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Review
Glossary

The terms defined here have been used historically with different

meanings in various contexts (sometimes indicated in brackets after

the definition), the indicated definitions refer to how they are used in

the text.

Alternative phenotypes: phenotypic variation, independent of the

underlying architecture (often used to refer to discrete as opposed to

continuous variation).

Genetic assimilation: the classic genes-as-followers scenario where

environmentally induced phenotypic variation becomes fixed by sec-

ondary genetic control.

Genetic polymorphism: genetically determined phenotypic variation

(sometimes just referred to as polymorphism; often used to indicate

any type of genotypic variation).

Monomorphism: a relatively uniform phenotype; note that except for

discrete phenotypic variation, there is no clear-cut distinction between

monomorphism and alternative phenotypes.

Polyphenism: environmentally-cued alternative phenotypes (some-

times limited to indicate discrete phenotypes).

Stochastic polyphenism: random environmental influences, either
A major question for the study of phenotypic evolution is
whether intra- and interspecific diversity originates di-
rectly from genetic variation, or instead, as plastic
responses to environmental influences initially, followed
later by genetic change. In species with discrete alterna-
tive phenotypes, evolutionary sequences can be inferred
from transitions between environmental and genetic
phenotype control, and from losses of phenotypic alter-
natives. From the available evidence, sequences appear
equally probable to start with genetic polymorphism as
with polyphenism, with a possible dominance of one or
the other for specific trait types. We argue in this review
that to evaluate the prevalence of each route, an inves-
tigation of both genetic and environmental cues for
phenotype determination in several related rather than
in isolated species is required.

Environmental and genetic cues for alternative
phenotypes
Within virtually all species, individuals differ in behav-
iour, physiology, or form. These differences can be striking
and discrete (e.g. male vs female) or subtle and continuous
(e.g. ecotypic variation). Such phenotypic variation can
stem from genetic differences between individuals (genetic
polymorphism), from environment-dependent develop-
mental plasticity (polyphenism), or some combination of
the two. The existence of these different control systems for
phenotype differentiation raises a fundamental question:
which system precedes which evolutionarily? For instance,
environmentally cued plasticity could dominate initially.
Phenotypic variants might later become controlled geneti-
cally, as a consequence of selection on standing genetic
variation or subsequentmutations in reaction norms [1–4].
Alternatively, variants could be genetically controlled from
the start. They could later be fixed in different environ-
ments or the genetic cue for phenotype control might be
replaced by an environmental one. We use the labels
‘plasticity first’ or ‘genes as followers’ [3,4] for evolutionary
sequences where plasticity dominates initially and ‘genetic
polymorphism first’ or ‘genes as leaders’ for sequences
where genetic polymorphism is more important at the
start. The prevalence of these alternative sequences has
been a topic of interest and controversy in recent years [1–

10]. In particular, the suggestion that ‘plasticity first’
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sequences are more common than traditionally believed
[1,3,11] has attracted much attention.

Here we use a phylogenetic perspective to assess the
prevalence of the two kinds of sequences. We focus exclu-
sively on discrete polymorphism and polyphenism, because
their categorical nature greatly simplifies empirical study.
Discrete alternative phenotypes occur for many traits, so a
predominance of either ‘plasticity first’ or ‘polymorphism
first’ sequences is unlikely to emerge simply as a conse-
quence of constraints imposed by a specific developmental
pathway or gene network.

We surveyed species groups traditionally used in the
study of alternative phenotypes [3,12–14], including groups
studied in the context of mimicry and other colour poly-
morphisms,dispersalphenotypes, resourcepolymorphisms,
predator-induced phenotypes, alternative mating strate-
gies, and sex determination. We identify examples where
experimental studies allow us to classify the mode of phe-
notype control as predominantly genetic or environmental,
andwhereestablishedphylogenetic relationsamongspecies
can be used to infer transitions between modes, or from
alternative phenotypes to monomorphism (Box 1). In addi-
tion, we summarize available information on species groups
for which a certain evolutionary path is probable but needs
to be corroborated with additional evidence (Table S1 in the
external or internal to an organism, serve as cues for development;

characteristic of left–right asymmetries [11,48].
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Box 1. Evolutionary transitions between modes of phenotype control

When following a lineage over time, modes of phenotype control can

change repeatedly. For a given trait, genes could be followers or leaders

depending on the time window considered. Figure I shows transitions

between environmental and genetic control of alternative phenotypes,

and between each of these and monomorphism. For transitions away

from polyphenism, (F1 and F2 in Figure I), genes appear as followers in

evolution. This is because environmental control of alternative pheno-

types is either replaced by genetic control (F1) or mutations appear that

fix a subset of the initial phenotypes (F2). Similarly, for transitions away

from genetic polymorphism, genes appear as leaders because genetic

control of alternative phenotypes is either replaced by environmental

control (L1) or there is fixation of one of the phenotypes (L2).

The direction of a transition between polyphenism and genetic

polymorphism could be inferred in clades of related species where

alternative phenotypes are genetically controlled in some species and

environmentally induced in others. Using ancestral state reconstruc-

tion methods [20] one can infer the modes of phenotype control for

the extant species’ ancestors and thus the transitions between them.

Because of uncertainties associated with such reconstructions, an

ideal scenario for diagnosing whether genes appear as leaders or

followers would be a minority of species with one system embedded

in a clade characterized by the alternative system. In any case, an

inference requires available phylogenies and many experimental

studies on phenotype determination.

Alternative phenotypes, either in the form of polyphenism or genetic

polymorphism, can also emerge from a monomorphism (A1 or A2),

after which one of the phenotypes might be fixed. In these transitions

between monomorphisms, genes would be followers or leaders

depending on whether the intermediate stage is polyphenism (A1

followed by F2) or genetic polymorphism (A2 followed by L2). Although

the emergence of alternative phenotypes followed by a rapid return to

monomorphism might be common, these events will be hard, or even

impossible, to diagnose, depending on how long the polymorphism or

polyphenism persists.

In addition to the modes of phenotype control depicted in Figure I,

with evolutionary transitions between them, it is worth noting that

there can be intermediate situations. For instance, environmental and

genetic cues could jointly influence phenotypic variability over

appreciable stretches of evolutionary time.
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Figure I. Transitions between environmental and genetic control of phenotypes.
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supplementarymaterial online).We illustrate the ‘plasticity
first’ and ‘genetic polymorphism first’ routes and suggest
factors influencing their likelihood. We also recommend
research directions that can provide additional information
about the relative roles of developmental plasticity and
genetic polymorphism in generating and transforming var-
iability.

Evolutionary transitions between modes of phenotype
control
With gene–environment interchangeability, the same
trait, and the same developmental cascade, can be con-
trolled either by a genetic or an environmental cue
[2,3,11,15,16]. Artificial selection experiments support
interchangeability by showing that the same alternative
phenotypes can represent either genetic differences or
developmental plasticity, for instance for a wing-vein trait
in Drosophila melanogaster [17,18] and for larval colora-
tion in the tobacco hornworm Manduca sexta [19]. Inter-
changeability is sometimes used in arguments for the role
of plasticity in evolution [3]. It also underpins the idea that
there can be evolutionary transitions between genetic
polymorphism and polyphenism (Box 1, Box 2). If there
is information on the control mode of the same alternative
phenotypes for several related species, it is possible to infer
the direction of transitions between genetic and environ-
mental phenotype control using standard phylogenetic
methods [20], and so identify whether genes are followers
or leaders in such transitions (Box 1).

Even if all species with alternative phenotypes in a clade
have the same phenotype control system (either genetic or
environmental), it is possible to discover whether genes are
leaders or followers (Box 1). Genes would be followers if
populations characterized by polyphenism give rise to
populations expressing only some of the ancestral pheno-
144
types, provided that genetic change is the reason for the
phenotype loss. This corresponds to the process of ‘genetic
assimilation,’ where an environmentally induced pheno-
type becomes fixed through secondary genetic change
[3,21,22]. Conversely, genes would be leaders if popula-
tions with genetically controlled alternative phenotypes
give rise to populations comprising only some of the ances-
tral phenotypes (Box 1, Box 2).

Transitions between genetic polymorphism and
polyphenism
The best evidence for genes as leaders and followers in the
evolution of alternative phenotypes comes from sex deter-
mination in tetrapods, alternative wing-morphs in insects,
conspicuous left-right asymmetries, and social insect castes
(Table S1 in the supplementary material online). In each of
these systems, the phenotypic alternatives are present over
long evolutionary time scales, and the selective forcesmain-
taining them have attracted much interest. The mode of
phenotype control has been studied most intensively for
vertebrate sex determination. Phylogenetic analyses indi-
cate that genetic sex determination is ancestral for all
vertebrates and that environmental (generally tempera-
ture-dependent) sex determination repeatedly emerged
from a genetic system [23]. Theoretical models show that
selection often favours genetic systems, because they gen-
erate 50:50 sex ratios, but will favour environmental over
genotypic sex determination if the developmental environ-
ment differentially influences male and female fitness
[24,25]. At least six independent transitions from environ-
mental to genetic sex determination have been reported in
turtles and at least three transitions in the opposite direc-
tion in lizards [26]. A phylogenetic analysis in teleost
fishes [27] also revealed substantial evolutionary lability
of sex-determination modes, with numerous transitions
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Box 2. Proximate mechanisms underlying shifts in phenotype control

Transitions between modes of phenotype control are mediated by

proximate processes. In the simplest case, the same developmental

cascades produce the alternative phenotypes, independent of the

mode of phenotype control. Transitions can occur if elements of the

cascades are modified in how they respond to environmental or

genetic input, or if the inputs themselves change. Alternatively,

transitions might occur through addition of new regulatory elements

to established developmental programs. Such additions typically

occur upstream of established programs [79].

From the perspective of developmental cascades, transitions from

genetic polymorphism to monomorphism can simply be a loss of

alleles required to cue a subset of the ancestral phenotypes.

Transitions from polyphenism to monomorphism are instead changes

in response thresholds, i.e. changes in the strength of environmental

stimulus required to induce a phenotype. Populations of polyphenic

species often harbour genetic variation in thresholds [1]. A transition

to monomorphism occurs if thresholds shift outside the range of

environmental cues [1,80,81]. Specifically, a transition could involve

mutations that change the activity or expression level of an enzyme,

such that the mutational effect exceeds or outweighs the one

previously induced by environmental stimuli. Transitions could also

occur through mutations that change hormone secretion or receptor

sensitivity [82]. For instance, some mutants of the seasonally

polyphenic butterfly Precis coenia express only one of the phenotypic

alternatives, the rosa phenotype, because the mutant wing tissue is

insensitive to the hormonal stimulus that otherwise would induce the

alternative, linea, phenotype [83].

Transitions from polyphenism to genetic polymorphism are similar

to transitions to monomorphism, in that the distribution of response

thresholds in a population changes. The difference is that at least two

thresholds remain in the population, positioned on each side of the

range of environmental input. Apart from this, the proximate

processes responsible for threshold shifts can be the same for either

type of transition.

Finally, for transitions from genetic polymorphism to polyphenism,

one genotype might become polyphenic and the other genotypes might

be lost. To achieve polyphenism, processes at any of the steps of a

developmental cascade might become sensitive to environmental

stimuli. Temperature, for example, directly affects the activity of certain

enzymes [36] and expression levels of genes [37]. Other environmental

stimuli, especially photoperiod, can influence development by affecting

hormone secretion via the central nervous system. Indeed, many

alternative phenotypes are controlled by hormones whose secretion is

regulated by the central nervous system [82].
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from genetic to environmental systems and possibly also
transitions in the reverse direction ([27], but see [28]).

The relative ease of transitions between genetic and
environmental sex determination is illustrated by sex
reversal from exposure to extreme temperatures in species
that normally have genetic sex determination [29,30], by
the presence of sex-chromosomes in species with documen-
ted environmental sex determination [31], and by Caenor-
habditis elegans nematode and housefly laboratory strains
exhibiting novel genetic and temperature-dependent sex
determination systems [32,33]. Furthermore, a rapid re-
placement of an environmental sex determination system
by a genetic one has been demonstrated in experimental
silverside populations (Menidiamenidia) by exposing them
to temperature conditions that generate extremely biased
sex ratios [34]. The molecular changes underlying this
transition have not been characterized.

The gonadal developmental pathways of vertebrates
show extraordinary evolutionary conservatism [35], indi-
cating that genetic and environmental sex determination
share developmental cascades to a large extent. At several
points along the developmental pathway, temperature
might affect sex differentiation by altering the molecular
processes involved, and this can mediate shifts between
modes of phenotype control (Box 2). Temperature can
directly affect the activity of enzymes involved in sex
determination (as shown for an aromatase that transforms
testosterone into estradiol [36]), as well as alter the ex-
pression level of genes. DMRT1 [37], for example, is a
temperature-sensitive gene encoding a transcription factor
required for the male differentiation cascade throughout
the vertebrates [38]. Generally, in environmental sex de-
termination, temperature seems to act on steroidogenic
enzymes or steroid hormone receptors, altering the hor-
mone environment of the developing embryo and thus
shunting it into either the male or female pathway [36,39].

Unidirectional transitions from genetic to environmen-
tal determination of alternative phenotypes are well illus-
trated by wing dimorphism in insects, viz. the presence of
winged and wingless (or short-winged) individuals in the
same species. The two morphs represent dispersal alter-
natives, encompassing a suite of morphological, beha-
vioural, physiological, and life history traits, such that
the long-winged morph expresses a ‘migratory syndrome’
[40]. This dimorphism has independently evolved many
times in insects and its maintenance is supposed to depend
on spatial and temporal heterogeneity in the environment.
Within a local patch, the wingless morph usually has a
higher fitness than the winged morph, because trade-offs
in resource allocation and genetic correlations result in a
younger age at first reproduction and higher fecundity in
the wingless compared to the winged morph [41,42]. Re-
duced wing development is therefore often favoured in the
short term, whereas the winged morph can be favoured in
the long term, given a certain risk of local patch extinction
[41,42]. The wing morph can be cued genetically, some-
times with a simple architecture [42], indicating that a
single mutation can be enough to generate a new wingless
morph from a winged ancestor. In species where wing
morph is cued environmentally, typical stimuli include
temperature and photoperiod [43].

A transition from a single-locus wing polymorphism to a
nutrition and temperature-dependent wing polyphenism
has occurred in a group of carabid beetles (Figure 1). The
developmental cascades underlying such transitions from
genetic polymorphism to polyphenism (Box 2) could derive
from polarized stress-response pathways, because wing-
less forms can often be induced artificially by different
stress factors [44,45]. The pattern of wing polyphenism in
the carabid beetle is consistent with this idea. Individuals
with a long-winged genotype express the long-winged phe-
notype under favourable environmental conditions only,
and differentiate into the wingless morph under low rear-
ing temperatures and with restricted nutrition [46].

Possibly the clearest illustrations of unidirectional tran-
sitions from polyphenism to genetic polymorphism are
found among conspicuous left–right asymmetries
[11,47,48]. When asymmetries vary within populations,
with right-handed and left-handed individuals about
equally common, the direction of handedness is typically
145
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Figure 1. Transitions from genetic polymorphism to polyphenism and monomorphism in carabid beetles. The phylogenetic distribution of winged and wingless species in

the genus Calathus illustrates the pattern expected for a transition from genetic polymorphism (blue branches) to polyphenism (red). In the majority of species, wing morph

is a genetic polymorphism. In cases where the detailed genetic architecture has been inferred by mating crosses, the phenotype is determined by a one-locus two-allele

system, with short wings dominant [46,84,85]. In the species Calathus melanocephalus, however, long winged morph development further depends on temperature and

food conditions, whereby individuals with a long wing genotype only develop the long wing phenotype under favourable environmental conditions. Thus, the genetic

polymorphism has been modified into an environment-dependent expression of the phenotype, illustrating a probable first step in the transition to a fully polyphenic trait.

Phylogeny simplified from [86] with morph-determination data added from [46,84,85,87]. Several transitions from a genetic polymorphism to monomorphism have also

occurred in this group; the species in green has lost the short-winged morph, whereas species in yellow have lost the long-winged morph.
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not inherited [11], indicating random phenotype determi-
nation [49]. The latter is sometimes recognized as a sepa-
rate mode of phenotype control, but has also been referred
to as stochastic polyphenism [49]. This is reasonable if
random environmental influences, either external or inter-
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Figure 2. Transitions from polyphenism to genetic polymorphism and monomorphism

polyphenism (red branches) to genetic polymorphism (blue; phylogeny adapted from [11

to the relative position of the anther and the style (see illustration). In the majority of spe

stochastically polyphenic trait [11,50,51]. In the species Heteranthera multiflora, howeve

shown that handedness is determined by a two-allele locus, with the right-styled all

probably secondarily replaced by a genetic polymorphism [11,50,51]. A transition to m

dubia (yellow). Note that the available molecular phylogeny for Heteranthera includes

which was added as a sister group to the species pair Heteranthera rotundifolia and Het

with the exception of H. multiflora, all Heteranthera species with asymmetric flower

Heteranthera clade is not important for the inference of the direction of the transition,
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nal to an organism, serve as cues for development. Such
stochastic polyphenism is found among flowers in plants of
the genus Heteranthera and the family Haemodoraceae,
where styles can bend either to the left or right of the
anther (Figure 2). In a small subset of species in each
a
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rdneri Left-styled flower
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in Heteranthera plants. The phylogeny illustrates the transition from a stochastic

,50,51]). In plants of the genus Heteranthera, flowers are asymmetrical with respect

cies, each individual plant has both types of flowers, revealing that handedness is a

r, each individual plant has only one type of flower, and crossing experiments have

ele dominant to the left-styled allele [88]. Thus, the stochastic polyphenism was

onomorphic straight-styled flowers has also occurred in the species Heteranthera

only a small subset of the extant species and does not include H. multiflora [51],

eranthera limosa as suggested by a morphology-based cladogram [89]. Given that,

s display stochastic polyphenism; the exact position of H. multiflora within the

as long as this species does not have a basal position in the clade.
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group, the stochastic polyphenism was most likely second-
arily replaced by genetic polymorphism [11,50,51], indicat-
ing a genes as followers route (Figure 2). This transition
has been explained by selection against selfing, because
selfing rates are lower in entirely left- or entirely right-
styled plants than in those possessing both floral forms
[52]. In Heteranthera species with stochastic polyphenism,
individual plants have a mixture of left- and right-handed
flowers, whereas with the genetic polymorphism, each
individual has only one type of flowers. Similar to other
conspicuous left-right asymmetry traits [11], the genetic
cue is presumed to direct the positional information con-
sistently to either the right or left side within the develop-
ing tissue [53] without otherwise affecting the
developmental cascade.

Transitions from genetic polymorphism to
monomorphism
In species with genetically determined alternative pheno-
types, drift and habitat-specific selection, combined with
low levels of gene flow among populations, often result in
the local loss of one or several phenotypes. The probability
of losing specific phenotypes by drift can also depend on the
genetic architecture [54,55]. Many examples of phenotype
loss occur in insects with genetically determined wing
polymorphism and in taxa with colour morphs (Table S1
in the supplementary material online). The loss of colour
morphs is nicely illustrated by female-limited polymor-
phism in damselflies of the genera Ischnura and Enal-
lagma and throat colour morphs in males of side-blotched
lizards. In these cases, polymorphism is ancestral and
different morphs have been lost in different species or
subspecies [56,57] (Figure 3). Morph losses probably cor-
respond to a loss of alleles (Box 2), but it is also conceivable
that mutant modifiers have repressed the expression of
morphs [56]. Although the ultimate processes driving fe-
male morph losses in the damselflies remain controversial
(Figure 3, [56,58]), at least one throat-colour morph in the
lizard example is hypothesized to be disfavoured during
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Figure 3. Transitions from genetic polymorphism to monomorphism in damselflies of

colour morphs, some of which are typical female morphs whereas others are male

harassment from males [58]. In different species, either the male-mimicking morph (gr

processes driving these morph losses remain poorly understood. Several mutually no

population densities, morph-specific predation risks or genetic drift [56]. Phylogeny sim
colonization of new habitats [57]. The throat colour pat-
terns of male side-blotched lizards signal different mating
tactics; orange-throated males control large territories
with many females, blue-throated males mate-guard
females by cooperative territory defence, and yellow-
throated males (female-mimics) sneak into other males’
territories to obtain mates [59,60]. Although conditional
changes between strategies can occur [61], these pheno-
types are largely genetically determined [59,60]. In most
populations the male mating types are maintained by
negative frequency-dependent selection, with orange being
most fit when blue is common, yellow being most fit when
orange is common, and blue being most fit when yellow is
common [59]. Phylogenetic reconstruction revealed that
the polymorphism, in particular the yellow sneakermorph,
was independently lost eight times, often in distinct sub-
species [57].

Many more such losses must have occurred in transi-
tions from genetically controlled wing polymorphism to
monomorphism in insects [41,42], but the exact number
of independent transitions cannot be inferred because the
phylogenetic and experimental data are too scattered
across orders (Table S1 in the supplementary material
online). The transitions can result in fully wingless or fully
winged species and subspecies. Four convincing examples
of such polymorphism loss have occurred in the carabid
beetle genus Calathus (Figure 1).

Transitions from polyphenism to monomorphism
Transitions from polyphenism to monomorphism provide
the best examples for the role of plasticity in evolution [8].
Monomorphism can be adaptive if the maintenance of
alternative phenotypes is costly and only some phenotypes
are favoured in a given environment [14]. Alternatively, if
environmental conditions are such that certain phenotypes
are never expressed, these phenotypes might be lost as a
consequence of drift [14,62].

Random conspicuous asymmetries provide many exam-
ples of transitions from polyphenism to monomorphism
l female Male-mimicking
morph
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a
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the genus Ischnura. Females in this genus have different genetically determined

mimics [58,90]. The male mimics are supposed to reduce costs associated with

een branches) or the typical female morphs (yellow) have been lost. The ultimate

n-exclusive explanations are possible, including mate limitation because of low

plified from [56], photographs courtesy of Gayle and Jeanell Strickland.
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(see [11] for a detailed review). The relative ease with
which such transitions occur suggests that canalization
of developmental noise into a defined ‘left’ versus ‘right’
axis requires only minor molecular changes. The evolution
of canalized switches can be illustrated by phallostethid
fish [11]. The species in this group are characterized by the
presence in males of a complex, bilaterally asymmetric
copulatory organ (‘priapium’), as well as other traits asso-
ciated with internal fertilization [63]. Phylogenetic pat-
terns suggest that the priapium asymmetry was random in
the ancestor, and that four species independently evolved
directional asymmetry with individuals either only right-
sided or only left-sided. These speciesmight thus represent
up to four independent transitions from polyphenism to
monomorphism [11], the uncertainty mainly stemming
from some species being known from a small number of
specimens only [64].

Transitions from polyphenism to monomorphism can
also readily occur by a large shift in the threshold for
switching between alternative phenotypes, such that the
threshold is moved outside the variation range of the
environmental input (Box 2). For example, tadpoles of
Spea spadefoot toads can develop either into omnivorous
or carnivorous morphs, depending on the amount of fresh-
water shrimp in their diet [65]. The tadpoles in some
populations seem to have lost the sensitivity to the envi-
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Figure 4. Transitions from polyphenism to monomorphism in Cardiocondyla ants. Male

associated with striking differences in morphology and physiology. The fighter morp

spermatogenesis. To monopolize the matings in their natal colonies, these males are ag

male morph has large eyes, wings, and a limited sperm supply. These males are docile

from other nests. Male morph development depends on environmental conditions: fig

changes in temperature or colony fragmentation [92,93]. The presence of both male type

been lost several times [94] (yellow). Male morphs for Cardiocondyla atalanta (grey) a

University of Regensburg.
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ronmental cue, and thus the ability to differentiate into the
carnivorous morph, possibly as a consequence of character
displacement through interspecific competition [66]. Simi-
larly, genetic variation in the tendency of Aquarius remigis
water striders to develop short instead of long wings has
resulted in the near fixation of the short-winged morph in
some populations, and of the long-winged morph in others
[67]. Habitat instability and the need for upstream migra-
tion are suggested to favour the long-winged morph over
the more fecund short-winged morph.

Strong evidence for repeated losses of conditional alter-
native phenotypes is found for male mating strategies in
Cardiocondyla ants andOnthophagus horned beetles.Car-
diocondyla males gain access to females either by defend-
ing local harems or by dispersing. Coexistence of both
strategies is ancestral for the genus. However, several
species have lost the disperser morph (Figure 4), presum-
ably because of very low post-dispersal mating chances. In
horned beetles, alternative reproductive tactics are associ-
ated with the presence or absence of horns, and many
species exhibit conditional horn expression [68]. Horn
tissue differentiation starts during the prepupal stage,
and the tissue can either be transient and resorbed during
pupal development or give rise to horns of various shapes
and sizes [69]. Horns appear to have originated only a few
times, perhaps only once, during early Onthophagus evo-
C. obscurior males

-group
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lution, but have been lost independently many times [69].
These losses have been explained by variation in the
intensity of sexual selection and by the energetic costs
associated with horn production [70].

Which factors favour ‘genetic polymorphism first’
versus ‘plasticity first’?
Based on the case studies (Table S1 in the supplementary
material online), the debate on genes as leaders and fol-
lowers in the evolution of phenotypic variation cannot be
resolved in favour of one route or the other. Transitions
between genetic polymorphism and polyphenism are rare.
However, there is ample evidence for species with alterna-
tive phenotypes generating populations, subspecies or de-
rived species with only a subset of the ancestral
phenotypes, and this process occurs as frequently via
genetic polymorphism as via polyphenism, at least among
the available examples.

Although we find no clear tendency for genes to be
followers or leaders overall, trends appear in certain trait
categories. Reciprocal transitions between genetic poly-
morphism and polyphenism have only been documented
for sex determination; for the other systems, the thus far
inferred transitions are unidirectional. Genes appear typi-
cally as leaders in colour polymorphisms, even though
these traits can be associated with very different adapta-
tions, including mimicry systems and alternative mating
strategies (Table S1 in the supplementary material on-
line). However, colour polymorphisms occurring with sea-
sonality in butterflies are plastic traits [71]. We do not yet
knowwhether such seasonal polyphenism frequently arose
secondarily from genetic polymorphism because the envi-
ronment-dependent regulation of the phenotypes was
favoured over a genetic determination.

In contrast to colour polymorphisms, genes often appear
as followers in conspicuous asymmetry traits [11,48]; a large
proportion of the genetically determined asymmetries ap-
pear to have arisen from ancestors where the asymmetry
directionwasnot inherited [11,50].The reasonmightbe that
asymmetry traits entail a developmentally simple left-
versus-right axis definition, which is independent of the
function of the asymmetric trait [11,50]. In addition, asym-
metric mating structures, which represent an abundant
asymmetry trait category, often prevent individuals of op-
posite handedness from mating with each other, in which
case within-population genetic polymorphism could not be
maintained [72]. A notable exception occurs in someAmphi-
dromus snails, where coexisting dextral and sinistral shell
morphs are genetic polymorphisms rather than stochastic
polyphenisms, and where matings are more successful be-
tween morphs than within [73,74].

An important explanation for the distribution of pheno-
type control systems is most likely that polyphenism and
genetic polymorphism are beneficial under different con-
ditions, so that the frequency and direction of transitions
between them depends not only on how often either system
emerges but also on how often one system is more benefi-
cial than the other. Polyphenism should be favoured when
a phenotype-determining environmental cue accurately
predicts the selective condition for which the correspond-
ingmorph is suited [14,75], whereas genetic polymorphism
should be favoured when such environmental cues are
lacking and there is local frequency dependence or spatial
variation in conditions, combined with limited gene flow
[76,77]. Photoperiod and temperature as cues for seasonal
polyphenism versus spatial variation in the frequency of
different model species in genetically polymorphic mimicry
nicely illustrate these alternatives [77].

Genetic and environmental cues for phenotype determi-
nation representing different adaptations might also ex-
plain the rarity of examples of transitions between
polymorphism and polyphenism. Because a transition to
the more advantageous system can completely replace the
ancestral one, many ephemeral transitions might not be
detected. The only cases where one can infer the direction
of a transition might be those where both systems are
roughly equally adaptive. Alternatively, transitions be-
tween polyphenism and polymorphism might simply not
occur very often and both systems might evolve directly
and independently.

To objectively quantify howmuch genetic polymorphism
and polyphenism contribute to the generation and trans-
formation of variation, one needs a representative sample,
which is not available at present. Species groups that are
currently sufficiently well studied to make inferences on
transitions are not random selections of species with alter-
native phenotypes, but represent systems suited for spe-
cific research programs. In addition, themost often studied
instances of alternative phenotypes have an adaptive back-
ground [14], whereas there are many examples of partly or
wholly non-adaptive phenotypic variation [78]. An even
greater uncertainty might lie in the potentially large num-
ber of transitions leading from one monomorphism to
another, via evolutionarily short-lived genetic polymor-
phism or polyphenism (Box 1). Such ephemeral transitions
are difficult to assess and it remains to be studied whether
they are more likely to be associated with genetic or
environmental phenotype control.

Even so, experimental investigation of the mode of
phenotype control in additional species groups is feasible
and could significantly increase knowledge about how
much genetic polymorphism and polyphenism contribute
to the generation and transformation of variation. Often
the mode of phenotype control in a focal species is simply
assumed to be representative of an entire clade, which
precludes inferences on possible transitions between
modes. Another potentially fruitful approach could be to
identify intermediate steps in transitions from continuous
to discrete variation. This might require studying clades
related to species with alternative phenotypes, but in
which species display continuous instead of discrete varia-
tion for the trait of interest. In general, more information
on phenotype determination in groups of related species,
together with comparative developmental and endocrino-
logical data, could elucidate the relative importance of
genes and plasticity in the generation of variation.
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