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� Background Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes
in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensi-
tivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process
called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental
robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been
suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and
characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding
of how novel traits and species evolve.
� Scope This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimila-
tion, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence
implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the
potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic,
molecular and physiological levels and approaches that can improve our understanding of these mechanisms are
described. The review concludes by outlining major challenges for future work.
� Conclusions Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and
genetic assimilation promises to help advance our basic understanding of evolutionary innovation and
diversification.

Key words: Genetic accommodation, genetic assimilation, phenotypic plasticity, cis and trans regulatory evolution,
canalization, developmental robustness, species diversity.

INTRODUCTION

Phenotypic plasticity – the ability of an individual organism to
change its phenotype in direct response to stimuli or inputs
from its environment (Nijhout, 2003; West-Eberhard, 2003) –
is commonplace. Yet the evolutionary significance of such de-
velopmental flexibility remains controversial (Laland et al.,
2014; Wray et al., 2014). Although many evolutionary biolo-
gists have long held that plasticity has no relevance for evolu-
tion (other than to perhaps act as a stabilizing force by
dampening any diversifying effects of selection; Huey et al.,
2003; Price et al., 2003; de Jong, 2005), a growing number of
researchers have suggested that plasticity can actually act as a
diversifying force in evolution. Indeed, plasticity might play a
key role in fostering new traits and species, and may even fuel
adaptive radiation (West-Eberhard, 1986, 1989, 2003; Pigliucci
and Murren, 2003; Schlichting, 2004; Pfennig et al., 2010;
Moczek et al., 2011).

Although several routes have been proposed for how plastic-
ity might impact evolutionary innovation and diversification
(Bradshaw, 1965; Stearns, 1989; West-Eberhard, 1989, 2003;
Pigliucci and Murren, 2003; Price et al., 2003; Schlichting,
2004; Pfennig and McGee, 2010; Pfennig et al., 2010; Moczek

et al., 2011; Thibert-Plante and Hendry, 2011; Fitzpatrick,
2012), one widely cited pathway involves an evolutionary pro-
cess known as ‘genetic assimilation’ (sensu Waddington, 1952,
1953). Genetic assimilation occurs when a trait that was origi-
nally triggered by the environment loses this environmental
sensitivity (i.e. plasticity) and ultimately becomes ‘fixed’ or ex-
pressed constitutively in a population. Another way of wording
this phenomenon is that an induced trait loses its environmental
sensitivity and thereby becomes robust to the environment. Not
only might this process represent a common way for new traits
to arise (reviewed in West-Eberhard, 2003; Pfennig et al.,
2010; Moczek et al., 2011), but if some populations undergo
genetic assimilation and others do not – and if the affected traits
influence the likelihood that these populations can exchange
genes – then the differential loss of plasticity might represent a
crucial step in the formation of new species (West-Eberhard,
1986, 1989, 2003, 2005; Pigliucci and Murren, 2003; Pfennig
et al., 2010; Schwander and Leimar, 2011).

In this review, we explore this potential pathway to innova-
tion and diversification. We begin by examining how the evolu-
tion of phenotypic plasticity, followed by its loss via genetic
assimilation, might facilitate genetic evolution and thereby
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promote the origins of new traits and even new species. We
then discuss the various proximate (i.e. genetic, molecular and
physiological) mechanisms that potentially underpin both phe-
notypic plasticity and genetic assimilation. We conclude by
outlining future directions that promise to help illuminate plas-
ticity’s role in the origins of biodiversity.

THE FLEXIBLE – AND INFLEXIBLE –

ORGANISM

All organisms can alter some aspect of their phenotype in re-
sponse to changes in their environment; if not their morphol-
ogy, then their physiology, behaviour and/or gene expression
(Nijhout, 2003; Sultan, 2007; Gilbert and Epel, 2009). For ex-
ample, temperature often influences phenotype because nearly
all enzyme activity is temperature-dependent; food contains po-
tent chemical signals that can dramatically alter phenotypes;
light can stimulate plants to produce different-shaped leaves
and shoots; pressure can cause plant stems and roots and animal
muscles and bones to grow differently; and other organisms (be
they pathogens, predators or competitors) can cause an individ-
ual plant or animal to release hormones, which can alter the
phenotype that the individual produces (reviewed in Gilbert
and Epel, 2009). Such phenotypic plasticity is so prevalent that
it can be considered a defining feature of living things (Pfennig,
2004).

To understand why plasticity is ubiquitous, consider that all
organisms encounter variation in their environment, and these
fluctuations can destabilize development and thereby disrupt
the match between the organism’s phenotype and its environ-
ment (Whitman and Agrawal, 2009). Phenotypic plasticity can
lessen such mismatches and thereby enhance fitness
(Ghalambor et al., 2007). Generally, phenotypic plasticity is fa-
voured when organisms confront environmental variation,
when no fixed trait is best suited for all environmental condi-
tions, when cues are available that reliably signal change in lo-
cal conditions, and when the fitness benefits outweigh the costs
of expressing plasticity (Berrigan and Scheiner, 2004; Travis,
2009; Whitman and Agrawal, 2009).

When the above conditions favouring plasticity are met, plas-
ticity is generally thought to evolve because selection favours
genotypes that are more responsive to the changes in the envi-
ronment (Schlichting and Pigliucci, 1998). Indeed, in nearly ev-
ery natural population surveyed, different genotypes are
typically found to vary not only in whether they respond to a
particular change in their environment but also in the manner in
which they respond – in other words, different genotypes typi-
cally express different environmentally contingent phenotypic
responses (Gupta and Lewontin, 1982; Sultan and Bazzaz,
1993; Kingsolver et al., 2004). Such ‘reaction norms’ provide
the heritable variation on which selection can act to promote an
evolutionary change in plasticity (Schlichting and Pigliucci,
1998; Windig et al., 2004).

Once it evolves, however, plasticity can subsequently be re-
duced or even lost evolutionarily, and this loss can have pro-
found evolutionary consequences. Indeed, for more than a
century various researchers have hypothesized that the gain and
subsequent loss of plasticity can facilitate genetic evolution and
thereby fuel the origins of new, ecologically relevant traits

(Baldwin, 1902; Schmalhausen, 1949 [1986]; Waddington,
1953; West-Eberhard, 2003). According to one widely cited
model for how this process might unfold (West-Eberhard,
2003), when selection acts on quantitative genetic variation reg-
ulating the expression of an initially environmentally induced
trait, it can promote the evolution of either increased or de-
creased plasticity through the process known as ‘genetic ac-
commodation’ (Fig. 1). Formally, genetic accommodation is
defined as a mechanism of evolution wherein a novel pheno-
type, generated by either a mutation or an environmental pertur-
bation, is refined into an adaptive phenotype through a series of
quantitative genetic changes (West-Eberhard, 2003). In this
sense, genetic assimilation represents a specific form of genetic
accommodation in which plasticity decreases to the point that a
trait becomes constitutively expressed (Waddington, 1953)
(Fig. 1).

Genetic accommodation/assimilation can occur because
most (if not all) traits are influenced by both genes and the envi-
ronment (Gilbert and Epel, 2009). These two influences on phe-
notype are potentially evolutionarily interchangeable, meaning
that selection can slide trait regulation anywhere along a contin-
uum from total environmental control to total genetic control
(Fig. 1). Thus, when genetic variation for the degree of environ-
mental influence is present (as is nearly always the case; see
above), selection can act on this variation and promote the evo-
lution of either increased or decreased environmental sensitivity
(West-Eberhard, 2003). If selection favours the elimination of
all environmental influences – i.e. genetic assimilation – the
end result is a genetically ‘fixed’ or ‘canalized’ trait
(Waddington, 1942); i.e. a trait that is invariably produced re-
gardless of normal changes in the environment (Fig. 2).

Although genetic accommodation can occur whether a novel
trait is mutationally or environmentally induced (West-
Eberhard, 2003), environmentally triggered novelties are likely
to have greater evolutionary potential than mutationally in-
duced ones, for at least three reasons (West-Eberhard, 2003).
First, changes in the environment often impact many individ-
uals simultaneously, in contrast to genetic mutations, which

Greater
genetic 
influence

Greater 
environmental

influence

Time 1Time 2

Evolution of increased canalization 

Evolution of increased plasticity

Time 2Time 1A

B

Genetic assimilation

Genetic accommodation

FIG. 1. A diagram illustrating the distinction between genetic accommodation
and genetic assimilation. Genetic accommodation is any adaptive genetic
change in the environmental regulation of a phenotype. For example, a trait may
evolve either (A) increased or (B) decreased environmental sensitivity (i.e. phe-
notypic plasticity). The complete loss of phenotypic plasticity (i.e. increased
canalization) is an extreme form of genetic accommodation known as genetic

assimilation. Reproduced with permission from Pfennig (2015).
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initially affect only one individual and its immediate descen-
dants (not to mention that the vast majority of mutations are
deleterious; Kassen and Bataillon, 2006; Halligan and
Keightley, 2009). This widespread impact of environmental
change enables a newly induced trait to be tested among diverse
genotypes, thereby providing fertile ground for selection to act
and increasing the chances that genetic accommodation will oc-
cur (West-Eberhard, 2003).

Second, although the chance that a particular mutation will
occur is not influenced by whether or not the organism is in an
environment where that mutation would be advantageous – i.e.
adaptively directed mutation does not occur (Sniegowski and
Lenski, 1995) – the situation is quite different for an environ-
mentally triggered novel trait. Such a trait is always associated
with a particular environment – the one that triggered it.
Therefore, environmentally induced traits are more likely than
mutationally induced novelties to experience consistent selec-
tion and directional modification (West-Eberhard, 2003). This
allows new environments to immediately produce and select
among new phenotypes and rapidly refine their expression
(Badyaev, 2005).

Third, plasticity promotes the storage and release of ‘cryptic
genetic variation’, i.e. variation that is expressed only under

atypical conditions (Gibson and Dworkin, 2004; Hermisson and
Wagner, 2004; Dworkin, 2005a; Schlichting, 2008; Ledón-
Rettig et al., 2010; Paaby and Rockman, 2014). The release of
such variation ultimately makes genetic accommodation possi-
ble (Moczek, 2007; Moczek et al., 2011). Phenotypic plasticity
facilitates the build-up of cryptic genetic variation, both be-
cause the effects of novel genetic variants are buffered by com-
pensatory plastic responses (Moczek, 2008) and because
environment-specific genes experience relaxed selection in the
non-inducing environment (Lahti et al., 2009; but see Hunt
et al., 2011; Leichty et al., 2012). Essentially, because living
systems are robust to mutations and minor environmental per-
turbation (Masel and Siegal, 2009), they can accumulate ge-
netic variation without that variation having any phenotypic
effects and thereby being removed by selection. However, if
the system is disturbed (e.g. following exposure to a novel envi-
ronment and the stress that often accompanies such situations;
Badyaev, 2005), robustness breaks down, and the formerly
cryptic genetic variation is revealed phenotypically and ex-
posed to selection. Because this storage and release of cryptic
genetic variation is the biological analogue of an electric capac-
itor (which stores and later releases electric charge), it has been
dubbed ‘evolutionary capacitance’ (Masel, 2013). Evolutionary
capacitors – which have been implicated in the heat shock pro-
tein Hsp90 (Rutherford and Lindquist, 1998), yeast prions
(True and Lindquist, 2000) and complex gene networks
(Bergman and Siegal, 2003) – represent molecular switch
mechanisms that can shift genetic variation between cryptic
and exposed states (Masel, 2013).

In sum, there are multiple reasons to expect environmentally
triggered novelties to have greater evolutionary potential than
mutationally induced ones. Indeed, genetic mutations might
contribute not so much to the initial origins of phenotypic nov-
elties as to the pool of genetic variation that ultimately makes
genetic accommodation/assimilation possible. Or, as West-
Eberhard (2003, p. 158) put it, ‘genes are followers, not neces-
sarily leaders, in phenotypic evolution’.

GENETIC ASSIMILATION’S ROLE IN

DIVERSIFYING EVOLUTION

Genetic assimilation has long been regarded as potentially cru-
cial in the origins of novel traits (Waddington, 1952, 1953,
2003; Pigliucci and Murren, 2003; Aubret and Shine, 2009;
Lande, 2009; Moczek et al., 2011). With genetic assimilation,
the origin of a new, canalized trait does not require new genes;
instead, selection can promote the origins of a novel trait by act-
ing on existing genetic and epigenetic variation in a population
(Schlichting and Pigliucci, 1998; e.g. see Emlen et al., 2007;
Ledón-Rettig et al., 2008; Aubret and Shine, 2009; Pfennig and
Martin, 2009, 2010; Scoville and Pfrender, 2010). In other
words, a plastic trait can be converted into a canalized trait
through evolutionary adjustments in the regulation of a trait’s
expression.

Although laboratory studies have demonstrated that genetic
assimilation can promote novelty (Waddington, 1952, 1953),
and there are several suggestive field studies (e.g. Losos et al.,
2000; Pfennig and Murphy, 2000; Wund et al., 2008; Scoville
and Pfrender, 2010; Robinson, 2013; reviewed in Schlichting

A B
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Ancestral environment Novel environment

Phenotypes change Selection acts

Ancestral environmentNovel environment

F

FIG. 2. Phenotypic plasticity, followed by genetic assimilation, may facilitate the
evolution of a new, canalized trait regardless of the environment through the fol-
lowing steps (here, the trait is a new leaf shape; different colours represent dif-
ferent genotypes). (A) A genetically variable population (B) experiences a novel
environment (indicated here as a change from a shaded to an unshaded back-
ground). (C) Consequently, the environment induces novel phenotypes (different
leaf shapes), but different genotypes respond differently (by producing different-
shaped leaves). (D) Selection disfavours those genotypes that produce maladap-
tive phenotypes (leaf shapes) in the novel environment (indicated here by an X).
(E) Such selection may result in the evolution of a novel, canalized trait (a novel
leaf shape) that is expressed regardless of the environment. (F) That is, the novel
trait is produced even when the environment changes back to the original, ances-

tral state.
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and Wund, 2014), ascertaining whether or not genetic assimila-
tion actually has contributed to the evolution of any complex,
novel trait in any natural population has long been questioned
(Simpson, 1953; Williams, 1966; Orr, 1999; de Jong, 2005;
Futuyma, 2013; Wray et al., 2014). A chief difficulty with es-
tablishing whether genetic assimilation has promoted novelty is
that, once a novel trait has evolved, its evolution cannot be
studied in situ (Hall, 1999). One way around this problem is to
study lineages (i.e. populations or species) that are thought to
be ancestral to the lineage possessing the novel trait in question
(West-Eberhard, 2003; Badyaev, 2005; Ghalambor et al., 2007;
Ledón-Rettig et al., 2008). Using such an approach, one can
then test whether: (1) ancestral species express the trait only
through plasticity; (2) novel environments uncover cryptic ge-
netic variation; and (3) trait expression has been refined in de-
rived species. This approach has recently been applied in,
among other systems, spadefoot toads and has revealed that a
novel ecomorph (the ‘carnivore’ morph) has likely arisen
through a ‘plasticity-first’ scenario (Ledón-Rettig et al., 2008,
2010). Moreover, a recent meta-analysis has uncovered several
convincing cases in which genes appear to be ‘followers’ in the
origins of novel traits (Schwander and Leimar, 2011). For other
possible examples in which genetic assimilation might have
promoted novelty, including in plants, see the recent review by
Schlichting and Wund (2014).

Genetic assimilation might even play a role in speciation.
When an induced phenotype becomes expressed constitutively,
environmentally induced variation within populations or spe-
cies can be translated into diverse phenotypes between popula-
tions and species. Thus, genetic assimilation generates diversity
because it produces fixed (genetic) differences among popula-
tions due specifically to the shift from a plastic to a non-plastic
phenotype. As noted in the Introduction, if a trait that is in-
volved in mating choice, habitat use or reproductive mode
undergoes genetic assimilation in some populations but not in
others (e.g. Diggle and Miller, 2013), then this differential loss
of plasticity might lead to the evolution of reproductive isola-
tion between these populations and, possibly, speciation (West-
Eberhard, 1986, 1989, 2003; Pfennig et al., 2010). Theory has
demonstrated genetic assimilation’s capability for promoting
diversification (Lande, 2009), and empirical studies find that
phenotypic plasticity produces intraspecific variation that paral-
lels interspecific variation within the same clade, suggesting
that the former might often form the basis for the latter
(Badyaev and Foresman, 2000; Losos et al., 2000; Pfennig and
Murphy, 2000; Gomez-Mestre and Buchholz, 2006; Bull-
Herenu and Arroyo, 2009). Moreover, there are numerous
examples in which a formerly plastic trait has undergone canali-
zation (i.e. lost its plasticity) in a particular lineage, and such
shifts are typically accompanied by speciation (Schwander and
Leimar, 2011). However, further study is needed to ascertain
what role, if any, genetic assimilation plays in speciation
(Pfennig et al., 2010; Nosil, 2012).

Phenotypic plasticity, followed by genetic assimilation,
might also promote adaptive radiation, influencing both the
likelihood of occurrence and the patterns of diversity that
emerge (reviewed in West-Eberhard, 2003; Wund et al., 2008;
Pfennig et al., 2010). In adaptive radiation, a single ancestral
lineage diversifies rapidly in response to divergent selection
pressures across numerous environments (Schluter, 2000).

According to the ‘flexible stem’ hypothesis (West-Eberhard,
2003), an adaptive radiation arises when ecological circum-
stances favour diversification in an ancestral taxon that
expresses phenotypic plasticity in the types of traits that charac-
terize the adaptive radiation. Under such circumstances, when
individuals are exposed to the same selective environments,
plasticity in the ancestral lineage repeatedly reveals the same
sets of phenotypes. This model might explain ‘replicate’ adap-
tive radiations (i.e. the situation in which many descendant spe-
cies evolve parallel ecotypic variation in response to similar
selection pressures) in a number of systems (Meyer, 1987;
Losos et al., 2000; Wund et al., 2008). However, further study
is needed to test this model more rigorously.

Having discussed the potential evolutionary consequences of
phenotypic plasticity and genetic assimilation, we now turn to
the important issue of the possible proximate mechanisms that
underpin both processes.

POTENTIAL PROXIMATE MECHANISMS OF

PHENOTYPIC PLASTICITY AND GENETIC

ASSIMILATION

Mechanisms of phenotypic plasticity

Given the potential importance of genetic assimilation in evolu-
tionary innovation and diversification (as outlined above), un-
derstanding the molecular mechanisms involved in this process
might improve our knowledge of how novel traits evolve; how-
ever, such an understanding can also help in assessing whether
genetic assimilation is likely to be common or rare in nature.
Given that genetic assimilation represents a loss of phenotypic
plasticity, a natural starting point for thinking about the mecha-
nisms that might underlie genetic assimilation is the molecular
causes of phenotypic plasticity.

Phenotypic plasticity typically involves the following three
general steps. First, an individual’s sensory system detects and
transduces information about its external environment. In some
cases, the environmental stimulus and any response that it elic-
its may be very general, as with phenotypic changes wrought
by changes in an individual’s temperature or nutrition (re-
viewed in Gilbert and Epel, 2009). In other cases, the requisite
stimuli and responses are highly specific. For example, certain
plants possess receptor proteins that detect only the plant’s
most common natural enemies (Zhao et al., 2005). Second, the
signal detected by the sensory system is transduced into a mo-
lecular response at the biochemical level that alters the activi-
ties within cells. In the case of multicellular organisms, this
information may be conveyed elsewhere in the organism’s
body via hormonally mediated signals. Indeed, hormones un-
derlie nearly all instances of plasticity in animals and likely
also play an important role in plasticity in plants (Gilbert and
Epel, 2009). Third, the target cells, organs or tissues respond
accordingly by altering phenotype.

Ultimately, phenotypic plasticity is nearly always accompa-
nied by changes in gene expression (Aubin-Horth and Renn,
2009), an observation that has provided key insight into the mo-
lecular mechanisms of phenotypic plasticity (Gilbert and Epel,
2009). In particular, differential gene expression (and, hence,
phenotypic plasticity) often involves alterations in the binding
of transcription factors to a gene’s promoter or other regulatory
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elements. Transcription factors differ in the sequences that they
recognize, their abilities to activate or repress transcription and
their responsiveness to external signals. Thus, one proposed
mechanism of phenotypic plasticity is that the individual’s
sensory system transduces information from its external
environment by recruiting different transcription factors,
thereby activating different genes. These newly activated genes
may then trigger different hormones, which ultimately cause
alternative phenotypes to be produced (Nijhout, 2003).

Any particular plastic response may involve many steps, po-
tentially encompassing numerous genes and environmental and
physiological factors. This complexity provides copious targets
on which selection can act, from the types of signals that an in-
dividual’s sensory system can detect to the threshold amount of
a particular hormone needed to trigger a phenotypic response
(Pfennig et al., 2010; Moczek et al., 2011).

Potential mechanisms of genetic assimilation

For genetic assimilation to take place, the reaction norms
that underlie a phenotype’s expression in a population must un-
dergo an evolutionary shift, such that genotypes that express a
phenotype robustly across a range of different environments be-
come fixed in the population (Pigliucci et al., 2006).
Experimental evidence indicates that such changes in reaction
norms may be driven by variation in signalling pathways that
mediate the relationship between genotype, environment and
phenotype. One way such variants might act is by changing de-
velopmental thresholds for environmentally influenced hor-
mones and other key signalling molecules (Moczek and
Nijhout, 2002; Suzuki and Nijhout, 2006).

Although there have yet to be case studies reported in which
genetic assimilation has been linked to specific genetic changes
(but see Scoville and Pfrender, 2010), work on related topics –
including the molecular basis of gene expression variation, ge-
notype–environment interaction, and robustness – provides
valuable insights into possible causes of genetic assimilation.
As with phenotypic plasticity in general, genetic variants that
alter gene regulation are likely important contributors to ge-
netic assimilation (Pfennig and Ehrenreich, 2014). Populations
commonly harbour large numbers of genetic variants that affect
gene expression (e.g. Brem et al., 2002; Schadt et al., 2003;
Morley et al., 2004). Additionally, many new mutations that
arise within populations impact gene regulation (Landry et al.,
2007). Thus, ample genetic diversity in gene expression exists
within populations that affects gene regulation and may serve
as a reservoir of cryptic phenotypic effects (Gibson and
Dworkin, 2004; Moczek, 2007; Le Rouzic and Carlborg, 2008;
Paaby and Rockman, 2014).

There are multiple plausible ways in which changes in gene
regulation might facilitate canalization of a plastic trait (Fig.
3). For example, the regulation of genes that control a plastic
trait might become decoupled from their environmental cue
(Fig. 3A) or might evolve regulation by a secondary pathway
that makes their expression robust to the environment
(Fig. 3B; e.g. Matsui et al., 2015). Describing such changes in
gene regulation in a binary manner is helpful in considering
possible models for genetic assimilation, but it is important to
note that real cases of genetic assimilation are likely to be

caused by quantitative genetic changes in gene regulation, i.e.
changes involving one or more loci with quantitative effects
on transcript levels (Ledón-Rettig et al., 2014). These genetic
changes that facilitate genetic assimilation may occur in phe-
notypically important genes themselves or, alternatively, they
may occur in the upstream regulators of these genes. These
two classes of variants are referred to as cis and trans regula-
tory polymorphisms, respectively (Albert and Kruglyak,
2015).

Strong arguments can be made for both cis and trans regula-
tory evolution contributing to genetic assimilation. With regard
to cis regulatory polymorphisms, because they generally exhibit
lower sensitivity to the environment than trans regulatory poly-
morphisms (Smith and Kruglyak, 2008; Cubillos et al., 2014),
cis regulatory variants have the potential to rapidly canalize the

Ancestral environmentA
Signalling
pathway 1

Novel environment

gene 1 gene 2 gene 3 gene 2 gene 3

Signalling
pathway 1

gene 1

B
Signalling
pathway 1

gene 1 gene 2 gene 3 gene 2 gene 3
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pathway 1
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gene 2 gene 3
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gene 1 gene 2 gene 3gene 1

FIG. 3. Potential causes of phenotypic plasticity and genetic assimilation. (A) A
new trait arises due to a change in gene regulation triggered by a novel environ-
ment. Two plausible mechanisms for genetic assimilation of the novel trait are
illustrated: (B) evolution of the pathway underlying the novel trait such that it is
no longer environmentally responsive; and (C) rewiring of development such
that a new, environment-independent pathway causes the novel phenotype to be
constitutively expressed. Note that genes 1, 2 and 3 represent genes that must be
transcribed for the novel phenotype to be expressed, while signalling pathways
1 and 2 are pathways that can activate these genes. The thicker arrows in (C) in-
dicate that signalling pathway 2 has a stronger effect on genes 1, 2 and 3 than

signalling pathway 1.
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expression of individual genes. The most important types of cis
regulatory variants within the context of genetic assimilation
are likely to be those that create or disrupt transcription factor
binding sites (Wittkopp and Kalay, 2012). For example, loss of
a binding site for a conditionally active transcription factor
might eliminate a gene’s sensitivity to the environment.
Alternatively, gain of a binding site for a constitutively active
transcription factor might also result in the decoupling of a
gene’s expression from the environment by leading to increased
redundancy in a gene’s regulation and a corresponding higher
robustness in the gene’s expression across conditions.

Although the rewiring of gene regulation by cis regulatory
polymorphism is a plausible mechanism for genetic assimila-
tion (as described above), variants that influence gene expres-
sion in trans, or through a combination of cis and trans effects,
might also be capable of causing genetic assimilation. This is
particularly true when considering novel traits that depend on
many genes having their expression altered, as cis variants only
affect their cognate gene (and potentially its downstream targets
if it is a transcription factor), while trans variants can poten-
tially impact the regulation of many genes (e.g. Brem et al.,
2002; Yvert et al., 2003).

There is at least one additional important difference between
cis and trans regulatory variants with respect to their potential
to contribute to genetic assimilation: their mutational target
spaces. While genes usually have one promoter, their expres-
sion is often influenced by a large number of trans factors.
Despite transcription factors being the most direct regulators of
gene expression, many other factors can influence the abun-
dances of transcripts and proteins within a cell (Yvert et al.,
2003; Albert and Kruglyak, 2015). These include, but are not
limited to, environmental sensors and other components of sig-
nalling cascades that modulate the activities of transcription
factors in response to environmental cues, as well as proteins
and non-coding RNAs that directly determine transcript stabil-
ity and translation. Because so many factors affect the expres-
sion of a gene in trans, the mutational target space for trans
effects is often one or more orders of magnitude larger than for
cis effects (Denver et al., 2005; Landry et al., 2007; Gruber
et al., 2012).

The larger mutational target space for trans regulatory vari-
ants than cis regulatory variants may suggest there is a greater
chance for polymorphisms that occur in trans to decouple a trait
from its environmental cue. In particular, trans regulatory vari-
ants that cause signalling activity in conditionally active path-
ways, even in the absence of their inductive cues, might result
in genetic assimilation. Examples of such environmentally in-
sensitive variants have been described. For instance, laboratory
strains of Saccharomyces cerevisiae possess an allele of GPA1,
a component of the mating pheromone responsive mitogen acti-
vated protein kinase (MAPK) pathway, that shows high activity
even in the absence of mating pheromone (Yvert et al., 2003).
MAPK pathways are evolutionarily conserved across eukary-
otes and play diverse roles in development and physiology
(Seger and Krebs, 1995; Schaeffer and Weber, 1999; Hamel
et al., 2006), suggesting that similar phenomena could occur in
other species.

Our description of the role of changes in gene regulation in
cis and trans in genetic assimilation is an oversimplification in
that we have largely focused on the mechanisms by which

individual genetic polymorphisms might contribute. However,
it is well known that heritable changes in most traits are influ-
enced by numerous genetic variants (Mackay et al., 2009) and
that these variants can show complicated non-additive effects
on gene expression due to their collective influence on gene
regulatory networks (Omholt et al., 2000; Gjuvsland et al.,
2007; Nuzhdin et al., 2012). Furthermore, genetic variation in
other molecular processes, such as post-translational regulation
of proteins or changes in protein–protein interactions, might
contribute to genetic assimilation. Moving forward, it will be
important to develop case studies in which genetic assimilation
has been conclusively shown and the involved genetic variants
identified and functionally characterized. In the following sec-
tion we discuss approaches that can be used to explore this
problem.

APPROACHES FOR INVESTIGATING THE

MOLECULAR MECHANISMS THAT UNDERLIE

GENETIC ASSIMILATION

Current genetic and genomic approaches provide powerful
tools for characterizing the mechanisms underlying genetic as-
similation. Admittedly, these techniques will work best for
traits that have well-understood evolutionary histories and can
be studied in model organisms, which typically have high-
quality genomes and transcriptomes. However, as new sequenc-
ing technologies make it easier to generate high-quality ge-
nomes and transcriptomes in other species, these approaches
should increase in their applicability to non-model organisms.
Here, we first describe methods for examining how canalization
of a phenotype might arise due to changes in gene regulation
across genotypes and environments. We then discuss mapping
techniques that can be used to identify genes and genetic vari-
ants that cause regulatory changes that result in genetic assimi-
lation. We also mention how systematic mutagenesis screens in
model organisms might improve understanding of genetic
assimilation.

All organisms exhibit modular gene expression throughout
development (e.g. Arbeitman et al., 2002; Schmid et al.,
2005). Alterations in how these gene modules are expressed
across developmental stages and tissues is known to play an
important role in phenotypic evolution (as discussed in Peter
and Davidson, 2011; Ichihashi et al., 2014 and elsewhere),
and likely also contributes to phenotypic plasticity (Schneider
et al., 2014) and genetic assimilation (Pfennig and Ehrenreich,
2014) (Fig. 4). RNA-Seq, at multiple stages of development,
can be used to quantify the abundances of all transcripts in an
organism’s genome, even for non-model species (Wang et al.,
2009), providing a foundation for defining modules of co-ex-
pressed genes and examining the regulatory relationships
among these modules (Nuzhdin et al., 2012; Schneider et al.,
2014).

A strategy that will likely help in characterizing the molecu-
lar basis of genetic assimilation is comparing expression pat-
terns among canalized and plastic genotypes in both their
ancestral and novel environments (Fig. 4). Of course, this ap-
proach requires knowledge of the evolutionary history of plas-
ticity in the study organisms, and the number of systems in
which this is known may be limited (but see examples in
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Schwander and Leimar, 2011; Schlichting and Wund, 2014).
Nevertheless, through such an experiment, gene modules that
are differentially expressed across conditions in plastic individ-
uals but expressed at similar levels across conditions in cana-
lized individuals can be identified. Bioinformatic analysis of
genes in these modules (Schneider et al., 2014), potentially in
combination with experimental techniques for studying the
binding of proteins to DNA, such as ChIP-Seq (Kidder et al.,
2011) and DNase-FLASH (Vierstra et al., 2014), can then be
used to determine the changes in transcription factor activity
that have resulted in canalization. Recent work has shown that
these approaches for studying how protein–DNA interactions
regulate chromatin structure, transcription and phenotypic out-
come can be applied in non-model organisms (Simola et al.,
2013).

Given that canalization requires the fixation of genetic vari-
ants that make a trait robust to the environment, this robustness
itself can be viewed as a quantitative trait (e.g. de Visser et al.,
2003; Dworkin, 2005b; Flatt, 2005; Levy and Siegal, 2012;
Queitsch et al., 2012) and subjected to linkage mapping
(Lander and Botstein, 1989) (Fig. 5). For this approach to work,
it must be possible to mate individuals from a canalized popula-
tion or species to individuals from an ancestral population or
species that has remained plastic (Fig. 5). Furthermore, recom-
binants from these crosses must be viable.

Although historically it might have been difficult to use ge-
netic mapping to identify loci that canalize a trait, next-
generation sequencing has revolutionized genetic mapping by
crosses (e.g. Ehrenreich et al., 2010; Bloom et al., 2013).
Indeed, new sequencing technologies have made it cheaper and
easier to identify markers for conducting linkage mapping, and
have also simplified the process of genotyping cross progeny
(Andolfatto et al., 2011). Recent studies have shown that by

analysing large genetic mapping populations, high statistical
power and precise mapping resolution can be achieved, facili-
tating detection and cloning of most, if not all, of the loci in-
volved in a trait (Ehrenreich et al., 2010; Bloom et al., 2013;
Taylor and Ehrenreich, 2014). Within the context of genetic as-
similation, cloning of the genes and genetic variants underlying
these loci can help to shed light on the molecular mechanisms
that cause canalization.

Finally, much of what we know about genetic assimilation
comes from model organisms. Indeed, Waddington’s original
work on genetic assimilation was conducted in Drosophila mel-
anogaster (Waddington, 1952, 1953), and in recent years work
in multiple model systems, including Arabidopsis (Queitsch
et al., 2002; Sangster et al., 2008a, b), Caenorhabditis (Felix,
2007; Milloz et al., 2008; Duveau and Felix, 2012), Drosophila
(Gibson and Hogness, 1996; Rutherford and Lindquist, 1998;
Gibson et al., 1999; Dworkin et al., 2003) and yeast (Jarosz and
Lindquist, 2010; Tirosh et al., 2010; Halfmann et al., 2012),
has been used to explore the mechanisms that reveal cryptic ge-
netic variation and may give rise to genetic assimilation.
However, such work is still in its infancy, meaning that these
model systems have great potential to advance our understand-
ing of genetic assimilation in ways that would be very difficult
in non-model systems. For example, saturating screens can be
conducted in these organisms to identify mutations that decou-
ple plastic traits from their environmental stimuli. When lay-
ered onto our knowledge of the gene regulatory networks of
these species, general rules about how to manipulate the geno-
type–environment–phenotype relationship may emerge. As
new genetic engineering approaches, such as CRISPR/Cas9
(Mali et al., 2013), gain increasing usage across species,
comparable analysis techniques may be possible in non-model
organisms as well.
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FIG. 4. Examining how changes in gene regulatory networks contribute to genetic assimilation. Expression analysis across development can be employed to deter-
mine transcriptional changes that enable constitutive expression of a phenotype. Comparison of plastic and canalized genotypes in the ancestral and novel environ-
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higher expression leads to constitutive expression of the new trait across conditions.
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CONCLUSIONS

Improving our understanding of genetic assimilation may pro-
vide valuable new insights into the origins of novel traits and
species. Because the number of examples in which genetic as-
similation has been convincingly demonstrated is small, efforts
to develop more case studies of genetic assimilation, especially
in natural populations, may facilitate major advances in this re-
search area. Identifying and cloning the genes and genetic vari-
ants that underlie these examples can shed crucial new light
onto the mechanisms underlying genetic assimilation.
However, to fully explain the mechanisms that cause genetic
assimilation, it will likely be necessary to examine how the ge-
netic variants underlying genetic assimilation alter developmen-
tal gene regulatory programmes across genotypes and
environments. Examples in which genetic assimilation has been
shown and characterized at the molecular level will facilitate
new insights into the processes that shape diversity in nature.
Such work may also have impacts outside of evolutionary biol-
ogy by expanding our basic knowledge of how to modify bio-
logical systems to produce new traits.
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