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Materials and Methods 23 

Bumble bee observations, observed distribution, and species richness 24 

We used a dataset comprising 557,622 observations of 66 bumble bee (Bombus) species from 25 

1901-2015, from across North America and Europe. The dataset has been previously used in (1), 26 

and contains data assembled from a variety of sources including (22–25), and other sources 27 

acknowledged in the Supplementary Acknowledgements. To produce this database from the 28 

assembled set of records, potentially unreliable records (including incomplete species, locality, 29 

and sampling year information, or disagreement between record georeferencing and stated 30 

country of origin) were flagged and removed. We assumed that records in the ocean less than 31 

2500m from a high-resolution coastline were coastal observations with spatially-imprecise 32 

georeferences and reassigned these to the nearest point on land. Approximately 6% of the 33 

records obtained from GBIF lacked latitude-longitude coordinates for collection localities. For 34 

these records, we obtained georeferencing data from a digital gazetteer, GeoNames 35 

(http://geonames.org; Creative Commons Attribution 3.0 License). Among these records, we 36 

retained those located near populated places for which reliable geographic coordinates were 37 

available. 38 

Of the 119 species present in the originally assembled data within our study area, we retained 39 

66, which had at least 100 spatially unique records in the baseline period (1901-1974; 40 

inclusively) and at least 30 in the recent period (2000-2014; inclusively). These 66 species 41 

appeared well sampled across their ranges, including at range margins. The dataset included 42 

264,494 observations of 36 North American species and 293,128 observations of 36 European species, 43 

spread across 116,254 unique location-years (i.e. spatiotemporally unique observations; Figure S1). The 44 

mean and median species-period sample size was 1887 and 848 unique location-year observations, 45 
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respectively (Table S1). While the baseline period was longer, there were comparable numbers of unique 46 

location-year observations in each period (54,446 in the baseline and 61,809 in the recent). We 47 

examined the georeferencing for every observation and removed all instances of bee 48 

observations that could not be reconciled with lists of countries they inhabit and comparison with 49 

range maps from IUCN Red List reports (http://www.iucnredlist.org/; accessed Nov 16, 2017). We 50 

merged observations of Bombus moderatus with B. cryptarum, per IUCN Red List documentation and 51 

(24), which considers these species to be synonymous. All records included georeferencing and date 52 

information. Duplicate collection records of a species for a given location-year were removed to reflect 53 

species occurrence rather than sampling or population density.  54 

We mapped presence and absence for each species within 100km by 100km equal-area quadrats across 55 

the study area in the baseline and recent periods. We inferred absence when there was no observation 56 

of the focal species in the cell in a period but at least one other species recorded. We tested the 57 

robustness of our results to this definition of absence by repeating all analyses after defining absence as 58 

no observation of the focal species but at least i) three and ii) five other species. For each species, we 59 

estimated the observed distribution as the number of cells in the study area where each species was 60 

present, and we compared recent and baseline maps of observed distribution to determine extirpation and 61 

colonization. We determined mean rates of extirpation or colonization for a species as the proportion of 62 

regional extinction or colonization events relative to the total number of cells a species occupied in the 63 

baseline. We measured the change in observed distribution for each species. In baseline and recent 64 

periods, respectively, species occupied ranges of 17 to 561 and 12 to 338 cells (mean = 195.3 and 117.2), 65 

respectively. We measured observed distribution uniquely by continent for species that are present in both 66 

Europe and North America and did not calculate North American observed distributional change for one 67 

species which was only recorded there in the current period (B. distinguendus). Differences in sampling 68 

effort between periods of different lengths can bias detection of presence and subsequent estimates of 69 

change and occupancy, so we accounted for sampling effort in all our subsequent analyses. While the 70 

http://www.iucnredlist.org/
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baseline period was substantially longer, the recent period had 49% more records, and 13% more unique 71 

location-year-species observations (Figure S2, Table S1). Extirpation and colonization likelihoods 72 

showed significant negative relationships with sampling effort, while sampling effort was not 73 

significantly related to observed species richness change. This was not surprising as non-detection-74 

corrected richness analyses were restricted to a subset of well-sampled cells.  75 

We combined the presence maps of the 66 species to build a map of regional species richness for each 76 

period (Figure S10). Variation in sampling effort can bias the estimation of observed biodiversity trends 77 

(26, 27), so we excluded quadrats without a minimum of 50 unique location-year observations in the 78 

baseline and most recent period. This resulted in 40 North American and 124 European sites, within 79 

which we calculated the percent change in species richness from the baseline to the most recent period. 80 

While the strict selection protocol limits the number of quadrats in our species richness analysis, a less 81 

strict selection (e.g. including quadrats without a minimum of 50 unique location-years observations) fails 82 

to account for sampling bias and removes our ability to attribute changes in richness to any climatic 83 

variables. All data were organized in R 3.4.1 (28) using packages tidyverse (29) and raster (30). 84 

The scale of analysis (100km by 100km) is relatively coarse compared to local ecological 85 

studies, but these quadrats are large enough to enable reasonable sampling intensity across North 86 

America and Europe in both periods without sacrificing relevance for conservation and policy 87 

planning. To test the effect of spatial scale on our results, we repeated analyses at a i) 50km by 50km 88 

scale and ii) 200km by 200km scale.  89 

Occupancy models 90 

To correct for imperfect detection in our dataset of bumble bee observations, we used single-species 91 

occupancy models to estimate occupancy for the 66 species in each period. These models account for the 92 

possibility of false-absences within detection/non-detection data by explicitly estimating detection 93 

probability (p) separately from probability of occurrence (31–35). Estimating detection probability for a 94 
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species during a period requires multiple “survey units” or “visits” to sites within that period. We split 95 

each of our time periods into three “survey units” (baseline: 1901-1924, 1925-1949, and 1950-1974; 96 

recent: 2000-2004, 2005-2009, and 2010-2014). We used observations of a species during a survey unit to 97 

inform detection, and marked absence of a species when others were seen as a non-detection. It is 98 

possible that there are biases in the species sampled within our dataset. Bumble bees are a charismatic 99 

insect species that have been collected by researchers and independent naturalists for hundreds of years, 100 

but, as with any taxon, it is possible that agriculturally important species (e.g. B. terrestris and B. 101 

impatiens), common species, and larger or more recognizable species have greater likelihoods of 102 

detection. We used total number of records to help inform species-specific detection probabilities in our 103 

occupancy models to account for sampling bias. Unfortunately, reliable inter- and intra-specific data on 104 

other traits that may influence detection probability, such as body size, are not available for all species to 105 

include in our models. A necessary assumption of occupancy modelling is that there is no change in 106 

occupancy (or species turnover) within a survey period or between survey units within the same period: 107 

the closure assumption (36). Estimates of site occupancy rely on this assumption to calculate a probability 108 

of detection from the pattern of detection/non-detections during a period (32). Aggregation of occurrence 109 

data into periods to estimate species’ presence or absence makes a similar assumption that 110 

presence/absence remains static within those periods. Violations of the closure assumption during 111 

occupancy modelling are likely to be frequent throughout the literature and within-period colonization or 112 

extinction tends to result in overestimates of occupancy probabilities (32, 36). Since this study focuses on 113 

relative change in occupancy probabilities instead of the absolute values themselves, potential violations 114 

of the closure assumption are not likely to alter our results or conclusions. Probability of occupancy for a 115 

species was only calculated across the continent(s) it is known to inhabit. Detection-corrected species 116 

richness, calculated as the summed probability of species occurrence in a region, was estimated across the 117 

study area for each period (this measure is similar to detection-corrected estimates of taxonomic diversity 118 

used in (37)). Using estimates of species-specific site occupancy and detection-corrected species richness 119 
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for each period, we calculated the percent change in these values between the baseline and recent periods. 120 

All data were organized and transformed in R v3.4.1 (28) using packages raster (30) and rgdal (38). 121 

Occupancy models were fit using the Bayesian general-purpose modelling software JAGS (39), with R 122 

v3.4.1 (28) and package R2jags (40). Each species- and season-specific model computed season- and site-123 

specific occupancy, using season-specific sampling effort (i.e. the total number of unique location-year 124 

observations of any species in a cell) as a covariate for the underlying detection process. We used 125 

noninformative Bayesian priors for all parameters and each model ran three Markov chains for 100k 126 

iterations, discarding the first 50k as a burn-in and thinning by 10, resulting in 5000 samples from the 127 

joint posterior distribution. We ran models until values of the Brooks-Gelman-Rubin statistic suggested 128 

convergence had been reached (<1.1) for all parameters (41). The JAGS code specifying our model, 129 

including the priors used, is available with the rest of the data and materials (21). 130 

Climatic position variables 131 

For each of the 66 bumble bee species, we extracted the average of the five highest monthly maximum 132 

and five lowest monthly minimum temperatures from among the values for all location and year 133 

combinations within the species’ geographic range in the baseline period (1901-1975). These maximum 134 

and minimum temperatures were assumed to represent the thermal limits for the species, and previous 135 

studies have found that this measure is robust to both variation in the number of records used to calculate 136 

it and variation in species sampling effort (1). Maximum and minimum precipitation limits were extracted 137 

from the five highest and five lowest monthly total precipitation values from among all location and year 138 

combinations within the species’ geographic range in the baseline period. Climatic limits were rescaled 139 

for each species to equal 0 for the lower climatic (i.e. cold/dry) limit and 1 for the upper climatic (i.e. 140 

warm/wet) limit. While these derived environmental limits may not represent the actual critical limits 141 

that a species can tolerate, they offer an indication of the species’ environmental tolerances and measuring 142 

the change in the environment relative to these derived limits enables tests of our main hypotheses.  143 



7 

For each species, in each cell of the study area in both periods, we rescaled the local maximum and 144 

minimum monthly temperatures and precipitations onto the same scale as the climatic limits. These 145 

rescaled values were averaged across months to estimate the thermal position index and precipitation 146 

position index: values of 1 indicate that temperatures or precipitation across the whole year equals the 147 

warm or wet tolerance limits, and values of 0 indicate that temperatures or precipitation across the year 148 

approach or meet the cold or dry tolerance limits for the species (values greater than 1 and less than 0 149 

are possible where climate change has caused temperatures or precipitation to exceed species’ 150 

upper thermal or precipitation limits or to fall below lower thermal or precipitation limits). The 151 

change in thermal and precipitation position was calculated by subtracting position in the baseline period 152 

from position in the recent.  153 

To calculate the community-averaged estimates of climatic position, we clipped each species’ thermal 154 

and precipitation position maps to their observed distribution in the baseline period, and then overlapped 155 

all the position maps, averaging all index values in a given cell. This shows the mean thermal or 156 

precipitation position for the entire estimated assemblage of species in that region (Figure S5). We did 157 

this for both periods, and then measured the change from the baseline to recent (Figure 1).  158 

In addition to these species-specific and community-averaged climatic position variables, we 159 

calculated average annual mean, maximum, and minimum temperature and mean annual precipitation 160 

across the study area. These annual climate variables are commonly used to attempt to predict climate 161 

change-related effects on biodiversity, and act as a reference model against which we compare predictions 162 

of the climate position indices we developed here. As with climatic position variables, we measured 163 

mean/max/min temperature and annual precipitation in each period and then measured the change from 164 

baseline to recent (Figure 1). 165 

Climate data were obtained from the Climate Research Unit (42) at a resolution of 0.5 X 0.5 degrees. 166 

After the calculation of the climatic position index, data were projected and resampled to Cylindrical 167 



8 

Equal Area projection at 100 km X 100km resolution to match the bumble bee data, using R 3.4.1 (28) 168 

and packages raster (30) and rgdal (38). 169 

Statistical analyses 170 

Change in local occupancy. We tested the relationship between climatic position and change in 171 

probability of local site occupancy by constructing a series of linear mixed models (LMM). Change in 172 

occupancy probability was the difference in occupancy probability between the baseline and recent 173 

periods and could range continuously from -100% to 100%, with negative values indicating a decrease in 174 

probability of occupancy and positive values indicating an increase in probability of occupancy. Models 175 

included the thermal position variables (baseline period, change since the baseline, and the interaction 176 

between these), the precipitation position variables (baseline period, change since the baseline, and the 177 

interaction between these), the interaction between baseline thermal position and precipitation position, 178 

and the interaction between change in thermal position and change in precipitation position.   179 

North America and Europe have substantially different histories of land use, human development, and 180 

population trends, and different approaches to species conservation, all of which may contribute to 181 

differences in rates of species and assemblage change. We included continent as a categorical variable to 182 

account for hypothesized differences in rates of change between North America and Europe (1). Species 183 

was included as a random effect in the model to account for differences in species’ responses to climate. 184 

We ran identical models with separate random intercepts for site and for species and noted qualitatively 185 

consistent results between these models and models without site. In cases where models did not clearly 186 

converge, we re-ran models using several different optimizers with >107 evaluations and found consistent 187 

results. We calculated conditional and marginal R2 using the method proposed by (43). 188 

Observed extirpation/colonization. We ran another series of models separately testing the relationship 189 

between local colonization and extinction, and climatic position variables. We used binomial generalized 190 

linear mixed models (GLMM), again including species as a random effect. The model structure was 191 
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identical to change in occupancy models (see previous section) although we included sampling effort, 192 

calculated as the total number of observations in each cell in a period (sampling effort was not included in 193 

change in occupancy models because it was already used to estimate occupancy). We calculated 194 

conditional and marginal R2 in the same way as in the change in occupancy models. Colonization and 195 

extinction models with site included as a separate random effect produced consistent results.  196 

Phylogenetic analyses. To account for phylogeny in our analyses, we repeated the occupancy, 197 

extinction, and colonization modelling using a phylogenetic generalized linear mixed model framework, 198 

with a comprehensive molecular and nuclear phylogeny (44). We programmed models using the 199 

MCMCglmm (45) and ape (46) packages in R, following the framework from (47). All models used 200 

uninformative univariate priors for random effects corresponding to an inverse-Gamma with shape and 201 

scale parameters equal to 0.01. Models were run with a minimum of 105k iterations with a thinning factor 202 

of 20 and while discarding the first 5k, resulting in a minimum of 5000 samples from the joint posterior 203 

distribution. Model parameters were visually assessed for convergence, and if all parameters did not 204 

appear to converge then were re-ran for more iterations and a longer burn-in. We estimated marginal and 205 

conditional R2, and phylogenetic signal (Pagel’s λ) using code from (47). As is common with Bayesian 206 

models, we compared them using the Deviance Information Criterion (DIC). B. magnus was not present 207 

in the phylogeny and so was excluded from these analyses. The structure of fixed model effects tested 208 

was identical to the descriptions provided above, and we found that model parameter values using the 209 

PGLMMs were very consistent with those from models in lme4. We present results from the PGLMMs 210 

here as previous work has shown significant phylogenetic signal in patterns of bumble bee declines and in 211 

their response to climate change (1, 48). 212 

Observed species richness. We constructed an analysis of covariance model (ANCOVA) to test the 213 

relationship between change in species richness and climatic position. The model included the thermal 214 

position variables (baseline period, change since the baseline, and the interaction between these), the 215 

precipitation position variables (baseline period, change since the baseline, and the interaction between 216 
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these), and continent and sampling effort as controlling variables. We used quadratic polynomials for the 217 

baseline thermal and precipitation position. To avoid overfitting due to the low sample size in this test (n 218 

= 164 sites) and because they were neither significant in the occupancy models nor necessary for our 219 

hypothesis testing, we did not include the interaction between baseline thermal position and precipitation 220 

position, nor the interaction between change in thermal and precipitation position. We also removed 221 

sampling effort and the 2nd order polynomial of baseline precipitation position as covariates after seeing 222 

that they were not significant and that the model was not improved by their addition (ΔAIC < 2). We did 223 

not expect sampling to be significant since this analysis was restricted to well-sampled cells with at least 224 

50 unique location-year observations in each period. Results from the model were robust to the presence 225 

of outliers, and aside from violations of spatial autocorrelation in the residuals, appeared to satisfy all 226 

other assumptions. 227 

We checked for spatial autocorrelation in the residuals by visually inspecting a correlogram of 228 

Moran’s I (Figure S11A) and found some evidence of spatial autocorrelation. We proceeded by 229 

constructing a simultaneous autoregressive (SAR) spatial error model to correct for residual 230 

autocorrelation, as suggested by (49) and (50). This reduced much of the variability in Moran’s I (Figure 231 

S11B). Model results with the SAR model were qualitatively similar to the ANCOVA results that we 232 

report here (Tables S2 and S3). We calculated the Nagelkerke Pseudo-R2 of the model as a measure of the 233 

variance explained. 234 

Given the number of sites where we could measure species richness change with confidence was 235 

relatively low (124 in Europe and 40 in North America), we compared the mean community-averaged 236 

climatic position of the species richness sites to the mean community-averaged climatic position of the 237 

entire continent to check that the species richness sites were representative. We used a series of Welch’s 238 

two-sample t-tests to compare the means of the community-averaged thermal position variables (in the 239 

baseline and the change between periods) and the community-averaged precipitation position variables (in 240 
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the baseline and the change between periods) of the species richness cells to their respective continental 241 

averages.   242 

Detection-corrected species richness. We built an ANCOVA model to test the relationship between 243 

climatic positioning and detection-corrected species richness. The model structure here was identical to 244 

the occupancy PGLMMs but used community-averaged measures of climatic positioning and did not 245 

include the random effects of species. As with the observed species richness models, we checked for 246 

spatial autocorrelation and used the same procedure to correct for this with SAR models (Figure S12). 247 

Spatial autocorrelation was significant in the original model, but results were qualitatively similar 248 

between SAR and ANCOVA models (Tables S2 and S3). 249 

The explained variance of the detection-corrected species richness model was substantially lower than 250 

the observed species richness model (8% vs 38%). This is likely to be a result of the occupancy modelling 251 

process. The occupancy modelling took the binary measures of species detection/non-detection and used a 252 

derived detection probability to estimate continuous probabilities of occupancy from these from 1s and 253 

0s, across the entire continent it occupies. In each period, the occupancy models estimate a probability of 254 

1 (or very close) for cells where the species was detected in any one of the survey units, and they estimate 255 

some probability between 0 and 1 for cells where a species was never detected. This latter occupancy 256 

probability depends on the species-period-specific detection probability and the total sampling effort in 257 

that cell. For most species the occupancy probability of cells where they were not detected is between 0 258 

and 0.4. As detection probability and sampling effort vary by period, the same cell can have a different 259 

occupancy estimate in the baseline and recent period, even when the species was never observed there or 260 

when it has persisted through both periods. This between-period variation reflects the uncertainty within 261 

estimates of occupancy probability during a period, and likely drives the lower adjusted R2 values we see 262 

when comparing the detection-corrected and observed species richness models. A similar reasoning likely 263 

explains the differences between marginal R2 of change in occupancy models (0.11) compared to 264 

extinction and colonization models (0.87 and 0.53, respectively). 265 
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Comparison with mean climate variables. For all our models, we created a model identical in structure 266 

but with mean climate variables (i.e. mean baseline annual temperature, mean baseline total annual 267 

precipitation, and the change in these to the recent period) instead of climatic position variables. We also 268 

compared using average annual maximum and minimum temperature variables. All continuous variables 269 

in both sets of models were centered and rescaled before modelling, and we used Information Criterion 270 

and R2 to compare between climatic position and mean climate models. We tested models where baseline 271 

thermal and precipitation variables were fit as either linear, or quadratic polynomial terms, since we 272 

predicted that species would be more likely to decline in occupancy where sites were already closer to an 273 

upper or lower limit in the baseline. With the exception of PGLMMs, all models were constructed in R 274 

v3.5.1 (28), using packages lme4 (51) and spdep (52) for simultaneous autoregressive models.  275 

Spatial projection across recent period 276 

Using the detection-corrected species richness model (adjusted R2 = 0.14) and 0.5-degree resolution 277 

climate data (42), we spatially projected the predicted change in species richness since the baseline across 278 

the entire study area (Figure 4). We also projected change using the non-detection-corrected species 279 

richness model (adjusted R2 = 0.44; Figure S9). We used rescaled climatic position and climatic position 280 

change layers at 0.5 × 0.5 degree grid resolution and used the respective model coefficients to predict 281 

what percent climate-change-induced change in assemblage richness occurred from the baseline period 282 

(1901-1974) to the recent period (2000-2014). 283 

Effects of land-use change 284 

Using high-resolution data on historic land-use from the Global Harmonized Land-use dataset (53), we 285 

calculated the mean proportion of cropland, pasture, and urban land cover (hereafter human-dominated 286 

land-use) in each period for cells across the study area. We then measured the mean change in human-287 

dominated land-use between periods. We built PGLMM’s of change in probability of occupancy, 288 

extinction and colonization, as well as spatial autoregressive error models of detection-corrected species 289 
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richness, which included the best fitting variables from previous steps of analysis and human-dominated 290 

land-use change. We compared these models with land-use to pure climate change models using 291 

information criterion values and R2 and compared the values and estimated significance of fixed effects. 292 

Agricultural species might be declining through increased use of certain pesticides, which could 293 

modify relative rates of decline between species. We calculated the proportion of cropland across species’ 294 

geographic ranges in the baseline period, and used linear regressions to separately test the association 295 

between this and i) the number of unique location-year observations of a species, ii) the mean change in 296 

probability of occupancy of a species, and iii) the mean change in observed (non-detection-corrected) 297 

distribution of a species. 298 

 299 

Supplemental Text 300 

Non-detection corrected declines 301 

Occupancy, extirpation, and colonization. Consistent with measured declines in occupancy (Figure 2), 302 

observed distributions declined on average by 54% (±3.4% SE) in North America and 18% 303 

(±7.2% SE) in Europe relative to the baseline period (Figure S6A). 304 

Rates of observed extirpation and colonization were calculated for each species as the proportion of 305 

extirpation or colonization events relative to the total number of cells occupied historically. Across all 306 

species in North America and Europe there was a 72% (±2.2% SE) and 49% (±2.8% SE) chance, 307 

respectively, that a given bumble bee species was lost from a quadrat it occupied historically. Globally, 308 

extirpation events were 8 times (±1.7 SE) more likely than colonization events, with ratios being higher in 309 

North America (Figure S7). Imperfect species detection and patchy sampling mean that extirpation can be 310 

overestimated in opportunistic datasets, so observed extirpation rates likely represent the upper bound of 311 

true extinction probability. 312 
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Non-detection corrected species richness. Since the baseline period, local (non-detection corrected) 313 

species richness has declined by about 18.6% (±3.2% SE) in North America, while richness in Europe has 314 

stayed relatively constant (2.2% increase since the baseline ±2.6% SE; Figure S6B). Species richness 315 

declines do not reflect differences in sampling intensity in this subset of well-sampled cells and was not 316 

informative or significant in statistical models.  317 

Response of change in occupancy to precipitation position 318 

While the relationship between change in occupancy and proximity to thermal limits was statistically 319 

detectable and followed our expectations, relationships with precipitation showed more mixed results. 320 

Declines in occupancy were stronger in sites that became drier since the baseline but other effects were 321 

inconsistent, and we did not see an interaction between baseline precipitation and change in precipitation 322 

as we expected if exposure to precipitation limits from climate change was a driver of declines (Figure 3, 323 

Figure S8, Table S2). While direct effects of precipitation are undoubtably important for bumble bees at a 324 

local scale, especially in terms of moisture availability, we are unable to detect these effects with this 325 

analysis. Conflicting indirect effects of precipitation (through changes in floral resources or vegetation 326 

structure), may make these effects more difficult to measure and detect than direct effects of temperature.  327 

Response of extirpation and colonization to climatic position 328 

Patterns in extirpation across the 66 bumble bee species display a strong signal of climate 329 

change, especially increasing temperature. We used a phylogenetic generalized linear mixed 330 

model (PGLMM) with a similar fixed and random effect structure as the site occupancy-climate 331 

change model, but here including sampling effort as a covariate. As expected, extirpation 332 

probability related to thermal position in the baseline period, change since then, and their 333 

interaction (Table S2). Increasing thermal position was linked to greater probability of extirpation 334 

for species in regions that were already near their upper thermal limit, and lower probability of 335 

extirpation for species in regions historically closer to their cold limits (Figure S13A). As with 336 
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occupancy, precipitation position showed more ambiguous associations. While sites that became 337 

drier had higher probability of extirpation, the effect of baseline precipitation was not significant 338 

and there was no significant interaction between these two effects (Figure S13C). Our model 339 

explained most of the variation in the response of extirpation to climatic position (marginal R2 = 340 

0.87). The strong relationship between temperature warming and extirpation risk among bumble 341 

bee species is consistent with previous work demonstrating that extinction risk depends on shifts 342 

in the spatial distributions of thermal niches in other taxa (54, 55) and is of particular importance 343 

since bumble bee species are being pushed towards their upper thermal limits across most of 344 

North America and Europe (Figure 1A). 345 

Trends in local colonization also showed a strong association with climate change, providing 346 

independent support for a separate prediction of our hypothesis. A PGLMM with similar fixed 347 

and random effects to the extirpation models shows that the three thermal position variables 348 

appear to significantly drive colonization, with precipitation position showing inconsistent 349 

effects (Table S2). Species were more likely to colonize regions which were historically near the 350 

cold limit and had warmed, and historically hot regions that cooled were more likely to be 351 

colonized than historically cool or moderate regions that became colder (Figure S13B). Regions 352 

that moved towards species’ wet limits were more likely to be colonized (Figure S13D). Regions 353 

that were simultaneously hot and dry historically had higher rates of colonization, as did regions 354 

that got simultaneously hotter and drier. Models explained a large part of the variation in local 355 

colonization (marginal R2 = 0.53). The difference in explained variance between the extirpation 356 

and colonization models (marginal R2 0.87 vs 0.53) could suggest that the process of 357 

colonization is less tied to physiological climate limits than extirpation. In regions that were 358 

historically moderate or near species’ hot limits, rates of extirpation greatly exceeded rates of 359 
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colonization following warming. Given that species and communities appear to have been 360 

moderately situated with respect to their climatic limits in many northern regions across North 361 

America and Europe that warmed (Figures 1A and S5A), this finding may help explain why most 362 

bumble bees are not generally expanding their ranges at poleward limits of their distributions to 363 

track climate change (1, 14).  364 

The models revealed a significantly detectable phylogenetic signal in the response to both 365 

extirpation and colonization to climatic position, with the signal for extirpation (Pagel’s λ= 0.88) 366 

being stronger than the signal for colonization (Pagel’s λ= 0.70). Previous work has also detected 367 

significant phylogenetic signal in patterns of declines across bumble bees (48) and found that 368 

traits can influence the sensitivity of bumble bees to land-use and agricultural pressures (56). 369 

More data on inter- and intra-specific variation on traits should be gathered to test questions 370 

about how traits and evolutionary change may mediate responses to climate change at this scale.  371 

Comparing climatic position models to mean climate variables  372 

While measures of climate like mean annual temperature or mean annual precipitation are 373 

easy to gather, inter-specific variation in physiological tolerances mean that how these conditions 374 

influence species depends on proximity to species physiological limits. A regional measure of 375 

climatic position directly measures whether climatic conditions are near or outside species’ 376 

tolerances to test whether changing exposure to such conditions drives persistence and 377 

colonization. Predictions from this hypothesis are consistent with recent trends in North 378 

American and European bumble bees (Figures 3 and S13) and using thermal and precipitation 379 

position variables instead of mean climate variables produces models that better predict 380 

extinction, colonization, and change in occupancy (marginal R2 7% lower to 12.5% higher) and 381 

are more informative (ΔDIC ~ 202.4, ΔDIC ~ 102.8 and ΔDIC ~ 164.9 respectively). This 382 
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increase in explanatory power was consistent when comparing to models using average annual 383 

maximum (marginal R2 1.6% to 23% higher; ΔDIC = 98.7-157.5) or minimum temperatures 384 

(marginal R2 2.6% lower to 21.3% higher; ΔDIC = 128.2-241.9). We show that accounting for 385 

inter-specific variation significantly improves detection of relatively local-scale climate impacts 386 

on bumble bees. Regardless of technique used, there is a biologically meaningful signal of 387 

climate change within patterns of bumble bee decline. 388 

Climatic sampling across continents 389 

We tested whether the most well-sampled quadrats in our analysis (which were used for the 390 

non-detection-corrected species richness analysis) presented a representative sample of historic 391 

climate and climatic patterns across North America and Europe, and found that well-sampled 392 

regions in Europe tended to be cooler in the baseline and experience less warming between 393 

periods (Welch’s two-sample t-test results: t-statistics = 2.72 and 4.16, p-values = 7.0x10-3 and 394 

4.8 x10-5, df = 227 and 206, respectively). Previous estimates of European bumble bee richness 395 

change extrapolating from well-sampled areas may have systematically underestimated recent 396 

richness declines. Well-sampled quadrats in North America appeared representative of the 397 

general temperature trends experienced over the continent as a whole, but tended to be 398 

historically wetter and have gotten wetter than the continental average (Welch’s two-sample t-399 

test results: t-statistics = 2.95 and 2.30, p-values = 5.1x10-3 and 0.03, df = 41.5 and 40.2, 400 

respectively). 401 

Land-use change 402 

Human land-use has also been associated with pollinator declines (8). We find that while 403 

human-dominated land-use change appears to have strong negative effects on probability of 404 
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occupancy and detection-corrected species richness, this effect is distinct from those presented 405 

by climate change. Including LU in the models showed a significant negative effect of land-use 406 

but produced virtually identical results for climatic position variables, suggesting that direct 407 

effects of climate change on bumble bees are distinct from effects of land-use (Table S4). 408 

We did not find any statistically significant relationship between percent of species’ 409 

geographical range covered by cropland and unique location-year observations (t-value= -0.79, 410 

p-value= 0.43, d.f.= 64), mean change in probability of occupancy (t-value= 0.07, p-value= 0.94, 411 

d.f.= 64), or mean change in observed distribution (t-value= 1.24, p-value= 0.22, d.f.= 64). It 412 

appears that rates of species decline do not appear to strongly differ between species more 413 

associated with agricultural areas, although we note that our subset of well-sampled species is 414 

likely already biased toward species more associated with agricultural and urban areas. This is 415 

consistent with previous work that concluded latitudinal range shifts in bumble bees appeared 416 

strongly sensitive to climate change but not especially sensitive to agriculture (1). 417 

Additional tests of modelling robustness 418 

Spatial scale. Spatial scale of analysis is an important factor to consider for any study 419 

involving extirpation/colonization and range change. Where possible, spatial scale of a study 420 

should be chosen with consideration to the biologically relevant area encompassing population 421 

dynamics of the study species (57, 58), but reasonably chosen spatial scales can still reveal 422 

valuable macroecological patterns (59). Here, we selected 100km by 100km cells as the spatial 423 

scale of our analysis, which represented a balance between having adequate sampling density 424 

across our study area and a high resolution to detect “local” effects of climate and climate 425 

change. Repeating analyses in 50km by 50km cells and 200km by 200km cells produced results 426 
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that were qualitatively similar (Tables S5 and S6), suggesting our analyses were robust to the 427 

scale used.   428 

Absence threshold. When converting our occurrence records into presence absence data, we 429 

inferred absence of a species when the focal species was not seen but at least one other species 430 

was (absence threshold of one). A liberal absence threshold could result in overestimating 431 

absences (and ultimately detection ability), which could lead to overestimates of extirpation and 432 

local colonization. We tested the sensitivity of our results to our definition of absence by 433 

repeating analyses using an absence threshold of three and five, and found that all results were 434 

qualitatively similar (Tables S7 and S8). 435 

 436 

 437 

  438 
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Supplemental Figures 460 

 461 

 462 

Figure S1. Distribution of unique species-location-year sampling locations from North 463 

America (A) and Europe (B). 464 

 465 
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 466 

Figure S2. Density of unique location-year observations per 100km by 100km grid cell 467 

across North America and Europe. 468 

 469 

 470 
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 471 

Figure S3. Change in mean annual mean temperature (A) and mean total precipitation (B) 472 

from the baseline (1901-1974) to the recent period (2000-2015) across North America and 473 

Europe. 474 

 475 
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 476 

 477 

Figure S4. Graphical description of methods visualizing relation between occurrence 478 

records and eventual measures of detection-corrected change in occupancy, extirpation, 479 

and colonization for Bombus hortorum. 480 

 481 

 482 
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 483 

Figure S5. Community-averaged thermal (A) and precipitation position (B) in the baseline 484 

period (1901-1974) across North America and Europe. Both thermal and precipitation 485 

position indices have a potential range of 0 to 1. Zero indicates that species in the assemblage are 486 

on average at their cold/dry tolerance limit for the entirety of the year in the period. One 487 
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indicates that species in the assemblage are on average at their hot/wet tolerance limit for the 488 

entirety of the year in the period. 489 

 490 

 491 

 492 

Figure S6. Change in species’ observed distribution (A) and observed species richness (B) 493 

from the baseline (1901-1974) to recent period (2000-2014) in sites across the study area. 494 



27 

Observed species richness was only measured in sites with a minimum of 50 unique location-495 

year-species observations in the baseline and most recent period. N= 164. 496 

 497 

 498 

 499 

Figure S7. Ratio of local extirpation:colonization across species’ observed distributions 500 

between the baseline (1900-1975) and recent period (2000-2015). 501 

 502 

  503 
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 504 

 505 

Figure S8. Change in probability of occupancy in response to change in thermal (A) and 506 

precipitation (B) position from the baseline (1901-1974) to recent period (2000-2014). Note 507 

that this figure is identical to Figure 3 in the main text but shows raw data points. Thermal and 508 

precipitation position ranges from 0 to 1, with 1 indicating conditions at a site are at a species’ 509 

hot or wet limit for the entire year, and zero meaning conditions are at a species’ cold or dry limit 510 

for the entire year during the historic period. For ease of visualizing the significant interaction 511 

between baseline thermal position and change in thermal position, the continuous baseline 512 

thermal position variable has been split at the 1st and 3rd quantile to show sites that were 513 

historically close to species’ hot limits (red; n=969), cold limits (blue; n=2,244), and middle of 514 

their observed climatic limits (purple; n=11,793). Rug plot shows the distribution of 515 

observations. Confidence intervals (±95%) are shown around linear trendlines.  516 

 517 

 518 
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 519 

Figure S9. Spatial projections of climate change-related change in non-detection-corrected bumble 520 

bee species richness from a baseline period (1901-1974) to a recent period (2000-2014). Made using a 521 

model predicting percent change in non-detection-corrected bumble bee species richness as a function of 522 

mean community thermal and precipitation position (R2= 0.44; see Materials and Methods for model 523 

details).  524 

 525 

 526 
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 527 

Figure S10. Percent change in observed bumble bee species richness across North America from the 528 

baseline (1901-1974) to recent period (2000-2014). Grid cells shown are 100 km by 100 km, in an equal 529 

area projection. No sampling-based selection (see methods) applied here. 530 

 531 

 532 
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 533 

Figure S11. Correlogram of Moran’s I for non-detection corrected species richness model. 534 

Moran’s I calculated from a) ordinary least squares regression model and b) simultaneous 535 

autoregressive (SAR) error model. SAR model was a significantly better fit (according to log 536 

likelihood). Model coefficients were qualitatively similar between both models. 537 

 538 

 539 
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 540 

Figure S12. Correlogram of Moran’s I for detection-corrected species richness response 541 

model. Moran’s I calculated from a) ordinary least squares regression model and b) simultaneous 542 

autoregressive (SAR) error model. SAR model was a significantly better fit (according to log 543 

likelihood). Model coefficients were qualitatively similar between both models. 544 

 545 

 546 



33 

 547 

Figure S13. Probability of local extinction (A, C) and colonization (B, D) in response to 548 

change in thermal (A, B) and precipitation (C, D) position from the baseline (1901-1974) to 549 

recent period (2000-2014). Thermal and precipitation position ranges from 0 to 1, with 1 550 

indicating conditions at a site are at a species’ hot or wet limit for the entire year, and zero 551 

meaning conditions are at a species’ cold or dry limit for the entire year during the historic 552 
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period. For ease of visualizing the significant interaction between baseline thermal position and 553 

change in thermal position, the continuous baseline thermal position variable has been split at the 554 

1st and 3rd quantile to show sites that were historically close to species’ hot limits (red; n=969), 555 

cold limits (blue; n=2,244), and middle of their observed climatic limits (purple; n=11,793). Rug 556 

plot shows the distribution of observations. Confidence intervals (±95%) are shown around 557 

linear trendlines. 558 

 559 

 560 
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Supplementary Tables 561 

Table S1. Summary of unique location-year observations per period for the 

66 bumble bee (Bombus) species in the analysis dataset. 

Bumble bee species Baseline (1900-1975) Recent (2000-2015) 

affinis 1386 76 

appositus 622 178 

auricomus 407 224 

barbutellus 1053 494 

bifarius 2921 644 

bimaculatus 981 794 

bohemicus 1957 4171 

borealis 542 142 

campestris 1495 1847 

centralis 1038 344 

citrinus 344 334 

cryptarum 336 717 

distinguendus 1409 1735 

fervidus 2798 856 

flavifrons 1078 421 

fraternus 323 80 

frigidus 350 195 

griseocollis 1070 1089 

hortorum 3856 9238 

humilis 2006 2055 

huntii 1252 449 

hypnorum 2333 6214 

impatiens 2914 1632 

insularis 840 332 

jonellus 1753 4162 

lapidarius 4124 14547 

lucorum 4646 15076 

magnus 348 587 

melanopygus 1242 454 

mendax 166 111 

mesomelas 351 447 

mixtus 860 452 

monticola 410 2125 

morrisoni 858 257 

mucidus 194 147 

muscorum 1974 2012 

nevadensis 517 207 
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norvegicus 165 578 

occidentalis 3217 398 

pascuorum 7883 22236 

pensylvanicus 3953 443 

perplexus 581 442 

pomorum 483 38 

pratorum 3928 11142 

pyrenaeus 271 308 

quadricolor 106 356 

ruderarius 2565 2355 

ruderatus 1731 398 

rufocinctus 1097 435 

rupestris 1011 2117 

sicheli 223 332 

soroeensis 1725 4028 

sporadicus 188 411 

subterraneus 1355 1522 

sylvarum 2492 3235 

sylvestris 1252 2598 

sylvicola 471 310 

ternarius 677 459 

terrestris 4027 15206 

terricola 1886 337 

vagans 1191 564 

vandykei 182 150 

vestalis 936 2874 

veteranus 1221 145 

vosnesenskii 3249 410 

wurflenii 1042 426 

 562 

 563 
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 564 

Table S2. Estimated model coefficients for the five main models. Posterior means and 95% Bayesian credible intervals are shown for PGLMM 

models. t-values (for analysis of covariance models, ANCOVA) are included as a measure of significance. Generally, coefficients with t-values < 

-2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM) and adjusted-R2 (for ANCOVA models). 

 

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ancova) 

Detection-

corrected species 

richness (ancova) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

t 

value 

Intercept -46.29 

-100.93 - 

6.96 0.87 -1.53 - 3.21 -2.55 -4.75 - -0.32 

-10.94 

(4.26) -2.57 

-15.41 

(0.52) 

-

29.38 

           

Thermal position 

variables           

Baseline (1st order 

polynomial) -8.46 -10.39 - -6.33 27.38 

22.31 - 

32.65 -12.91 -19.85 - -6.16 

-161.33 

(34.39) -4.69 

-0.49 

(0.43) -1.14 

Baseline (2nd order 

polynomial) -- -- 17.44 

12.43 - 

22.16 13.27 6.77 - 19.46 

-62.53 

(26.68) -2.34 -- -- 

Change since 

baseline -4.54 -6.08 - -3.01 0.29 0.23 - 0.36 -0.09 -0.17 - -0.01 -4.86 (2.92) -1.67 

-2.16 

(0.55) -3.91 

Baseline:Change 

interaction -10.76 -12.82 - -8.76 0.53 0.43 - 0.63 -0.43 -0.55 - -0.29 -9.74 (4.31) -2.34 

-2.77 

(0.44) 0 

           

Precipitation position variables          

Baseline (1st order 

polynomial) -1.63 -3.04 - -0.25 -0.89 -7.39 - 6.14 -30.56 

-39.56 - -

21.29 -5.57 (2.09) -2.67 

-0.73 

(0.44) -1.64 
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Baseline (2nd order 

polynomial) -- -- -2.56 -8.56 - 2.96 13.56 6.53 - 20.55 -- -- -- -- 

Change since 

baseline 3.9 2.55 - 5.13 -0.14 -0.21 - -0.09 0.21 0.13 - 0.29 -1.27 (2.47) -0.51 0.26 (0.5) 0.53 

Baseline:Change 

interaction -0.11 -0.81 - 0.69 0.02 -0.02 - 0.05 -0.03 -0.08 - 0.02 -9.74 (4.31) -2.26 

0.47 

(0.34) 1.38 

           

Climatic position interactions          

Baseline 

thermal:Baseline 

precipitation 

interaction -0.05 -1.82 - 1.69 0.02 -0.05 - 0.1 0.12 0.03 - 0.21 -- -- 

-0.39 

(0.39) -1.01 

Change in 

thermal:Change in 

precipitation 

interaction -0.15 -1.17 - 0.85 0.02 -0.02 - 0.06 0.06 0 - 0.12 -- -- 

2.04 

(0.39) 5.26 

           

Covariates           

Continent (Europe) 39.35 32.95 - 45.45 -1.98 -2.22 - -1.71 1.27 0.96 - 1.56 12.2 (5.13) 2.38 

7.87 

(1.13) 6.95 

Sampling Effort -- -- -0.59 -0.65 - -0.55 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (95% CI) Variance (95% CI) Variance (95% CI)     

Species 181.4 117 - 256.2 0.3 0.19 - 0.44 0.26 0.15 - 0.39 -- -- 

           

Model summary           

Number 

observations (n) 4617-5264 30.8-1035.5 118.5-1730.1 164 1849 

Variation explained 

(R2) 0.11 0.87 0.53 0.38 0.07 

 565 
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Table S3. Model coefficients (and standard error) for the simultaneous autoregressive (SAR) 

error species richness models correcting for spatial autocorrelation. Z values are included as a 

measure of significance. Generally, coefficients with z values < -2 and > 2 are considered 

significant, these are in bold text in the table. Variance explained is expressed in terms of 

Nagelkerke pseudo-R2.  

 Species richness SAR 

Detection-corrected species 

richness SAR 

 Estimate z value Estimate z value 

Intercept -12.64 (11.27) -1.12 -14.19 (1.98) -7.16 

     

Thermal position variables     

Baseline (1st order polynomial) -107.69 (38.08) -2.83 -0.26 (0.84) -0.31 

Baseline (2nd order polynomial) -13.86 (25) -0.55 -- -- 

Change since baseline 0.63 (3.08) 0.21 -1.95 (0.64) -3.06 

Baseline:Change interaction 1.5 (4.46) 0.34 -1.18 (0.56) -2.11 

     

Precipitation position variables     

Baseline (1st order polynomial) 0.94 (2.59) 0.36 0.12 (0.62) 0.19 

Baseline (2nd order polynomial) -- -- -- -- 

Change since baseline -3.33 (2.66) -1.25 0.32 (0.64) 0.5 

Baseline:Change interaction 1.15 (1.87) 0.62 -0.04 (0.38) -0.1 

     

Climatic position interactions     

Baseline thermal:Baseline 

precipitation interaction -- -- 0.36 (0.55) 0.65 

Change in thermal:Change in 

precipitation interaction -- -- 0.7 (0.43) 1.63 

     

Covariates     

Continent (Europe) 14.47 (12.99) 1.11 7.1 (3.72) 1.91 

     

Model summary     

Number observations (n) 164 1849 

Variation explained (R2) 0.44 0.14 

 566 
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Table S4. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models including land-use. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of 

covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 

2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is 

expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

 

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -46.47 

-102.49 - 

10.76 0.91 -1.28 - 3.33 -2.96 -5.38 - -0.29 

-15.62 

(0.56) 

-

27.73 -14.2 (2) -7.11 

           

Thermal position variables           

Baseline (1st order 

polynomial) -8.18 -10.29 - -6.18 26.77 

21.01 - 

31.65 -14.9 -24 - -6.14 

-0.67 

(0.47) -1.43 

-0.26 

(0.85) -0.31 

Baseline (2nd order 

polynomial) -- -- 15.56 10.31 - 20.7 16.08 7.69 - 25.05 -- -- -- -- 

Change since baseline -4.22 -5.75 - -2.68 0.29 0.22 - 0.34 -0.09 -0.19 - 0.01 

-2.24 

(0.56) -4.01 

-1.95 

(0.64) -3.06 

Baseline:Change 

interaction -11.06 -13.09 - -8.93 0.52 0.43 - 0.61 -0.5 -0.68 - -0.34 

-2.7 

(0.45) -6 

-1.18 

(0.56) -2.1 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -2 -3.44 - -0.58 1.9 -4.63 - 7.57 -35.49 

-47.78 - -

23.32 

-0.59 

(0.46) -1.28 

0.12 

(0.62) 0.19 

Baseline (2nd order 

polynomial) -- -- -4.05 -10.46 - 2.35 15.95 6.79 - 25.15 -- -- -- -- 

Change since baseline 3.78 2.46 - 5.03 -0.14 -0.2 - -0.09 0.24 0.14 - 0.34 

0.25 

(0.5) 0.5 

0.32 

(0.64) 0.5 

Baseline:Change 

interaction -0.02 -0.76 - 0.74 0.02 -0.02 - 0.05 -0.03 -0.08 - 0.02 

0.48 

(0.34) 1.4 

-0.04 

(0.38) -0.1 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction -0.3 -2.02 - 1.4 0.04 -0.04 - 0.11 0.13 0.03 - 0.25 

-0.32 

(0.4) -0.81 

0.36 

(0.55) 0.65 

Change in thermal:Change 

in precipitation interaction -0.1 -1.08 - 0.95 0.02 -0.02 - 0.06 0.07 0 - 0.14 

2.01 

(0.39) 5.14 

0.7 

(0.43) 1.63 

           

Human dominated land-

use           

Land-use change  -16.4 -27.33 - -6.46 0.92 0.44 - 1.39 -0.61 -1.3 - 0.15 

3.72 

(3.73) 1 

0.11 

(4.35) 0.03 

           

Covariates           

Continent (Europe) 38.78 33.03 - 45.31 -1.96 -2.25 - -1.67 1.43 1 - 1.91 

8.21 

(1.18) 6.94 

7.11 

(3.74) 1.9 

Sampling Effort -- -- -0.57 -0.64 - -0.53 -0.19 -0.25 - -0.14 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 181.6 118.1 - 256.8 0.31 0.19 - 0.43 1.32 0.14 - 3.66 -- -- 

           

Model summary           

Number observations (n) 7235-7500 18.4-1464.9 57.9-1551.6 1849 1849 

Variation explained (R2) 0.11 0.87 0.27 0.07 0.14 

567 



42 

Table S5. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models at a 50km by 50km scale. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of covariance 

models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 2 are 

considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is expressed 

in terms of marginal R2 (for PGLMM), ad`usted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 

Species 

richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -53.03 

-115.76 - 

10.83 1.54 -1.04 - 4.04 -2.27 -4.41 - -0.2 

-21.59 

(0.28) -78.3 

-21.02 

(1.13) -18.6 

           

Thermal position variables           

Baseline (1st order 

polynomial) -6.17 -7.65 - -4.76 32.56 27.47 - 37.66 -16.86 -23.25 - -11.77 

-0.05 

(0.21) -0.23 0.5 (0.4) 1.27 

Baseline (2nd order 

polynomial) -- -- 28.47 23.31 - 33.69 2.02 -3.6 - 7.4 -- -- -- -- 

Change since baseline -3.45 -4.56 - -2.36 0.24 0.2 - 0.29 -0.21 -0.26 - -0.16 

-0.83 

(0.29) -2.87 

-0.63 

(0.33) -1.9 

Baseline:Change 

interaction -7.12 -8.45 - -5.58 0.47 0.4 - 0.53 -0.32 -0.39 - -0.24 

-1.41 

(0.22) -6.29 

-0.68 

(0.28) -2.38 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -0.88 -2.02 - 0.19 0.73 -5.91 - 7.46 -23.4 -30.61 - -15.15 

-0.26 

(0.21) -1.23 

0.13 

(0.31) 0.44 

Baseline (2nd order 

polynomial) -- -- -10.36 -15.67 - -5.18 13.49 6.85 - 20.92 -- -- -- -- 

Change since baseline 4.99 4.01 - 6.04 -0.26 -0.3 - -0.22 0.22 0.17 - 0.27 

0.25 

(0.24) 1.03 

0.25 

(0.33) 0.76 

Baseline:Change 

interaction -0.31 -0.97 - 0.38 0.08 0.05 - 0.11 -0.02 -0.05 - 0.02 

0.3 

(0.17) 1.81 

-0.01 

(0.19) -0.04 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 0.71 -0.62 - 1.9 -0.06 -0.11 - 0 0.12 0.07 - 0.18 

-0.21 

(0.18) -1.2 

0.01 

(0.25) 0.05 

Change in thermal:Change 

in precipitation interaction -0.3 -1.09 - 0.46 -0.05 -0.09 - -0.02 0.01 -0.03 - 0.05 

1.04 

(0.2) 5.25 

0.4 

(0.23) 1.79 

           

Covariates           

Continent (Europe) 37.1 31.46 - 42.32 -1.87 -2.09 - -1.65 1.46 1.23 - 1.69 

3.96 

(0.57) 6.95 

3.06 

(1.97) 1.55 

Sampling Effort -- -- -0.53 -0.56 - -0.5 -0.09 -0.11 - -0.07 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 238.8 160.1 - 334 0.37 0.23 - 0.52 0.25 0.16 - 0.36 -- -- 

           

Model summary           

Number observations (n) 5000-5490 40.3-5608 58.8-2410.7 4856 4856 

Variation explained (R2) 0.1 0.84 0.61 0.03 0.06 
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Table S6. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models at a 200km by 200km scale. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model coefficients (and 

standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for analysis of covariance 

models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values < -2 and > 2 are 

considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance explained is expressed 

in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 

Species 

richness 

(ANCOVA) 

Detection-

corrected species 

richness (SAR 

error model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -36.36 -85.99 - 13.45 0.07 -2.85 - 2.79 -4.64 -12.08 - -0.63 

5.23 

(1.16) 4.52 

6.75 

(2.88) 2.35 

           

Thermal position variables           

Baseline (1st order 

polynomial) -6.14 -9.06 - -3.06 13.46 6.36 - 21.36 -11.78 -33.65 - 1.39 

1.46 

(0.99) 1.47 

-0.9 

(1.66) -0.54 

Baseline (2nd order 

polynomial) -- -- 12.3 5.42 - 19.56 35.46 15.18 - 81.11 -- -- -- -- 

Change since baseline -3.08 -5.23 - -1.06 0.22 0.09 - 0.37 0.1 -0.13 - 0.42 

-0.69 

(1.18) -0.58 

-1.88 

(1.26) -1.5 

Baseline:Change 

interaction -9.96 -12.87 - -6.94 0.54 0.33 - 0.81 -0.47 -1.16 - -0.08 

-5.5 

(0.99) -5.55 

-2.97 

(1.11) -2.69 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -2.89 -4.89 - -0.91 0.07 -7.03 - 7.34 -37.24 -83.9 - -14.07 

-1.04 

(1.05) -0.99 

0.31 

(1.26) 0.24 

Baseline (2nd order 

polynomial) -- -- 3.68 -4.3 - 11.65 11.72 -6.28 - 38.02 -- -- -- -- 

Change since baseline 4.33 2.59 - 6.08 -0.13 -0.25 - -0.02 0.49 0.17 - 1.15 

0.26 

(1.16) 0.23 

0.48 

(1.33) 0.36 

Baseline:Change 

interaction 0.26 -0.72 - 1.16 -0.05 -0.12 - 0.02 -0.12 -0.34 - 0.03 

0.77 

(0.94) 0.83 

0.48 

(0.99) 0.49 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 1.07 -1.54 - 3.83 0.05 -0.07 - 0.2 0.28 -0.01 - 0.74 

1.1 

(0.89) 1.23 

1.28 

(1.09) 1.18 

Change in thermal:Change 

in precipitation interaction 0.57 -0.88 - 1.92 0.02 -0.06 - 0.09 0.25 0.05 - 0.59 

2.42 

(0.9) 2.68 

1.2 

(0.93) 1.29 

           

Covariates           

Continent (Europe) 38.47 31 - 45.34 -2.13 -3.18 - -1.46 1.55 0.55 - 3.55 

-1.5 

(2.52) -0.6 

-0.52 

(5.76) -0.09 

Sampling Effort -- -- -0.72 -0.93 - -0.54 -0.34 -0.79 - -0.14 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 133.8 75.62 - 193.4 0.41 0.16 - 0.82 0.66 0.09 - 2.47 -- -- 

           

Model summary           

Number observations (n) 4181-5284 10.5-1428.2 6.5-382.6 584 584 

Variation explained (R2) 0.1 0.71 0.14 0.08 0.19 
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Table S7. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models using an absence threshold of three. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model 

coefficients (and standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for 

analysis of covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values 

< -2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-corrected 

species richness 

(SAR error model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -45.15 

-102.49 - 

11.21 0.89 -1.41 - 3.21 -2.52 -4.73 - -0.33 

-15.36 

(0.74) 

-

20.69 

-14.85 

(1.47) 

-

10.09 

           

Thermal position 

variables           

Baseline (1st order 

polynomial) -5.4 -7.18 - -3.58 20.67 15.2 - 25.93 -7.69 -14.72 - -0.65 -0.08 (0.56) -0.15 0.52 (0.72) 0.72 

Baseline (2nd order 

polynomial) -- -- 13.85 9.03 - 19.04 14.45 8.32 - 20.34 -- -- -- -- 

Change since 

baseline -3.69 -5.23 - -2.17 0.27 0.21 - 0.34 -0.05 -0.14 - 0.03 -2.85 (0.78) -3.66 -3.12 (0.8) -3.88 

Baseline:Change 

interaction -9.51 -11.24 - -7.75 0.44 0.35 - 0.52 -0.36 -0.47 - -0.26 -3.97 (0.59) -6.71 -2.94 (0.66) -4.46 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -1.93 -3.34 - -0.5 0.63 -6 - 6.94 -33.81 -42.7 - -25.37 -1 (0.58) -1.74 -0.61 (0.67) -0.91 

Baseline (2nd order 

polynomial) -- -- -5.52 -11.5 - 0.4 15.51 8.38 - 22.84 -- -- -- -- 

Change since 

baseline 4.63 3.21 - 6.01 -0.19 -0.25 - -0.13 0.25 0.16 - 0.33 0.4 (0.65) 0.61 1.11 (0.76) 1.46 

Baseline:Change 

interaction -0.25 -1.05 - 0.55 0.04 0 - 0.08 -0.04 -0.08 - 0.01 0.39 (0.44) 0.9 0.06 (0.46) 0.13 

           

Climatic position interactions          

Baseline 

thermal:Baseline 

precipitation 

interaction 0.13 -1.41 - 1.58 0.01 -0.06 - 0.08 0.11 0.03 - 0.18 -0.36 (0.46) -0.78 -0.19 (0.54) -0.35 

Change in 

thermal:Change in 

precipitation 

interaction -0.24 -1.29 - 0.84 0.02 -0.02 - 0.07 0.05 -0.01 - 0.11 2.29 (0.52) 4.42 1.63 (0.54) 3.04 

           

Covariates           

Continent (Europe) 38.03 31.62 - 44.05 -1.99 -2.29 - -1.7 1.26 0.93 - 1.59 9.48 (1.51) 6.29 

10.17 

(2.63) 3.87 

Sampling Effort -- -- -0.56 -0.62 - -0.51 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 185.1 115.6 - 256 0.3 0.18 - 0.43 0.27 0.16 - 0.4 -- -- 

           

Model summary           

Number 

observations (n) 4596-5481 69.4-2453.7 201.6-4627.8 1374 1374 

Variation explained 

(R2) 0.1 0.85 0.56 0.09 0.1 
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Table S8. Estimated model coefficients for the change in occupancy, extirpation, colonization, and detection-corrected species richness 

models using an absence threshold of five. Posterior means and 95% Bayesian credible intervals presented for PGLMM models, model 

coefficients (and standard error) presented for analysis of covariance (ANCOVA) and spatial autoregressive (SAR) error models. t-values (for 

analysis of covariance models) and z-values (for SAR error models) are included as a measure of significance. Generally, coefficients with t-values 

< -2 and > 2 are considered significant, these and coefficients where the 95% CI does not overlap zero are in bold text in the table. Variance 

explained is expressed in terms of marginal R2 (for PGLMM), adjusted-R2 (for ANCOVA models), and Nagelkerke pseudo-R2. 

  

Occupancy (PGLMM) Extinction (PGLMM) Colonization (PGLMM) 
Species richness 

(ANCOVA) 

Detection-

corrected 

species richness 

(SAR error 

model) 

 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Posterior 

mean 95% CI 

Estimate 

(SE) 

t 

value 

Estimate 

(SE) 

z 

value 

Intercept -43.16 -96.07 - 13.89 0.8 -1.56 - 2.98 -2.56 -4.88 - -0.25 

-14.76 

(0.91) 

-

16.27 

-13.73 

(2.16) -6.34 

           

Thermal position variables           

Baseline (1st order 

polynomial) -3.81 -5.57 - -2.12 17 11.13 - 22.42 -4.41 -11.67 - 2.67 

0.37 

(0.65) 0.58 

1.4 

(1.01) 1.39 

Baseline (2nd order 

polynomial) -- -- 12.82 6.57 - 17.84 14.83 8.72 - 21.08 -- -- -- -- 

Change since baseline -3.47 -5.05 - -1.9 0.25 0.19 - 0.31 -0.07 -0.15 - 0.02 

-2.96 

(0.92) -3.21 

-2.37 

(1.06) -2.24 

Baseline:Change 

interaction -9.07 -10.73 - -7.5 0.42 0.34 - 0.5 -0.32 -0.42 - -0.22 

-4.66 

(0.66) -7.05 

-2.43 

(0.83) -2.92 

           

Precipitation position variables          
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Baseline (1st order 

polynomial) -1.99 -3.47 - -0.59 -0.14 -6.21 - 6.16 -36.96 

-45.96 - -

28.29 

-0.94 

(0.65) -1.45 

-0.04 

(0.87) -0.05 

Baseline (2nd order 

polynomial) -- -- -7.41 -12.94 - -1.84 16.85 9.68 - 23.69 -- -- -- -- 

Change since baseline 4.7 3.39 - 6.19 -0.19 -0.26 - -0.11 0.26 0.18 - 0.35 

0.62 

(0.76) 0.82 

0.73 

(0.98) 0.74 

Baseline:Change 

interaction -0.16 -1.03 - 0.65 0.03 -0.01 - 0.07 -0.03 -0.08 - 0.02 

0.37 

(0.49) 0.75 

-0.38 

(0.53) -0.72 

           

Climatic position interactions          

Baseline thermal:Baseline 

precipitation interaction 0.31 -1.11 - 1.65 -0.02 -0.07 - 0.04 0.08 0.02 - 0.16 

-0.17 

(0.51) -0.34 

0.17 

(0.69) 0.25 

Change in thermal:Change 

in precipitation interaction -0.66 -1.75 - 0.38 0.05 -0.01 - 0.1 0.04 -0.02 - 0.11 

2.16 

(0.61) 3.56 

0.74 

(0.69) 1.07 

           

Covariates           

Continent (Europe) 38.09 31.68 - 44.28 -1.97 -2.27 - -1.67 1.34 0.99 - 1.67 

9.44 

(1.74) 5.42 

8.44 

(3.63) 2.32 

Sampling Effort -- -- -0.54 -0.6 - -0.48 -0.17 -0.21 - -0.13 -- -- -- -- 

           

Random effects Variance (Std.dev.) Variance (Std.dev.) Variance (Std.dev.)     

Species 185.9 120.9 - 265.9 0.3 0.18 - 0.43 0.31 0.17 - 0.46 -- -- 

           

Model summary           

Number observations (n) 5000-5324 25.3-2121.9 175.4-3736.8 1133 1133 

Variation explained (R2) 0.1 0.86 0.53 0.1 0.18 
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