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A B S T R A C T

The traditional focus of physiological and functional genomic research is on molecular processes that play out
within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, mo-
lecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are
regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a
distributed fashion, through various social communication mechanisms. As a result of physiological decen-
tralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hor-
mone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony
traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from con-
sidering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nest-
mate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized
nestmates of various developmental stages. We also consider similarities and differences between nestmate-level
(organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses re-
garding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical
functional genomics approaches will be useful in addressing fundamental questions related to the evolution of
eusociality and collective behavior in natural systems.

1. Introduction

Division of labor and collective behavior underlie the ecological
success of eusocial species such as ants, termites, and honey bees
(Ward, 2014; Korb, 2016). Eusocial species are those that live in co-
lonies with multiple overlapping generations, with nestmates partici-
pating in brood care, nest building, foraging, and defense (Wilson and
Hölldobler, 1988; Hölldobler and Wilson, 2009; Linksvayer, 2015).
Eusocial species exhibit colony traits, such as collective foraging and
defense (Wray et al., 2011; Gordon, 2013; Gordon et al., 2013), which
are either absent or rudimentary in solitary insects.

Division of labor (DOL) refers to variation among eusocial insect
nestmates in behavior, morphology, and physiology (Hölldobler and
Wilson, 2009; Goldsby et al., 2014; Jeanne, 2016; Gordon, 2016a;
Pasquaretta and Jeanson, 2018). In its most complex form, referred to
as a caste system, the colony is composed of groups of nestmates that
vary strongly in their reproductive potential and task performance. As

Wilson, Hölldobler, and Seeley pointed out, the most elaborate forms of
DOL lead to workers with limited information about the activities of the
rest of the colony (Wilson and Hölldobler, 1988; Hölldobler and Wilson,
2009). Extensive signaling among specialized nestmates ensures a unity
of purpose at the superorganismal (colony) level (Durand et al., 2019).
Seeley referred to these signaling mechanisms among nestmates as
“social physiology” (Seeley, 2009). Building on this concept of social
physiology, Johnson and Linksvayer (Gordon, 2016a) argued that DOL
is composed of two parts: Social Anatomy and Social Physiology.
Social anatomy is analogous to specialized anatomy (e.g., organs, tis-
sues) in a metazoan body, while social physiology plays the analogous
role to organismal physiology in a metazoan body.

Social anatomy refers to colonies being composed of specialized
parts with limited roles, like the organs of an animal organism (Fig. 1).
Under certain conditions, this specialized colony anatomy allows for
greater productivity and efficiency in the completion of many tasks
(Waibel et al., 2006; Cooper and West, 2018; Gillooly et al., 2010;
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Burgess et al., 2017). Specialization exists at multiple levels within the
colony. A primary distinction in the colony is between male and female
nestmates (Beani et al., 2014). Queens are females with high re-
productive output; workers are females with zero or very low re-
productive output. Queen-worker reproductive skew allows for an in-
creased reproductive output of queens alongside increased work output
from workers, with both castes usually developing from the same di-
ploid female genome (Ratnieks et al., 2011). Eusocial species vary
widely in their total size, ratio of different classes of nestmates, and
extent of subspecialization within the worker caste. Variation within
and among classes of worker nestmates can manifest as variation in
body size or allometry (Abouheif et al., 2014), and also is typified by
temporal polyethism, the stereotyped process by which workers change
in behavior and physiology as they age and in response to experiences
(Gordon, 1989; Tripet and Nonacs, 2004; Johnson, 2010; Yan et al.,
2014). Both morphological and temporal specializations among
workers are reflected by extensive tissue-specific physiological changes
that facilitate specialization by each age group (Walsh et al., 2018).

Social physiology is the set of dynamic mechanisms that co-
ordinate the activity and development of the specialized parts of the
colony (Fig. 1). The principles of colony physiology are broadly the
same as the principles of organismal physiology (e.g. homeostasis,
balance of anabolism/catabolism, nutrient partitioning among tissues),
as colonies are complex adaptive systems that are targets of colony-
level selection (Linksvayer, 2015; Birch and Okasha, 2015; Okasha,
2016). Whether colonies successfully grow and produce new queens
and males that can start the next generation depends on coordination
and function at the colony level. Thus it is not surprising that in many
species, colony-level traits (e.g. architecture, foraging behavior) have
been found to either directly influence colony-level productivity (i.e.
production of workers and reproductives), or influence other ecologi-
cally-important aspects of colony function (Wilson, 1968; Anderson and
Ratnieks, 1999).Colony physiological processes transfer information
among nestmates and include both physical interactions (vibrations and
tactile contact) and molecular signaling (Fielde and Parker, 1904;
Johnson and Linksvayer, 2010; Leonhardt et al., 2016). Molecular
signaling mechanisms are varied and include volatile and nonvolatile
pheromones (Leonhardt et al., 2016; Bortolotti and Costa, 2014; Stökl
and Steiger, 2017), as well as the direct transfer of bioactive compounds
such as small RNAs, proteins, hormones, and nutrients (LeBoeuf et al.,
2013; LeBoeuf et al., 2016; Maori et al., 2019).

Here we use a eusocial physiology framework to review empirical

research on how organismal and colony-level physiological processes
differ, interact, and co-evolve (Linksvayer, 2015; Seeley, 2009; Johnson
and Linksvayer, 2010). The eusocial physiology framework considers
how specialized components of the eusocial insect colony (social
anatomy) interact to regulate key nestmate and colony traits (social
physiology). We describe how the eusocial physiology framework leads
to novel insights into how to best explore the genetics, evolution, and
physiology of the eusocial insects.

2. Similarities between colony and organismal anatomy
physiology

The concept of social anatomy (and similarly, the concept of the
superorganism) has been criticized because in some eusocial insect
species there is little queen-worker dimorphism, or because re-
productive and physical castes demonstrate phenotypic plasticity at
various scales (Jeanne, 2016; Gordon, 2016a; Gordon, 1989; Canciani
et al., 2019). However there is a similar variation among taxa in the
extent of germ-soma separation and plasticity in multicellular organ-
isms, for example the extremely variable cases of plants, worms,
sponges, and bilaterians (Winston, 2010; Gilbert et al., 2012; Neuhof
et al., 2016; Colgren and Nichols, 2019; Sugden, 2000). Multicellular
organisms vary considerably in size, degree of anatomical specializa-
tion, reproductive life history, and sophistication of physiological reg-
ulatory mechanisms. Similarly there is great variation among eusocial
taxa in the complexity of their social anatomy (the extent of speciali-
zation among nestmates) and social physiology, and also their re-
productive life history (Ward, 2014; Gordon, 2016b).

Colony and organismal physiology are both dynamic processes that
play out via regulatory interactions involving neural and molecular
mechanisms and various tissue types (Fig. 1). In organismal physiology,
regulatory processes that are distributed among tissues coordinate be-
havior with cellular metabolism. For example in Drosophila neural and
hormonal signals in the brain are in feedback with hormone signaling in
gut and fat cells, leading to co-regulation of foraging behavior with fat
cell metabolism (Liu and Jin, 2017; Musselman and Kühnlein, 2018). In
the eusocial colonies, the coordination of foraging behavior with fat
metabolism is also regulated by multi-tissue feedback loops. In the
eusocial colony, larvae brain-fat-gut neurohormonal feedback loops are
tightly linked to brain-fat-gut feedback loops in adult nestmates
(Linksvayer, 2015; Johnson and Linksvayer, 2010). Multi-tissue phy-
siological processes, whether in multicellular organisms or colonial

Fig. 1. Organismal and eusocial colony physiology. Organisms regulate their body physiology via neural and molecular mechanisms. In eusocial insect colonies,
physiological mechanisms include these neural and molecular types, as well as the physical interactions among colony members. The regulation of nestmate and
colony traits arises from interactions within and across castes, task groups, and developmental stages.
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superorganisms, are mediated by diffusible signaling molecules. In or-
ganismal physiology, internal fluids carry diffusible factors. These
fluids include hemolymph (insects), as well as blood, lymph, and other
fluids (mammals). In the eusocial insect colony, there is sharing of
diffusible signaling molecules through the air (volatile compounds),
through liquid solvents (through trophallaxis), as well as via the solid
phase (deposition of long-lasting pheromone compounds on the ground
allowing stigmergy). In sum, the hormonal and neurobiological me-
chanisms involved in the regulation of foraging in eusocial insects share
many functional and genomic similarities with analogous systems in
solitary insects (Friedman and Gordon, 2016; Kamhi et al., 2017; Nässel
and Zandawala, 2019). The key difference is that the senders and the
receivers of the information are in different metazoan bodies in the
eusocial colony, as opposed to interactions among different tissues in a
single metazoan body.

3. Anatomical and physiological innovations of superorganisms

In insects, physiological processes generally occur within single cells
via signaling molecules (Tsuruyama, 2018), within multicellular orga-
nismal bodies via endocrine signaling (Rose and Mian, 2015; Stark and
Theodoridis, 1973), and among insect bodies via exocrine signaling
(Leonhardt et al., 2016; Stökl and Steiger, 2017). To facilitate social
physiology (colony-level coordination of action) social insects have
evolved radically new functions for conserved tissues and also novel
tissues. For example, ant workers have more than 75 distinct exocrine
glands, secreting hundreds of diverse molecular compounds (Hölldobler
and Wilson, 2009; Billen, 1991; Hölldobler et al., 2014; Cerdá et al.,
2014; d'Ettorre, 2016). Other eusocial insects show similarly complex
exocrine systems, for example honey bees use hundreds of exocrine
compounds; the physiological mechanisms and colony-level implica-
tions have been investigated for a small subset of these molecules
(Bortolotti and Costa, 2014; Alaux et al., 2010).

The exocrine secretory mechanisms of insect colonies have become
embedded within colony-level distributed physiological processes,
meaning they are playing a fundamentally endocrine (internal reg-
ulatory) role within the colony. Whether one considers colony pher-
omones as exocrine compounds (from the perspective of the insect body
glandular structure) or as colony-level endocrine compounds (from the
perspective of the colony as an organism), there are key similarities
between the influence of pheromones on colony members and hor-
mones on organs. Both colony pheromones and organismal hormones
result in large-scale behavioral changes via tissue-specific physiological
manipulation, often acting in feedback loops, or at very low doses or
slow time-scales (Stökl and Steiger, 2017; Khoury et al., 2013;
Invernizzi and Ruxton, 2019). Reproductive signaling between the
queen and workers are an obvious example of this, as is signaling from
the brood to the foragers. In honey bees, for example, larvae secrete
brood pheromones that stimulate foraging behavior and influence for-
ager brain gene expression (Pankiw et al., 1998; Traynor et al., 2015;
Ma et al., 2019). Essentially, foragers do not forage when they are
hungry (mediated by conserved regulators of hunger signaling in soli-
tary insects (Friedman and Gordon, 2016; Kaun and Sokolowski, 2009;
Favreau et al., 2018)), but as a result of stimuli from other nestmates
(Razin et al., 2013; Silberman et al., 2016; Davidson et al., 2016;
Feinerman and Korman, 2017). The neurophysiological basis of reward,
decision-making, and foraging are at least largely conserved across both
eusocial and solitary insects (Friedman and Gordon, 2016; Perry and
Barron, 2013; Søvik et al., 2015; Anreiter and Sokolowski, 2019),
highlighting that evolutionary shifts in the relevance of different in-
ternal and external stimuli (e.g. internal hunger cues vs. brood signals)
can lead to drastic changes in how the behavior (nursing or foraging) is
deployed.

Colony traits, such as the elaborate foraging biology mediated by
the dance language system in honey bees (Bortolotti and Costa, 2014;
Perry et al., 2015; Lemanski et al., 2019) or the fungal agricultural

practices of leaf cutting ants (Schultz and Brady, 2008; Aylward et al.,
2012), are based on extensive signaling among nestmates. While many
researchers have emphasized the importance of conflict within eusocial
societies (Cooper and West, 2018; Birch and Okasha, 2015; Okasha,
2016; Quiñones et al., 2020; Almond et al., 2019), we suggest that these
colony-level signaling mechanisms that underlie social physiological
processes are largely honest in nature and have evolved mainly through
colony-level selection. This is in contrast signaling mechanisms in
simpler animal societies and solitary organisms, where conflict and
deceptive signaling may predominate, as a result of individual-level
selection. We suggest that the evolutionary elaboration of eusociality is
an evolutionary trajectory that allows for runaway collaborative sig-
naling rather than largely-adversarial tit-for-tat signaling games
(Hölldobler and Wilson, 2009; Leonhardt et al., 2016; Holman, 2012).
Even in the most conflict prone contexts, such as egg laying (where
there is strong potential for conflict, i.e. within-colony selection, in
some species between multiple queens or between queens and
workers), socially complex societies likely practice largely honest
communication, because dishonest communication is likely very costly
at the colony level. Honest signaling of fertility is found in honey bees
and several ant species (Oi et al., 2015; Villalta et al., 2018). In Lasius
niger and other eusocial insect species, the queen(s) signals her fertility
honestly even when that fertility is substandard and leads to her ex-
ecution (Holman, 2012; Holman et al., 2013)(however in other ants and
bees, see (Katzav-Gozansky et al., 2001; Liebig et al., 1999; Ratnieks
and Visscher, 1989)).

4. Social physiology: hormonal mechanisms and evolutionary
consequences

Exemplifying the distributed nature of colony physiology, some
hormonal processes that are mediated internally in other insects may
fall under the control of another task group within obligately eusocial
colonies. While the basic players of the physiological processes may
remain the same, there may be a spatial reorganization of signaling so
that regulation is enacted across multiple insect bodies. For example,
foraging behavior and fat metabolism are linked through integrated
neurohormonal mechanisms in Drosophila (Kaun and Sokolowski,
2009), such that flies forage when hungry and stop feeding when full.
Eusocial insect colonies must also balance foraging behavior with fat
metabolism and food reserves, with an additional challenge: the fora-
ging behavior is performed by an entirely disjoint set of nestmates
(foragers) from those engaged in fat metabolism (larvae). These beha-
viorally- and physiologically-specialized components of the colony en-
gage in cross-regulation using behavioral interactions (Davidson et al.,
2016; Wainselboim et al., 2002; Rivera et al., 2015) and molecular
signaling (Ma et al., 2019; Perry et al., 2015). The exact mechanics of
the physiological distribution in the eusocial insect colony will depend
on species-specific colony structure and life history. For example,
stingless bees seal larvae into cells with provisions, while ants and
honey bees feed brood continuously through the larval instars. These
differences among eusocial taxa in the modes of nutrient processing
should be associated with major adaptive shifts in larval and adult
metabolism.

In social insects, there can be a fundamental rewiring and turnover
of the physiological processes that were present in their solitary an-
cestors. The evolution of eusociality is often directly compared to other
major lineage-specific transitions in evolution (e.g. prokaryote → eu-
karyote, unicellular life→ multicellular life (Wilson and Hölldobler,
1988; Szathmáry and Smith, 1995; Szathmáry, 2015)). Insect species
that are eusocial reflect the outcome of basic insect physiology (e.g.
ancestral body plan, conserved gene families) overlaid with novel su-
perorganismal regulatory mechanisms (social anatomy and phy-
siology). Simply by joining together into a social group, additional
possible regulatory mechanisms can be enacted by non-eusocial insects
at the group level (Ramdya et al., 2015; Ramdya et al., 2017), such
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mechanisms become refined and elaborated in the eusocial insects
(Linksvayer, 2015; Leonhardt et al., 2016; Friedman and Gordon, 2016;
Feinerman and Korman, 2017; Marshall et al., 2009). Here we consider
several ways in which gene regulatory networks have been shaped
during the transition toward eusociality, and during subsequent
lineage-specific evolution of colony traits.

Several studies suggest that there is increased complexity of
genomic regulatory mechanisms in eusocial insects (e.g., increased
number of transcription factors or CREs (Yan et al., 2014; Simola et al.,
2013; Shields et al., 2018)), as well as lineage-specific gains and losses
of major families of transposable elements (Wissler et al., 2013;
Rubenstein et al., 2019; Petersen et al., 2019). Over evolutionary time,
genes and signaling molecules can be gained or lost from regulatory
networks. Gene regulatory networks can evolve via the addition of
signaling hubs from other ancestral signaling networks through new
connections (more common as per EvoDevo model (Wagner and Zhang,
2011)), resulting in novel phenotypes (Eksi et al., 2018). Alternatively,
gene regulatory networks can grow in social insect genomes by in-
tegrating novel (taxonomically-restricted) genes, facilitated by the fact
that younger genes are apparently under less transcriptional co-
ordination at the level of organs (Jasper et al., 2015; Johnson and
Jasper, 2016) and nestmate caste distinctions (Mikheyev and
Linksvayer, 2015; Warner et al., 2019a). It appears that gene regulatory
networks evolve through both changes in the regulation of conserved
loci and incorporation of new players: novel loci are more likely to be
incorporated into distal parts of gene regulatory networks and be ex-
pressed in novel or secretory tissues, while conserved loci are more
likely to undergo changes to transcriptional regulation in conserved
tissues (Jasper et al., 2015; Feyertag et al., 2017).

The function of conserved members of physiological regulatory
processes can be influenced by sequence changes, new regulatory
connections, or other contextual changes. For example, the cGMP-de-
pendent protein kinase G enzyme (known as foraging in Drosophila) is
well-studied in the context of foraging and metabolic regulation across
vertebrate and invertebrate taxa (Struk et al., 2019; Wang and
Sokolowski, 2017; Anreiter et al., 2017). While the homology of the
PKG locus is indeed deeply conserved, the action of PKG is cell-type
specific and also probably depends on the identity of downstream
phosphorylation targets. Hence there is not a consistent role or direc-
tion of effect for PKG even across just Hymenoptera (Wenseleers et al.,
2008; Heylen et al., 2008; Lucas and Sokolowski, 2009; Ingram et al.,
2011; Ingram et al., 2016; Malé et al., 2017). Thus while PKG may play
a role in foraging-related physiological networks of diverse insects,
there are species-specific changes to the inputs & outputs of PKG such
that the function of over- or under-expression of PKG cannot be reliably
predicted, even locally. Similar claims could be made for conserved
gene families such as pigmentation/neurotransmitter-related genes that
play roles in regulating worker behavior (Kamhi et al., 2017; Signor
et al., 2016), and conserved neuropeptides that have gained task-spe-
cific functions (Gospocic et al., 2017; Chandra et al., 2018). Recent
evidence suggests that genetic pathways involved in generating sexu-
ally dimorphic morphology and behavior in solitary insects (e.g. dsx/
fru/tra (Verhulst and van de Zande, 2015; Millington and Rideout,
2018; Rice et al., 2019)), are involved in the caste differentiation in
eusocial insects (Marshall et al., 2009; Trible and Kronauer, 2017;
McAfee et al., 2019). This suggests that the gene regulatory networks
that orchestrate variation among the physical castes in the eusocial
insect colony may be as extensive as those underlying sexual di-
morphism in solitary insects, potentially even reusing many of the same
molecular components (Warner et al., 2019a; Sato and Yamamoto,
2019).

5. Tinkering with the toolkit may not be enough

The Reproductive Groundplan Hypothesis (Johnson and Linksvayer,
2010; Chandra et al., 2018; Pamminger and Hughes, 2017) (& other

Toolkit-like hypotheses (Toth and Rehan, 2017)) posits that the plastic
reproductive physiology underlying life history transitions in the soli-
tary ancestors of social insects (e.g., between foraging and reproductive
stages) is also used in social insect lineages to produce distinct worker-
and queen- physiological states from the same genome (Friedman and
Gordon, 2016; Favreau et al., 2018; Reinberg, 2017). This is a simple
and potentially very powerful mechanism that allows for the evolution
of colony phenotypes (i.e. social anatomy) without the complex
genomic rewriting we emphasize in the present paper. We thus briefly
explain why we think this idea is certainly true to some degree, but
insufficient as a general and complete explanation for the evolution of
increasingly complex social behavior leading to superorganisms
(Johnson and Linksvayer, 2010; Warner et al., 2019a; Linksvayer and
Johnson, 2019).

Simple modifications to the plastic state previously associated with
reproductive life cycles may still be observed in queen-worker differ-
ences observed in some species considered to be “facultatively social”.
However, in obligately eusocial insects, particularly the so-called “ad-
vanced” social insects, millions of years of evolution have shaped
colony function such that tissue- and caste-specific specialization no
longer exists within the bounds of any plausible ancestral phenotypic
plasticity. In extant eusocial taxa, we observe behavioral and physio-
logical extremes that are far beyond the range of any solitary species
(e.g. 30+ year queen life in Pogonomyrmex, agriculture & discrete
morphological castes of Atta, developmental scaling of Pheidole,
workers without ovaries in Monomorium and Brachyponera (Gotoh and
Ito, 2008), etc.). These extreme states are facilitated by strong altera-
tions to the hormonal pathways involved in generating these pheno-
types relative to the pre-eusocial ancestor or contemporary solitary
insects, as well as the usage of conserved and novel social physiological
processes used in novel contexts (Amdam and Page, 2005; Dolezal
et al., 2012; LeBoeuf et al., 2018; Rodrigues and Flatt, 2016; Negroni
et al., 2019). That is, while many conserved molecular mechanisms
involved in basic insect reproductive physiology are certainly involved
in generating both variation in reproductive and non-reproductive
stages in the life cycle of solitary insects as well as variation in social
insect reproductive physiology between queens and workers, the evo-
lution of queen-worker dimorphism, and more broadly the evolution of
colony-level social anatomy and social physiology truly involve phe-
notypic innovation, and not only simple modification of the expression
of highly conserved insect “groundplans” or “toolkits” (Johnson and
Linksvayer, 2010; Warner et al., 2019a).

6. Case studies in colony physiology: ancestral traits under colony
control, and novel colony traits

There are broadly two kinds of phenotypes (measurable traits or
characteristics) of eusocial insects. First there are phenotypes that can
be measured from a single nestmate body, such as head width or
ovariole number. Second, there are traits that are the outcomes of
collective behavior and cannot be measured in single nestmates, for
example, nest architecture or rate of brood production. Traits of the
first kind, which manifest as variation in nestmate morphology or gene
expression, bear direct homology to traits of solitary insects (Lemanski
et al., 2019; Jandt et al., 2014). However, in eusocial insects, these
bodily traits have fallen under extensive control of other nestmates via
social physiology, so that even though these traits can be measured on a
single nestmate, the traits are influenced by the physiological state of
the colony during development, and properties of other group members
as well (Linksvayer, 2015; Johnson and Linksvayer, 2010; Linksvayer,
2006; Linksvayer and Wade, 2016). The second kind of traits are not
simply modifications of insect body physiology, as they reflect colony-
specific traits that arise only in the context of group living, such as
brood ratio or degree of reproductive skew. Additional examples of
colony-level traits include variation in social immunity, royal jelly
production, behavior, or nest architecture. These truly collective traits
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arise from the interaction of nestmates and the environment, and un-
surprisingly the mechanisms that regulate these colony traits are likely
largely unconnected or functionally absent in solitary insects.

7. Colony-level physiological regulation of worker and queen
traits

Here we cover several case studies that reflect the broad range of
physiological elaborations we see in eusocial insects, highlighting ex-
amples where physiological and functional genomic studies have elu-
cidated mechanistic details about colony traits. Regulation of female
fertility and reproduction is the crux of the eusocial colony lifestyle.
Within a eusocial insect colony, the reproductive skew between queens
(who can lay thousands of eggs in some species) and workers (who
usually do not lay eggs, and may lack ovaries entirely) can be extreme.
These differences in fertility are linked to morphological, hormonal,
and transcriptomic differences in essentially every tissue of the body
(Warner et al., 2019a). Diverse social mechanisms regulate the devel-
opment and maintenance of these differences, including short-range
molecular signaling (Trawinski and Fahrbach, 2018), control of nutri-
tional intake (Vaiserman, 2014), and multiple modes of physical in-
teraction such as piping in honey bees and drumming in paper wasps
(Jeanne and Suryanarayanan, 2011; Schlegel et al., 2012; Tibbetts
et al., 2018). In various ant and bee species, secretions passed among
workers and queens can influence the fertility of all engaged actors, and
thus influence colony productivity overall. In pharaoh ants and fire
ants, queen fecundity is strongly affected by the presence of larvae, as
well as the secretions made by larvae of specific stages (Tschinkel,
1995; Warner et al., 2016). Honey bee queens are stimulated to produce
more eggs by being exposed to brood pheromone (Sagili and Pankiw,
2009), a positive feedback cycle within the colony where egg-laying
stimulates more egg-laying. Another primary regulator of fertility in
honey bees is queen mandibular pheromone (QMP). QMP is produced
by active queens and has the effect of suppressing fertility and inducing
other physiological changes in nearby workers, thus it is a negative
feedback signal. The genes with expression responsive to queen pher-
omones are partially conserved among Lasius ants and Apis and Bombus
bees despite vast evolutionary and ecological differences among these
species (Holman et al., 2019). Interestingly, pharmacological treatment
of Drosophila fruit flies with honey bee QMP seems to exert a similar
phenotypic effect as in bees (e.g. repression of fertility in females), and
also triggers behavioral changes in males (Croft et al., 2017). This is
consistent with the notion that distribution of colony physiological may
arise through the reuse of pheromonal mechanisms that are present in
solitary insects, acting through novel use of inputs and outputs that
have conserved for long evolutionary periods. A general caveat of
pharmacological or genetic loss/gain-of-function experiments is that
drastic changes to a hormone signaling axis may induce organismal or
colony outcomes that do not reflect the natural physiological role of the
hormone.

8. Hypotheses for social physiology

Here we present hypotheses regarding the evolutionary and func-
tional genomics of behavior in eusocial insects. These hypotheses set a
course for the integrated understanding of colony function as arising
from nestmate specialization and coordination processes that have been
shaped by colony-level selection. We stress that all hypotheses should
be evaluated empirically using rigorous phylogenetic comparative
methodology to disentangle the relative importance of genomic, eco-
logical, and behavioral constraints, while explicitly accounting for
evolutionary history (Kamhi et al., 2017; Blanchard and Moreau, 2017;
Nelsen et al., 2018; Field and Toyoizumi, 2020).

9. Hypotheses for glands

We hypothesize that the distributed nature of the colony-level
physiology of eusocial insect species means that the cumulative number
of exocrine glands in all classes of nestmates in eusocial species will be
larger when compared to solitary insects, and also that social insect
glands will have more complex or voluminous glandular secretions. The
increased repertoire of exocrine glands and complexity of exocrine
glandular secretions likely evolves via duplication and neofunctionali-
zation or subfunctionalization of conserved glands and underlying
genes. Further, there may be patterns within eusocial taxa such that
species with higher social complexity may have more specialized
glandular structure present across nestmates. From an evolutionary
signaling theory perspective, once a nestmate exocrine gland has be-
come fully co-opted into colony-level regulatory networks, its dynamics
and constraints will approximate that of organismal endocrine glands.
Thus we hypothesize that molecular stimuli shared among nestmates
have been selected for high-fidelity and rapid coordination of colony
physiology to changing demands. We hypothesize that eusociality
provides a new context for honest signaling systems to become elabo-
rated such that the nature of the molecular signaling among nestmates
can be more complex than social cues in non-eusocial species
(Leonhardt et al., 2016). We hypothesize that the transfer of direct
mediators of insect physiology among nestmates (microRNAs or chro-
matin remodelers in Apis royal jelly (Kurth et al., 2019), hormones in
nurse feeding fluid (LeBoeuf et al., 2016)) will not induce antagonistic
responses observed in solitary insects (such as sex conflict in Drosophila
(Miller and Pitnick, 2002)), even when some of the same molecules may
be used. We also hypothesize that recent findings in some eusocial
species, such as carpenter ants, showing direct transfer of hormones via
trophallaxis, will be found to be commonplace in eusocial clades
(LeBoeuf et al., 2016; LeBoeuf et al., 2018).

10. Hypotheses for signaling pathways

We hypothesize that elaboration and partitioning of ancestral sig-
nals will occur such that receptors, signaling pathways, and metabolic
pathways that were expressed over the course of the lifespan of the
solitary ancestor, will be expressed synchronously, but distinctly by
various castes, in the eusocial colony. The exocrine glands and che-
mosensory organs, (McKenzie et al., 2014; Hojo et al., 2015) in parti-
cular, can be expected to have strongly partitioned expression among
castes and tasks (McKenzie et al., 2014; Hojo et al., 2015). One chal-
lenge for transcriptomic and epigenomic studies of brain function is
that the brain undergoes many types of physiological changes for which
gene expression changes are delayed, complex, or absent (e.g. topolo-
gical changes in neural circuits, protein modification at synapses, time
lags between neural transcription and translation). This can be con-
trasted with exocrine glands, for which the transcriptome can be ex-
pected to more closely approximate the instantaneous secretory func-
tion of the tissue due to rapid transcriptomic turnover (Jasper et al.,
2015; Feyertag et al., 2017). We expect that neurotranscriptomic ap-
proaches involving single-cell profiling of eusocial insect brain tissue
along with live-imaging and reverse genetic approaches will be re-
quired to reach nuanced understanding about the neurophysiology of
nestmate behavior (Yan et al., 2014; Kohno and Kubo, 2019). Notably,
collective behavior and other colony-level processes arise through in-
teractions among nestmates, so that a second layer of organization
above neurobiological mechanisms is fundamentally involved, though
research on non-eusocial insects is still relevant (Gordon, 2016b;
Feinerman and Korman, 2017; Dornhaus and Franks, 2008). Consistent
with this decentralization of cognition across multiple nestmate bodies,
colonies with increased size and specialization may have workers with
proportionally smaller brains; however the strength of this trend is
unclear (Gronenberg, 2008; Godfrey and Gronenberg, 2019). Another
implication of increased physiological specialization in colonies is that
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genes with task- and tissue-specific expression patterns may be asso-
ciated with non-linear changes in colony collective behavior, for ex-
ample by altering worker response thresholds or sensitivity to interac-
tions or ambient conditions (Muscedere et al., 2012; Friedman et al.,
2018; Wu et al., 2019).

11. Hypotheses for functional genomics and gene regulatory
networks

Gene regulatory networks of organismal colonies may be more
complex than those controlling solitary insect physiology and behavior
(Linksvayer, 2015; Johnson and Linksvayer, 2010; Warner et al.,
2019b). Here we mean that eusocial regulatory networks are more
complex in the sense that they allow for a broader range of functional
connections among genes (through interactions among nestmates), in-
creased spatial partitioning of expression (e.g. novel sex-, caste-, and
tissue-specific expression patterns), and novel expression patterns
through developmental time (e.g. age polyethism). Additionally, these
eusocial regulatory networks can be considered more complex in that
they allow the colony to exhibit emergent behaviors that are more
developed or more efficient in large colonies as compared to smaller
colonies or solitary insects. Several functional genomic studies have
supported the hypothesis that eusocial species have increased reg-
ulatory complexity, reflected by unique patterns of transcription fac-
tors, cis-regulatory elements, and epigenetic regulatory mechanisms
(Ma et al., 2019; Simola et al., 2013; Johnson and Jasper, 2016). This
increased regulatory complexity of eusocial species may reflect the fact
that a single genome sequence can give rise to divergent nestmate
phenotypes via epigenetic plasticity. Coexpression network approaches
to analyzing gene expression data have been used in many functional
genomic studies of eusocial insects, in addition to the use of traditional
differential expression statistics (Mikheyev and Linksvayer, 2015;
Friedman et al., 2018; Morandin et al., 2019). Coexpression networks
consist of genes that are co-regulated across tissues, nestmates, or co-
lonies, thus potentially capturing sets of loci that are functionally linked
over developmental (Walsh et al., 2018; Mikheyev and Linksvayer,
2015) and evolutionary timescales (Morandin et al., 2017; Qiu et al.,
2018). Further research could explore how various mechanisms such as
noncoding DNA (Simola et al., 2013; Rubin et al., 2019), small RNAs
(Yan et al., 2014; Glastad et al., 2019), gene family evolution (Fontana
et al., 2020; Brand et al., 2020), and mobile element activity (Koonin,
2016; Sanllorente et al., 2020) might contribute to these patterns. Key
questions about the evolution of gene expression networks in the eu-
social insects also include how ecological factors interact with ancestral
gene regulatory network constraints in order to facilitate the transition
to eusociality (Rubenstein et al., 2019; Linksvayer and Johnson, 2019;
West-Eberhard et al., 2003), and in which ways these transitions toward
eusociality are unique versus universal (Linksvayer and Johnson, 2019;
Arsenault et al., 2019; Wright et al., 2019).

Eusocial insect regulatory networks can integrate new players over
evolutionary time, especially in novel tissues and in positions periph-
eral to gene regulatory networks (Jasper et al., 2015). These new
players in gene regulatory networks can arise via duplication followed
by neo-functionalization, or via origination of novel coding sequences
from non-coding sequences. In either case, these taxonomically-re-
stricted genes could play a crucial role in establishing and cementing
patterns of nestmate variation in physiology and behavior, for example,
by allowing task-specific evolution of coding sequences in a task-biased
paralog pair, as seen in the case of insulin (Chandra et al., 2018) and
vitellogenin (Kohlmeier et al., 2018) signaling pathways. In mammals,
it has been proposed that brain pathways can arise via duplication and
subspecialization, and thus elaborate over evolutionary time analo-
gously to gene duplication (Chakraborty and Jarvis, 2015). It would be
interesting to consider whether exocrine glands in social insects may
also undergo duplication and neofunctionalization or sub-
functionalization over evolutionary time, potentially facilitated by

expansions in families of transcription factors and enzymes involved in
the production of gland secretions.

We hypothesize that novel gene regulatory networks will be formed
from this decoupling of otherwise conserved pathways and traits. This
is because the colony context allows for regulatory links to arise among
nestmates in different developmental stages (e.g. signaling between
larvae to adults (Warner et al., 2019b)), as well as utilizing physiolo-
gical regulatory connections involving tactile and vibratory mechan-
isms (Razin et al., 2013; Hager et al., 2017). This means that there is the
potential for diversified types of signaling and response in the eusocial
insect colony, as well as elaboration of the molecular mechanisms un-
derlying the response to stimuli. Functional genomic approaches that
simultaneously consider multiple interacting nestmates, e.g., based on
sequencing a time series of interacting nurse workers and larvae
(Warner et al., 2019b), can begin to disentangle the molecular me-
chanisms of social signaling and the downstream physiological and
developmental response. Exocrine gland and endocrine glands that are
linked within the same physiological pathway in a colony (e.g. reg-
ulating foraging or reproduction) are unlikely to be functional in the
same network in solitary insects, and this should be explicitly con-
sidered when performing pathway analysis or using other functional
genomic approaches. Further, work on signaling pathways related to JH
and Vitellogenin show that even the most fundamentally important
conserved genes have different expression patterns in eusocial insects as
compared to solitary insects, as well as expression variation between
related eusocial species and among nestmates (LeBoeuf et al., 2018;
Rodrigues and Flatt, 2016; Mello et al., 2019; Trumbo, 2018; Trumbo,
2019). The convention has been to act as if use of an ortholog con-
stitutes conservation, but already for key cases such as PKG we know
the same locus can be associated with a trait (e.g. “playing a conserved
role”) yet still have unpredictable patterns of expression or functional
roles.

Holistic (i.e. colony-level) consideration of these issues is necessary
to understand how selection acts to shape gene regulatory networks
that play out across multiple insect bodies (Linksvayer, 2015). For ex-
ample, a recent study in honey bees found that decades of artificial
selection for increased royal jelly production was accommodated by
changes in the expression of chemoreceptor proteins in nurse antenna
(Wu et al., 2019). This can be understood from the perspective that
nurse antennae are one of the multiple tissues that are involved in the
emergent regulation of colony reproductive investment and royal jelly
production. In other words, colonies may respond to evolutionary and
ecological challenges in a non-linear fashion, via shaping the expression
of genes that influence tissue-specific physiology of sensory organs and
central processing in the brain (Lemanski et al., 2019; Kocher et al.,
2018).

12. Future directions & questions

There are many opportunities for functional genomics to use eu-
social insects as model systems to address general questions about
hormones, development, and behavior. First, the epigenetic plasticity of
eusocial workers situates them as tractable models to disentangle ge-
netic and environmental influences on behavior (Yan et al., 2014;
Chittka et al., 2012). The ecological diversity of the eusocial insects
provides broad possible scope for understanding how colonies solve
niche-specific challenges, particularly since many species can be kept in
the laboratory so that genetic and environmental factors can be con-
trolled. Second, new techniques can be integrated in eusocial insect
taxa to bring about multidisciplinary synthesis. Recent and ongoing
studies are combining natural history, automated behavioral analysis,
DNA/RNA-sequencing, transgenic techniques, and pharmacological
manipulations (Friedman and Gordon, 2016; Favreau et al., 2018;
Kohno and Kubo, 2019; Arsenault et al., 2019; Friedman et al., 2017).

A key question is: How dramatic are the molecular changes neces-
sary for the major transitions to eusocial colonial living from a solitary
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or social state? How are the initial steps toward eusocial colony living
similar or different to later stages involving the expansion of colony size
and elaboration of queen-worker dimorphism? Several previous authors
have stressed that few molecular changes may be necessary for the
initial transitions from solitary insects to small eusocial colonies
(Michener, 1969; Linksvayer and Wade, 2005). We emphasize that in
lineages with large and complex eusocial colonies, extreme molecular
changes have likely occurred that obscure the traces of initial molecular
inroads toward colony living (Warner et al., 2019a; Woodard et al.,
2011). Thus, it is important to consider to what extent the multiple
independent origins of eusociality converged on similar mechanisms
versus how often they arrived at taxa-specific patterns (Linksvayer and
Johnson, 2019).

New tools allow us to do many things in non-model systems that
previously could only be done in model systems, and systems like
Drosophila have proven helpful in broad strokes for elucidating insect
physiological processes. However, millions of years of selection for
colony function in eusocial insects means that even for conserved or-
thologs (e.g. PKG, biogenic amine receptors), gene functions may differ.
This is a significant issue for Gene Ontology (GO) based analysis of
functional genomic experiments in eusocial insects, as most GO terms in
these species are directly transferred from Drosophila. Any analysis of
eusocial insects that is templated off of a (distantly related) solitary
insect species will systematically ignore the role of taxonomically re-
stricted genes (Warner et al., 2019a), overstate the role of orthologous
genes, and be unable to consider the implications of decentralized
colony physiological processes. The challenges of colony living in eu-
social insects have been accommodated through multiple types of
genomic and epigenomic changes, and research should highlight these
taxa-specific adaptations, not average over them. If the goal is to gain
unbiased insight into the genetic changes that are most biologically
important – as opposed to exploring just those genetic changes that
involve highly conserved genes with more-or-less well-characterized
functions in solitary organisms – then alternate approaches may be
required. For example, analyzing genes that seem biologically im-
portant in eusocial insects, independent of whether they are found in
other insect lineages.

Promising experimental approaches in the social insects could use
RNA-Seq, proteomics, and metabolomics on the same tissue-specific
samples across the classes of nestmates (e.g., developing larvae, adult
nurses (Warner et al., 2019b)) involved in colony physiological pro-
cesses. It is especially interesting to combine these functional genomic
analyses with computational methods such as the automated tracking of
behavior from video data (Davidson et al., 2016; Arsenault et al., 2019;
Walsh et al., 2019). For example worker-level tracking can assess how
worker heterogeneity leads to colony foraging performance (Beverly
et al., 2009; Campos et al., 2016), or how trophallaxis networks provide
robustness to variability in colony resource intake (Bles et al., 2018).
Specifically, these types of studies in eusocial insect species could
connect multilevel-network perspectives on animal behavior
(Pasquaretta and Jeanson, 2018; Finn et al., 2019) with the molecular
mechanisms of behavioral epigenetics and neurophysiology (Friedman
and Gordon, 2016; Lemanski et al., 2019; Reinberg, 2017), in the
context of a group of species with diverse ecologies and rich natural
history.
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