prediction error 
due to decreased variance (Hastie et   al. 2009). 

 Octagonal shrinkage for clustering and regression 
(OSCAR) provides the user with clusters based on a regres-
sion of all variables against the response (Bondell and Reich 
2007). Because both response and explanatory variables 
are standardised before the analysis, only normally distrib-
uted responses and continuous explanatory variables can 
be employed. OSCAR requires specifi cation of two control 
parameters (the penalisation of the L 1  norm and the penaliza-
tion of the pair-wise L  ∞   norm), which should be optimised, 
making OSCAR a rather computer-intensive method. 

 Machine-learning methods are a vibrant area of research 
in ecology (Elith et   al. 2006, Hastie et   al. 2009), and we 
only present four methods, chosen for their interest to 
ecologists. Our machine-learning methods are built around 
Classifi cation and Regression trees ( Boosted  Regression 
Trees, BRT: Friedman et   al. 2000, and randomForest: 
Breiman 2001) or very fl exible, high-order, multidimen-
sional polynomials or splines (Support Vector Machines, 
SVM: Fan et   al. 2005, and Multivariate Adaptive Regression 
Splines, MARS: Friedman 1991). Details of these methods 
can be found in the Supplementary material Appendix 1.1. 

 Collinearity-weighted regression (CWR) is a new idea 
developed during this study by CFD, TM and BR. Th e 
method down-weights those data points that most strongly 
contribute to the collinearity pattern in the regression of the 
response variable against the explanatory variables ( X ). Th is 
is likely to be most useful in situations where outliers are 
incidental and (partly) responsible for strong collinearity.    

 Part IV. Comparison of methods on 
simulated data 

 To compare methods for dealing with collinearity, we 
simulated data sets with a range of predictor collinearity 
and with fi ve diff erent functional relationships between 
the response,  y , and the (collinear) predictors,  X . We then 
explored the predictive performance of the methods on 
test data sets with fi ve diff erent collinearity structures. In 
the following sections we describe our simulation and 

against PCA-like maximisation of variance on consecutive 
axes (see Supplementary material Appendix 1.1 for details). 
Th us, while a PCA aims to represent variation in  X  with as 
few principal components as possible and PLS focuses on the 
fi tting of  y , CPCA balances these two objectives. 

 In latent root regression (Webster et   al. 1974, Gunst 
et   al. 1976) the response variable is included in a PCA with 
the predictors. Th is identifi es important PCA-axes as those 
with a high loading of  y . A possibility for selection of axes 
is to defi ne certain thresholds for the eigenvalues and 
the loadings of  y  (Vigneau et   al. 1996). Th en the PCA is 
re-run, but only on the selected variables, deleting  ‘ the non-
predictive collinearity ’  (Gunst et   al. 1976). Citing Joliff e 
(2002, p. 180):  ‘ Th us, latent root regression deletes those 
PCs which indicate multi-collinearities, but only if the 
multi-collinearity appears to be useless for predicting  y . ’  
Hawkins (1973) and Hawkins and Eplett (1982) keep the 
response variable when re-calculating the PCA, which we 
regard as incorrect. Th e decision about which eigenvalues 
count as large enough to retain their high-loading variables 
is somewhat arbitrary (Gunst and Mason 1980). A more ele-
gant approach, in which linear combinations of predictors 
are formed sequentially and related to the dependent variable 
to determine their relevance for predictions, was introduced 
by Vigneau et   al. (2002). Th e advantage and disadvantage 
of LRR is nicely described by Guerard and Vaught (1989, 
p. 349):  ‘ Latent root regression adds a biased term while 
eliminating the ill-conditioning. […] the bias term is small 
and the mean square error of the latent root regression esti-
mator is less than the mean square error of the ordinary least 
square estimator. Th us, LRR is preferred to OLS [ordinary 
least squares] analysis as long as the parameter vector is not 
parallel to the latent vector corresponding to the smallest 
latent root of the correlation matrix. ’  

 Dimension reduction (DR) is related, structurally, to 
factor analysis since it also produces new, orthogonal axes 
and tests for the number of dimensions required to represent 
the data set. However, DR also uses the response variable 
to do so. Th ere are diff erent DR-techniques: sliced-inverse 
regression (SIR: Li 1991), sliced average variance estima-
tion (SAVE: Cook and Weisberg 1991), principal Hessian 
directions (PHD: Li 1992) and inverse regression estima-
tion (IRE: Wen and Cook 2007). According to Weisberg 
(2008), the fi rst three of these methods examine the inverse 
regression problem of  X  |  y , rather than the forward regres-
sion problem of  y  |  X . A major benefi t of DR over the other 
latent variable approaches is that categorical variables can be 
analysed too. Axes loadings can be used in the same way as 
for PCA to construct clusters.   

 Tolerant methods 

 Some regression techniques may be more sensitive to col-
linearity than others. Recent developments in model selec-
tion methods have introduced new methods for balancing 
model complexity and fi t. Although not necessarily designed 
to be tolerant of collinearity, they off er approaches that may 
be less sensitive. Th e approaches listed here fall into four 
diff erent groups. 
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provide a total of 4000 data sets of diff erent collinearity and 
 y  -  X -complexity. Seeds for the random number generator 
were used to allow full reproducibility of these data. Data gen-
eration code is available, together with implementation code 
for all methods, in Supplementary material Appendix 2.   

 Simulation analysis 

 First, collinearity diagnostics were computed for all 4000 
data sets: the determinant of the correlation matrix,  κ , the 
condition number, minimum, mean and maximum eigen-
value of the correlation matrix, number of proxy sets (sensu 
Booth et   al. 1994) and number of large variance infl ation 
factors (see section Diagnostics and Table 1 for details, and 
Supplementary material Appendix 2 for code). Th en, we 
analysed each data set with all collinearity methods. Since 
some methods have multiple options, a total of 55 diff er-
ent approaches were employed (Supplementary material 
Appendix 1.1, Table A1, and example analysis therein). 

 For each model, we predicted the response ( y ̂ ) for all test 
data sets, and compared this with the  ‘ true ’   y -values. Model 
quality was assessed as Pearson ’ s coeffi  cient of determination 

( R   2 ), Root Mean Squared Error (RMSE
y
n

Σ( ˆ)y 2
), slope

and intercept of the calibration curve (regression of 
true vs predicted values). Distributions of  R  2 , slope and inter-
cepts were heavily skewed by extreme outliers. Hence we 
report RMSE-values here, which appear to be less sensitive 
in this context. Qualitatively,  R  2 , slope and intercept yield 
the same results (Supplementary material Appendix 1.2). 

 Finally, we explored the detail of the eff ects of collinearity 
on model selection by targeting two of the simulated data 
sets. We also ran two case studies with real data (distributions 
of black grouse in Europe, and drivers of global bird diver-
sity) to illustrate the eff ects of collinearity on model selection 
across methods. Th ese are presented in Supplementary mate-
rial Appendix 1.2.    

 Results 

 In total, 4000 data sets, analysed by 23 diff erent methods 
were produced. We carried out two pre-analyses on all data 
sets. Th e fi rst compared model selection procedures based on 
the small sample-size corrected Akaike ’ s information crite-
rion (AICc) and Bayesian information criterion (BICc); the 
second compared three diff erent ways to represent clusters 
(see Supplementary material Appendix 1.2 for details). Based 
on the results we represented a cluster by its central variable, 
and kept all four clustering methods. We used BICc-derived 
models except for CPCA, PLS and PPLS. As references we 
used three models: fi rstly, a correctly specifi ed linear model 
(i.e. a GLM with Gaussian errors, from here on referred to as 
GLM), where we only estimated the parameters (ML true); 
secondly a backward stepwise simplifi ed GLM (starting with 
linear and quadratic terms and fi rst-order interactions for all 
21 predictors and BICc setting); and, thirdly, a GAM with 
cubic splines and shrinkage (i.e. reduction in spline fl exibil-
ity Wood 2006) applied to all predictors (see Fig. 6 for all 
methods remaining).  

analysis. Further details can be found in Supplementary 
material Appendix 1.2.  

 Data simulation 

 For our simulation experiment, we created training and test 
data sets that had 1000 cases and 21 explanatory variables 
(predictors). Th ese were grouped into four clusters (A – D) 
of fi ve variables each plus a single uncorrelated variable. 
Collinearity was restricted to within clusters, imitating col-
linearity among climatic variables, among land-cover vari-
ables and so forth. Th e parameter  ‘ decay ’  controlled the 
degree of collinearity with high values of  ‘ decay ’  meaning low 
collinearity (for details on data simulation see Supplementary 
material Appendix 1.2). Th e 21st predictor was always 
created as uncorrelated with all others. All  X  were then 
standardised. 

 For all training and test data sets, the response variable 
was calculated as a function of predictors  X  plus random 
normal noise (SD  �    0.5). We simulated fi ve diff erent rela-
tionships of increasing complexity:    

f 1. 1   �    25  �   X  Ai , i.e. one linear predictor from cluster A;    
f 2. 2   �    25  �   X  Ai   �   X  Aj   �   X  Bk   �   X  Bl   �   X   Cm   �   X  21 , i.e. many 
linear, of which some are collinear ( X  Ai  and  X  Aj ,  X  Bk  
and  X  Bl );    
f 3. 3   �    25  �   X  Ai   �   X  Ai  2   �   X  Bj   �   X  Bj  2   �   X  Ck  �    X   Ck  2 , i.e. three 
non-linear (quadratic), without collinearity between any 
of the variables;    
f 4. 4   �    25  �   X  Ai   �   X  21   �   X  Ai  X  21 , i.e. two interacting but 
uncorrelated predictors;    
f 5. 5   �    25  �   X  Ai   �   X  Ai  2   �   X  21   �   X  21  2   �   X  Ai  X  21 , i.e. two non-
linear predictors without collinearity, plus an interaction 
between their linear terms.   

 In the above formulation,  X  1  to  X  5  belong to cluster A,  X  6  
to  X  10  to B,  X  11  to  X  15  to C and  X  16  to  X  20  to D. Values of  i , 
 j ,  k ,  l ,  m  are randomly drawn, because cluster analysis often 
identifi ed the alphanumerically fi rst variable as representa-
tive of a cluster, thereby biasing the results. 

 For each of the fi ve functional relationships, we created 
training datasets with varying degrees of collinearity within 
clusters by choosing eight diff erent levels for  ‘ decay ’  (0.002, 
0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5). Th en, we pro-
duced fi ve diff erent test data sets for each training data 
set to mimic changes in collinearity structure that may 
occur through time and space. In  ‘ test same ’  the same col-
linearity structure as in the training data was used (i.e. 
the data generation algorithm was identical to the training data 
but with diff erent random seeds). In  ‘ test more ’  and  ‘ test less ’  
the decay was half and twice that of the training data, respec-
tively, simulating an increase or decrease in the collinearity of 
the predictors. Th e fourth test set,  ‘ test non-linear ’ , simulated 
a non-linear change in the collinearity structure, where only 
high values of the two variables become less collinear (see 
code in Supplementary material Appendix 1.2 for details). 
Finally,  ‘ test none ’  was generated as 21 completely indepen-
dent predictors with mean  �    0 and standard deviation  �    1. 

 Each of the fi ve functional relationships was simulated 
for each of the eight levels of within-cluster collinearity, 
yielding 40 diff erent sets. Th ese were replicated 100 times to 
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 As a fi rst rough guide on which statistical approaches 
worked best, we analysed the shortlisted 23 methods plus 
the reference  ‘ ML true ’  across all functional relationships 
(Fig. 5). When evaluated using the test data with the same 
collinearity structure, most methods performed very well 
in terms of RMSE. A moderate loss of performance was 
observed for PPLS, PCA-based clustering and BRT when 
the collinearity structure changed slightly (test-less). Th is 
trend was aggravated under non-linear changes of collinear-
ity, where also variability started to substantially increase for 
several methods (among them GLM and several latent vari-
able approaches). Using the test data without collinearity 
(test none), however, the verdict came clearly in favour of the 
select07/04 methods, ridge, lasso, DR, GAM and MARS. 
Other methods were also similar in their median perfor-
mance but exhibited much larger variability (GLM, seqreg, 
machine learning methods). Neither latent variables (except 
DR) nor clustering approaches could compete. Th is may 
diff er between functional relationships, so we subsequently 
analysed this in more detail. 

 Model validation under collinearity 

 In the analysis, we focussed on three aspects aff ecting the 
performance of a method, as assessed by the Root Mean 
Squared Error (RMSE) on diff erent test data: 1) degree 
of collinearity present in the data (x-axis in Fig. 4 and 6); 
2) complexity of the functional relationship used for simula-
tion (fi ve subfi gures of Fig. 6); and 3) change in collinear-
ity structure from training to test data set (fi ve line types 
within each panel in Fig. 6). As absolute reference, we used 
the RMSE of a correctly specifi ed model (fi rst panel with 
formula for simulation; here all error is due to the noise 
imposed in the simulations). 

 Summarised across all functional relationships and model 
types, we did not detect a trend of degeneration of model fi t 
on the test-same, test-more or test-less data with increasing 
collinearity (Fig. 4). When the collinearity structure changed 
non-linearly or was completely lost, however, model fi t 
decreased substantially and became much more variable as 
collinearity increased (test non-linear and test none, Fig. 4). 
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Figure 4.     Root Mean Square Errors across all simulations for the eight diff erent levels of collinearity and using diff erent collinearity struc-
tures for validation. Small linear changes, both increasing and decreasing absolute correlation (more/less), have little eff ect and are depicted 
together. Grey line indicates RMSE of the fi t to the training data.  
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 Figure 6 shows the eff ect of increasing collinearity on 
prediction accuracy (in terms of RMSE) of all models on 
the diff erent test data sets. We found that collinearity aff ects 
model performance negatively for most methods and func-
tional relationships (increasing RMSE towards the right 
in the panels of Fig. 6). Collinearity eff ects were generally 
non-linear, and almost all methods proved tolerant under 
weak collinearity (CN below 10). A threshold of CN  �    30 
(indicated in Fig. 6) was clearly too high for most meth-
ods analysed here. Notable exceptions from this pattern are 
PCA-based clustering and SVM, which increased in perfor-
mance with collinearity (albeit PCA-based clustering start-
ing from a very poor fi t). 

 Th e results across all collinearity test structures are 
complex (Fig. 6). Th ey can be fi rst summarised by looking 
for a general pattern of low and consistent RMSE across 
all condition numbers, excluding the hardest case that of 
prediction to completely changed collinearity (the long 

dashed line). Consistently well-performing methods include 
select04/07, GAM, ridge, lasso, MARS and DR. Some 
other methods were consistent, but at a higher RMSE level 
(Hoeff ding/Ward and Spearman/average clustering, seqreg, 
LRR, OSCAR, randomForest, BRT and SVM). 

 When investigating, by eye, the performance under 
severe collinearity (i.e. to the right of the CI  �    30 line), we 
found most methods outperformed GLM-like approaches. 
In particular clustering, penalised and machine-learning 
approaches yielded lower-error models. However, several 
of the purpose-built latent variable techniques were only 
marginally better than GLM, delaying the degeneration 
of model performance from a condition number of 10 
(for GLM) to 30 (LRR, DR, CPCA, PLS, PPLS). Two 
other noteworthy results are that the GAM also did well 
at high collinearity, while the commonly used Principal 
Component Regression showed no improvement on the 
GLM. 
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Figure 5.   Root Mean Square Errors across all simulations for the diff erent methods and using diff erent collinearity structures for validation, 
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 Th e performance of methods changed only slightly 
across levels of functional complexity (Fig. 6). Trends 
became more pronounced as the underlying functions 
became non-linear, and at a level of functional complexity 
that might be typical for an ecological regression model 
(two quadratic terms and an interaction), clustering meth-
ods in particular suff ered from poor model fi ts. Also three 
of the four penalised approaches were unable to regularise 
the model suffi  ciently and thus only the ridge was still per-
forming very well. 

 Th e most striking pattern we observed was the perfor-
mance under changing collinearity structure. Since we gen-
erally have little idea of how environmental variables are 
correlated over time or space, this will not help us decide 
which method to use. Generally, few of the methods were 
able to correctly predict under the most diffi  cult combina-
tion of high collinearity in training data and complete loss 
of the collinearity structure in the test data (as reported in 
the right tail of the long dashed lines in Fig. 6). Methods 

where the RMSE for this combination stayed lowest were 
select04/07, ridge and MARS, with GAM, randomForest, 
BRT, SVM, lasso and OSCAR working fi ne up to a condi-
tion number of approximately 150 – 200 (2.2 on the log-scale 
of Fig. 6). 

 Some methods deserve specifi c comment. Th e PCA-
based clustering was useful only under highest collinearity. 
Under normal circumstances, using the most central vari-
able in a cluster is likely to mislead variable identifi cation. 
However, using the principal component of each cluster 
was even worse (Supplementary material Appendix 1.2, Fig. 
A3). Select04 and select07 were yielding nearly identical 
results in all runs. Th is is probably due to the way we gener-
ated our data, where correlations within a cluster are very 
high, and both thresholds (|r|  �    0.4 and |r|  �    0.7) hence led 
to near-identical selection of predictors. Ridge penalisa-
tion failed to converge for the quadratic model (function 3) 
withoutcollinearity (see also Tricks and tips in the Discussion). 
PPLS was the most unreliable approach, despite combining 
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    Figure 6.     Relative prediction accuracy on test data for an ideal model (ML true) and 23 collinearity methods as a function of collinearity in 
the data set. In each panel, solid/short-hatched/dotted/dash-dotted/long-hatched locally-weighted smoothers (lowess) depict model predic-
tions on same/more/less/non-linear/no correlation data sets accordingly (not discernable in function 5 for select07 and select04 because 
they yield nearly identical values). X-axis is log(condition number), depicted logarithmically. Th at is, x-values are in fact double-log-ed CNs 
(one log for the fact that CN is a ratio, the second because we chose logarithmic scaling of collinearity decay rates when generating the data). 
Vertical line (at CN  �    30) indicates the rule-of-thumb threshold for CN beyond data set collinearity is deemed problematic.  
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the strengths of PLS, GAM and penalisation. Finally, CWR 
yielded very similar results to the GLM, only slightly outper-
forming GLMs under high collinearity. Again, this is prob-
ably due to the way we generated our data as collinearity 
between variables was modelled as intrinsic and not inciden-
tal due to outliers which is the main (proposed) application 
domain of CWR. 

 For each group of approaches, our simulations suggest 
the following most promising methods: from the control 
group, GAM; from clustering, Hoeff ding/Ward or Spearman/
average; from the latent variable approaches, DR; from the 
penalised approaches, ridge; and from the machine learning 
group: MARS, randomForest and BRT.    

 Part V. Discussion 

 Collinearity cannot be  ‘ solved ’  if we have no additional 
information. If two highly collinear predictors  X  1  and  X  2  
are correlated with  Y , then there is no logical way to glean 
information about which of the two is  ‘ really ’  behind the 
correlation. Th e problem collinearity poses is thus simi-
lar to the fact that correlation is not causation: when 
one variable (or more) is correlated with a response then 
there need not be any causal relationship between them. 
Th is is also the general philosophy behind the latent vari-
able approach. Here one assumes that all variables mea-
sured are refl ections or proxies for an underlying  ‘ true ’ , 
but unobserved and possibly unobservable, variable. Our 
review and comparison of methods therefore cannot fi nd 
a solution to the problem of collinearity, because with-
out additional information the truth cannot be extracted 
(see similar conclusions in Kiers and Smilde 2007). Still, 

there are modelling approaches that are more sensitive to 
collinearity than others. Th e aim of this study was to eval-
uate which methods can be relied on most if no additional 
information is available. 

 Our analysis is but one in a list of studies comparing 
diff erent approaches to collinearity (Aucott et   al. 2000, 
Graham 2003, Morlini 2006, Kiers and Smilde 2007, Smith 
et   al. 2009), albeit the most extensive. In particular, our 
study is, to our knowledge, the only one where non-linear 
and interacting eff ects are used in data simulation, which is 
vitally important for ecological data.  

 General comments 

 Th e methods compared vary widely in their ecological inter-
pretability. Latent variable methods (including PCA and 
PLS) leave the analyst to interpret correlation over several 
variables. Th ese methods provide no guidance about which 
of the highly correlated variables may actually be the best 
candidate for an underlying causal relationship. Th is, how-
ever, can also be seen as a virtue. GLM, GAM, CWR, 
select07/04 and sequential regression all identify a reduced 
set of predictors, but their statistical support may only be 
marginally better than that of those variables collinear with 
them but omitted during the analysis. Th erefore, there exists 
a high risk of over-interpreting fi tted models and relative 
variable importance and the (relative) simplicity of these 
analyses is thus paid for by a higher risk of failing to iden-
tify an important variable (type II error). If collinearity is 
incidental, a second, independent data set is likely to have 
a diff erent collinearity structure and may assist ecological 
interpretation. 
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consistency across several methods in selection of particular 
variables, to apparently random selection of one variable or 
another, to selection of all variables and giving small impor-
tance to each. For the real data, we do not know the truth, 
but the results are interesting as demonstrations of the ten-
dencies of diff erent methods.   

 Caveats 

 Our analysis cannot be comprehensive. Although it is the 
most extensive comparison of methods, and contains a large 
set of varying functional relationships, collinearity levels 
and test data sets, there will always be cases that fundamen-
tally diff er from our simulations. During the selection of 
case studies we noted in particular two situations we did not 
consider in the simulations: small data sets and collinearity 
that did not occur in clusters. Additionally, we shall briefl y 
discuss some other points which are relevant for generalisa-
tions from our fi ndings. 

 Small data sets (where the number of data points is in 
the same order as the number of predictors) generally do 
not allow the inclusion of all predictors in the analysis. An 
ecology-driven pre-selection for importance may reduce 
or increase collinearity. If we apply univariate (possibly non-
linear) pre-scans or machine-learning-based pre-selection, 
we confound collinearity with variable selection. We chose to 
exclude these examples from this study to avoid confusion of 
these two topics, although they clearly are related. Selecting 
the correct variable to retain in a model is more error-prone 
under collinearity (Faraway 2005), and the resulting reduced 
data set will also be biased (see Elith et   al. (2010) and Synes 
and Osborne (2011), for more details). 

 In our simulations, we grouped the 21 predictors into 
four clusters of fi ve variables each, and a separate, uncor-
related variable. Within-cluster collinearity was usually 
much higher than between-cluster collinearity. Th is led to a 
bimodal distribution of correlation coeffi  cients (with a low 
and a high peak). In contrast, in our real-world examples 
(Supplementary material Appendix 2), the distribution 
of correlation coeffi  cients was unimodal, with only very 
few high correlations and many low ones (|r|  �    0.4). 
Separating variables into clusters is intrinsically less mean-
ingful in such data sets. Similarly, latent variables have high 
loadings by many variables and are less interpretable. Finally, 
the lack of diff erences between select07 and select04 can 
be attributed to our grouping structure: if they were not 
correlated with |r|  �    0.7, they were often also not correlated 
at |r|  �    0.4. 

 All our predictors were continuous variables. Including 
categorical predictors would exclude several methods from 
our analysis (some of the clustering and most of the latent 
variable methods). Collinearity between categorical and 
continuous variables is very common (see e.g. Harrell 
(2001) ’ s example analysis of Titanic survivors, where large 
families were exclusively in class 3). We expect collinearity 
with categorical predictors to be similarly infl uential as with 
continuous variables. 

 Our response variable was constructed with normally dis-
tributed error. Binary data (often for example used in species 
distribution modelling, e.g. case study 2 in Supplementary 

 Another aspect of interpretability is the meaning of the 
derived variables. In sequential regression, a predictor could 
be the residuals of three or more consecutive regressions. 
Interpreting this eff ect requires careful wording and head-
scratching, for example:  ‘ there was an additional eff ect of 
slope after accounting for slope-related variability in tem-
perature, precipitation and altitude ’ . While this may sound 
convoluted, it is actually much closer to our intuitive under-
standing than the variable  ‘ slope ’  itself. When we note  ‘ slope ’  
by itself to be signifi cant, we should really only mean the 
slope, and  not  the fact that sloped sites are drier or higher up 
in the mountains. So, sequential regression may sometimes 
be easier to interpret than its iterative derivation would sug-
gest. Since sequential regression also fares rather well in our 
comparison, we recommend it as one of the methods worthy 
of further exploration.   

 Simulations and case studies 

 From our simulation study we drew four main conclusions.    
1) When the correct form of the functional relationship 

is known, collinearity does not harm the fi tting and there-
fore prediction to changing collinearity structures. In Fig. 6, 
the true model (top left) always yielded a near-perfect fi t. 
Th is is why mechanistic modellers try to build their mod-
els from ecophysiological or population biological principles 
(Kearney and Porter 2008). Whenever unique model struc-
ture is not given, collinearity is likely to bias estimates.    

2) Th e simple and common strategy to use the better 
univariate predictor of a set of two collinear variables 
(select07 and select04) fared surprisingly well (in line with 
Smith et   al. 2009). It may well be that this can be attributed, 
in part, to the design of our simulations, where within each 
cluster only one variable was causally linked to the response 
(except for function number 2).

3)     Most collinearity approaches worked reasonably well 
under moderate collinearity (i.e. condition number  �    10): 
GLM, GAM, sequential regression, most latent variable 
methods (PCR, LRR, DR, CPCA, PLS), LASSO, PPLS 
and machine-learning methods (randomForest, BRT and 
MARS). Only a few methods failed even under mild col-
linearity: PCA-based clustering, PPLS and SVM (see section 
Tricks and tips for hints why that may be).    

4) Under severe collinearity (condition number  �    30), 
changes in collinearity structure (diff erent line types in 
Fig. 6) were even more worrisome than eff ects of collinear-
ity per se. In particular, non-linear changes in collinearity 
(where high correlation changed more than low ones) and 
the complete loss of any collinearity proved detrimental 
for most methods. Even methods that worked nicely under 
similar collinearity structure (e.g. seqreg, clustering or the 
latent variable methods) broke down, indicating that in fact 
the right predictors or correct parameter estimates were not 
identifi ed by the models.   

 Our case studies (Supplementary material Appendix 
1.2) covered additional issues of whether correct predictors 
were selected, and investigated performance under small 
sample size, extremely heterogeneous collinearity, categori-
cal variables, non-normal response variables, and highly-
skewed predictors. Th e results varied with the study, from 
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with interactions and quadratic (or even higher-order) terms. 
Furthermore, latent variable approaches do not provide 
easily-extractable importance values for variables. 

 Choice of clustering method: we compared three diff er-
ent methods for processing clusters (Supplementary mate-
rial Appendix 1.2, Fig. A3). While using univariate pre-scans 
was the best method, this has consequences with respect 
to the true error estimates. Because the response was used 
repeatedly, the errors given for the fi nal model are incorrect 
and have to be replaced e.g. by bootstrapped errors (Harrell 
2001). Th erefore our choice and recommendation is to use 
the  ‘ central ’  variable from each cluster. 

 LASSO and ridge: in the implementation we used 
(Supplementary material Appendix 1.1), interactions could 
not be included. For both approaches, we used a combina-
tion of L 1 - and L 2 -norm penalisation (as recommended by 
Goeman 2009). Th is requires that the optimum penalisation 
for the L 2  and L 1 -norm (i.e. the penaliser not used by the 
method), respectively, must be sought before running the 
model. For example, when we run a LASSO ( �  L 1 -norm), 
we fi rst fi nd the optimum value of the L 2 -norm penalisation, 
and then run the LASSO itself. An alternative that allows 
simultaneous optimisation of L 1 - and L 2 -norm, called the 
elastic net (Zou and Hastie 2005), was slightly inferior to 
both methods, and much slower (data not shown), though 
we note that newer and reputedly faster versions have 
since been released (Friedman et   al. 2010). Both LASSO 
and ridge require fi ne-tuning in order to unfold their great 
potential. For our simulated data, this approach worked 
nicely. For the more data-limited case studies, manual fi ne-
tuning of the penalisation values was required. 

 RandomForest and Boosted Regression Trees (BRT): 
both methods build on many regression trees, but use dif-
ferent approaches to develop and average trees (bagging vs 
boosting). While the performance on test data was very simi-
lar, randomForest consistently over-fi tted on training data. 
Th is means that the model fi t on the training data was not 
a good indicator of its performance on the test data. When 
using either of the methods for projections to a scenario 
(where no validation is possible), both methods are likely to 
yield qualitatively similar predictions, but one might errone-
ously put more confi dence in the (over-fi tted) randomForest 
model. Th ere is no obvious way to correct for this other than 
by (external) cross-validation. 

 BRT and MARS were also found to benefi t from a com-
bination with PLS in the presence of collinearity (Deconinck 
et   al. 2008). In fact, MARS has been claimed to be sensi-
tive to collinearity, but less so when combining it with PCA 
(De Veaux and Ungar 1994). Whether this evidence is 
more than anecdotal remains to be seen (Morlini 2006). 
Our simulations show MARS to perform very well and not 
to suff er from collinearity, although there is no guaran-
tee that it selects the correct predictors and hence should 
be used with caution (Supplementary material Appendix 2, 
Fig. A1).   

 Final remarks 

 Within the limits of our study, we derive the following 
recommendations.    

material Appendix 1.2) are intrinsically poorer in informa-
tion and we would hence expect the errors in predictive 
performance for such simulations to be considerably higher. 
Still, the overall pattern of decreasing prediction accuracy 
with increasing collinearity should be similar. 

 We only investigated a single strength of the environment-
response relationship. For much weaker determinants, results 
may well diff er (see Kiers and Smilde 2007, for a study vary-
ing the noise level). Penalisation and variable selection would 
then cause an elimination of more predictors, and potentially 
suff er a higher loss of model performance than the other 
methods. Latent variable methods, on the other hand, may 
increase in relative performance, since they embrace all predic-
tors without selecting among them. Similarly, machine-learn-
ing approaches could be better under these circumstances. 

 Despite these caveats, our analysis confi rmed several 
expectations and common practices. In particular, the 
rule-of-thumb not to use variables correlated at |r|  �    0.7 
(approximately equivalent to a condition number of 10) sits 
well with our results (at least for similar collinearity struc-
tures in the test data  –  i.e. the same, more and less scenar-
ios). We have no evidence that latent variable methods are 
particularly useful in ecology for dealing with collinearity: 
they did not outperform the traditional GLM or select07 
approach. And, fi nally, tree-based models are no more toler-
ant of collinearity than regression-based approaches (com-
pare BRT or randomForest with ridge or GAM). 

 Th e choice of which method to use will obviously be 
determined by more than its ability to predict well under 
collinearity. From our analysis we conclude that methods 
specifi cally designed for collinearity are not per se superior 
to the traditional select07-approach or machine-learning 
methods (in line with the fi ndings of Kiers and Smilde 
2007). In fact, latent variable methods are actually not any 
better but are more diffi  cult to interpret, since all variables 
are retained in the new latent variable. Penalised methods, 
in contrast, worked especially well (particularly ridge) and 
should possibly be more widely used in descriptive ecologi-
cal studies.   

 Tricks and tips 

 In this section we briefl y share our experience with some of 
the methods, particularly the choice of parameters. Please 
refer to the Supplementary material Appendix 1.1 for more 
detailed implementation information. 

 Clustering methods and latent variable approaches: clus-
tering is highly aff ected by pre-selection of variables. Omitting 
a variable may break a cluster in two, resulting in a very diff er-
ent cluster structure. Fewer variables generally mean better-
defi ned clusters. A crucial point when using cluster-derived 
variables is to recognise that non-linear relationships will not 
be properly represented, unless the new, cluster-derived vari-
ables are also included as quadratic terms and interactions. 
In the ecological literature, PCA-regression, cluster-derived 
and latent variables are almost always only included as lin-
ear, additive elements. In a pilot analysis of the same data, 
this resulted in a near-complete failure of these methods. Th e 
new variables can best be thought of as alternative variables, 
and then processed as one would normally do in a GLM, 
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simple methods, based on rules of thumb for critical levels
of collinearity (e.g. select07), work just as well as built-
for-purpose methods (such as penalised models or latent 
variable approaches). Under very high collinearity, penalised 
methods are somewhat more robust, but here the issue of 
changes in collinearity structure also becomes graver. For 
predictions, our results indicate sensitivity to the way pre-
dictors correlate: small changes will aff ect predictions only 
moderately, but substantial changes lead to a dramatic loss 
of prediction accuracy. 
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