

Fixed and Random Factors in Mixed Models

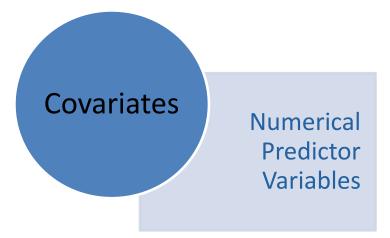
Karen Grace-Martin

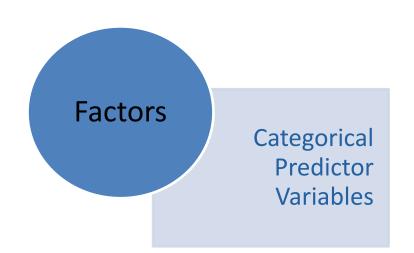
The Goal Today:

Clear up confusion about vocabulary, concepts, and interpretation of fixed and random factors

First, some vocabulary and concepts

What Kind of Models Are we Talking About Here?




- Mixed Models
- Multilevel Models
- Random Effects Models
- Mixed Effects Models
- Hierarchical Linear Models

Extend linear models to include random factors

The Two Types of Predictor Variables based on: How You Measure Them

$$Y_{j} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \varepsilon_{j}$$

There are Two Types of Covariates

Independent Variables

Key Covariates about whose specific measured values you have hypotheses

Control Variables

Covariates whose specific measured values you need to control for to test your hypothesis

$$Y_{j} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \varepsilon_{j}$$

There are Three Types of Factors

Independent Variables

Key Factors about whose specific measured values you have hypotheses

Control Variables

Factors whose specific measured values you need to control for to test your hypothesis

Blocking Variables

Factors you need to control for, but whose measured values could be swapped out for other values and you'd still test the same hypothesis

$$Y_{j} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \varepsilon_{j}$$

Examples of Blocking Variables

Blocking Variable

Blocks

Crop Variety

Variety 1

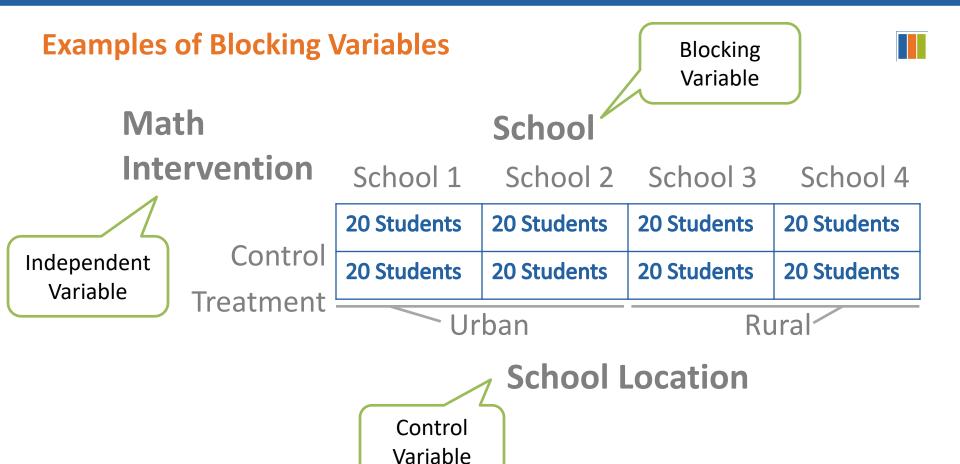
Variety 2

Variety 3

Farm 1

Farm 2

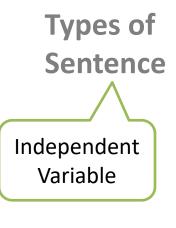
Farm 3

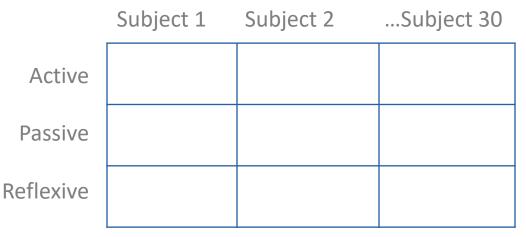

50 Plants50 Plants50 Plants50 Plants50 Plants50 Plants50 Plants50 Plants50 Plants

Soil Nitrogen: Control

Variable

Independent


Variable


Examples of Blocking Variables

Blocking Variable

Subject

Types of Predictors

Independent Variables

Key Factors about whose specific measured values you have hypotheses

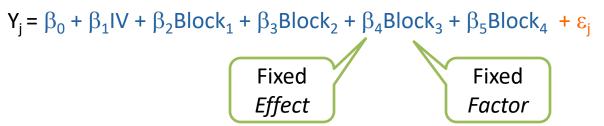
Always Fixed

Control Variables

Factors whose specific measured values you need to control for to test your hypothesis

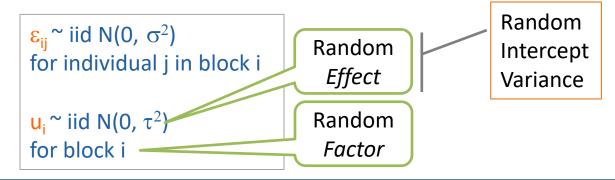
Always Fixed

Blocking Variables


Factors you need to control for, but whose measured values could be swapped out for other values and you'd still test the same hypothesis

Fixed or Random

How We Measure the Effects of Fixed and Random Factors


Blocks as Fixed

 $\varepsilon_j \sim iid N(0, \sigma^2)$ for individual j

Blocks as Random

$$Y_{ij} = \beta_0 + \beta_1 IV + \mathbf{u}_i + \mathbf{\varepsilon}_{ij}$$

Fixed vs. Random Factors

	Fixed Factors	Random Factors
Effect measured by:	differences in means	the variance of the distribution of means
Results:	limited to the values you chose	generalize to the distribution
Number of Parameters:	k-1	1

Situations that Indicate Fixed Blocks

- 1. Too few values to treat as random
- 2. A specific interest in comparing these values

Situations that Indicate Random Blocks

- 1. Too many values to account for as fixed
- 2. Want to generalize conclusions to other values of blocks
- 3. Interest in quantifying % overall variation
- 4. Interest in accounting for variation in this factor

A More Complicated Model

DV:

Yield

IVs:

Fertilizer: Organic, nitrogen

Beet Variety: 1, 2, or 3

Blocks:

Farm: Farm 1, 2, or 3

Field: 6 Fields

Organic

Variety 2

Variety 3

Variety 1

Nitrogen

Variety 3

Variety 1

Variety 2

A More Complicated Model

Example 2

DV:

Math Scores

IVs:

Program: 3 math programs

Blocks:

Students: 18-24 students per class

School: 12 schools

Class: 2-4 classes per school

Controls:

Teacher's highest degree earned Child sex: male or female

Covariates:

School % free lunch

Teacher's years of experience

Student's previous year math score

A More Complicated Model

DV:

Reading time

Covariates:

Age

IVs:

Language status: Native, Advanced, Intermediate

Sentence Type: actional, psychological, descriptive

Blocks:

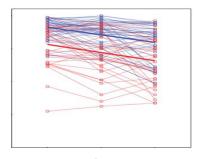
Sentence: 10 of each type

Subject: 30 participants each

References and Further Reading

West, Welch, Galecki. Linear Mixed Models

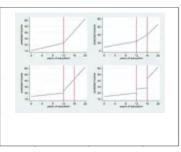
Snijders & Bosker. Multilevel Analysis


Douglas Montgomery. Design and Analysis of Experiments

Resources on our site: http://www.theanalysisfactor.com/resources/by-topic/mixed-multilevel-models/

Random Intercept and Random Slope Models

If you want to learn more: Online Workshops



Analyzing Repeated Measures Data: ANOVA and Mixed Model Approaches

Instructor: Karen Grace-Martin

Stage: 3, Beyond Linear Models

Software: SPSS, SAS, R, Stata

Linear Models

Instructor: Jeff Meyer

Stage: 2, Master Linear Models

Software: SPSS, SAS, R, Stata

https://www.theanalysisfactor.com/live-online-workshops/

Questions?

