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Abstract Mixed-effects models are being used ever more
frequently in the analysis of experimental data. However, in
the lme4 package in R the standards for evaluating signifi-
cance of fixed effects in these models (i.e., obtaining p-values)
are somewhat vague. There are good reasons for this, but as
researchers who are using these models are required in many
cases to report p-values, some method for evaluating the sig-
nificance of the model output is needed. This paper reports the
results of simulations showing that the two most common
methods for evaluating significance, using likelihood ratio
tests and applying the z distribution to the Wald t values from
the model output (t-as-z), are somewhat anti-conservative, es-
pecially for smaller sample sizes. Other methods for evaluat-
ing significance, including parametric bootstrapping and the
Kenward-Roger and Satterthwaite approximations for degrees
of freedom, were also evaluated. The results of these simula-
tions suggest that Type 1 error rates are closest to .05 when
models are fitted using REML and p-values are derived using
the Kenward-Roger or Satterthwaite approximations, as these
approximations both produced acceptable Type 1 error rates
even for smaller samples.
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Mixed-effects models have become increasingly popular for
the analysis of experimental data. Baayen, Davidson, and
Bates (2008) provided an introduction to this method of

analysis using the lme4 package (Bates, Mächler, Bolker,
& Walker, 2015b) in R (R Core Team, 2015) that has been
cited more than 1,700 times as of this writing according to
Web of Science. Many researchers who attempt to transition
to the use of mixed models from other analysis methods
such as ANOVAs find aspects of mixed modeling to be
non-intuitive, but the one issue that has perhaps generated
the most confusion is how to evaluate the significance of the
fixed effects in the model output. This is because in lme4
the output of linear mixed models provides t-values but no
p-values. The primary motivation for this omission is that in
linear mixed models it is not at all obvious what the appro-
priate denominator degrees of freedom to use are, except
perhaps for some simple designs and nicely balanced data.
With crossed designs or unbalanced data sets, Baayen et al.
(2008) describe the inherent uncertainty associated with
counting parameters in a model that has more than one level.
They point out that for such a model, it is unclear whether
the number of observations (level 1) or the number of sub-
jects and/or items (level 2) or the number of grouping fac-
tors (i.e., the number of random effects), or some combina-
tion of these, would define the denominator degrees of free-
dom. Although the logic behind the omission of p-values in
the R output is clear, this omission presents a problem for
researchers who are accustomed to use p-values in hypoth-
esis testing and who are required by journals and by style
standards to report p-values.

Baayen et al. (2008) presented an elegant solution to this
problem: p-values can be estimated by using Markov-chain
Monte Carlo (MCMC) sampling. This technique repeatedly
samples from the posterior distribution of the model parame-
ters. These samples can then be used to evaluate the probabil-
ity that a given parameter is different from 0, with no degrees
of freedom required. However, this method has significant
downsides. It cannot be used when random slopes are
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included in the model (or, more precisely, it was never imple-
mented for situations when the model included random corre-
lation parameters). This is especially a concern given that
improperly fitted models lacking these random slopes can
have catastrophically high Type 1 error rates, so that some
authors recommend that all models should be Bmaximal,^
with all possible random slopes included (Barr, Levy,
Scheepers, & Tily, 2013). Given this, it is usually not feasible
to employ MCMC sampling to obtain p-values. For this and
other reasons, MCMC sampling is no longer an option in the
current version of the lme4 package in R (Bates et al., 2015b).

There are two other methods commonly used for evaluat-
ing significance of fixed effects in mixed-effects models. The
first is the likelihood ratio test (LRT). LRTs compare two
different models to determine if one is a better fit to the data
than the other. LRTs are commonly used to decide if a partic-
ular parameter should be included in a mixed model. LRTs are
most commonly used to decide if a particular random effect
(say, a random slope) should be retained in the model by
evaluating whether that effect improves the fit of the model,
with all other model parameters held constant. Under the right
circumstances, LRTs can be used to evaluate the significance
of a particular fixed effect using the same logic. This approach
shares with MCMC sampling the advantage that the user does
not need to make any specific assumptions about model de-
grees of freedom (or rather, the user does not need to specify
the model degrees of freedom). Further, LRTs can be used
even when the model has a complex random effects structure
that includes random slopes. When used for evaluating the
significance of fixed effects, LRTs have one potential disad-
vantage: Using LRTs to compare two models that differ in
their fixed effects structure may not always be appropriate
(Pinheiro & Bates, 2000). When mixed-effects models are
fitted using restricted maximum likelihood (REML, the de-
fault in lme4), there is a term in the REML criterion that
changes when the fixed-effects structure changes, making a
comparison of models differing in their fixed effects structure
meaningless. Thus, if LRTs are to be used to evaluate signif-
icance, models must be fitted using maximum likelihood
(ML). Pinheiro and Bates (2000) note that although likelihood
ratio tests can be used to evaluate the significance of fixed
effects in models fitted with ML, such tests have the potential
to be quite anti-conservative. Barr et al. (2013) use this test
repeatedly in their simulations, and suggest that for the num-
bers of subjects and items typical of cognitive research these
likelihood ratio tests are not particularly anti-conservative.
Even so, LRTs may be anti-conservative, especially for small-
er data sets.

The second most commonly used method for the evalua-
tion of significance in mixed-effects models is to simply use
the z distribution to obtain p-values from the Wald t-values
provided by the lme4model output. The logic behind this t-as-
z approach is that the t distribution begins to approximate the z

distribution as degrees of freedom increase, and at infinite
degrees of freedom they are identical. Given that most data
sets analyzed using mixed models contain at minimum many
hundreds of data points, simply testing the Wald t-values pro-
vided in the model output as though they were z-distributed to
generate p-values is intuitively appealing. While this method
is often employed directly to generate p-values, it is also used
implicitly by many authors who refrain from presenting p--
values but note that t-values greater than 1.96 can be consid-
ered significant. There are no formalized guidelines for decid-
ing if one’s data set is large enough to justify the t-as-z ap-
proach. Because this assumption has not been carefully eval-
uated, this technique could potentially be anti-conservative as
well.

The present paper reports a series of simulations. The first
set was conducted in order to estimate the rate of Type 1 errors
that arise when applying the t-as-z approach, and to compare
those rates to Type 1 error rates from LRTs. These simulations
were designed to (1) explore whether the two commonly-used
techniques for evaluating significance are anti-conservative
and (2) evaluate which method is preferable. A second set of
simulations was conducted to investigate some newer
methods for evaluating significance. These methods include
the Kenward-Roger and Satterthwaite approximations for de-
grees of freedom, and parametric bootstrapping. These simu-
lations were designed to (1) compare these newer approaches
to the t-as-z approach and LRTs and (2) evaluate which meth-
od is preferable, being least anti-conservative and least sensi-
tive to sample size. All simulations were run using the SIMGEN

package (Barr et al., 2013) in R to fit models to simulated data,
varying number of subjects and items systematically. R Code
and results of all simulations are available on the Open
Science Framework (osf.io/fnuv4).

LRTs versus t-as-z

For each simulation, 100,000 data sets were generated from a
set of population parameters using SIMGEN, as described in
Barr et al. (2013; see online appendix for code). Each simu-
lated experiment was designed so that the data set included a
continuous response variable and a single within-items and
within-subjects two-level predictor. For the purpose of these
simulations, the size of the fixed effect was set to zero, so that
any statistically significant effects would represent Type 1
error. These simulations used the default population parame-
ters in SIMGEN:β0 ~ U

1(−3, 3),β1 0, τ00
2 ~ U(0, 3), τ11

2 ~ U(0,
3), ρS ~ U(−.8, .8),ω00

2 ~ U(0, 3),ω11
2 ~ U(0, 3), ρI ~ U(−.8,

.8), σ2 ~ U(0, 3), pmissing ~ U(.00, .05); for more information

1 ~ U(min, max) means the parameter was sampled from a uniform dis-
tribution with range [min, max].
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on these parameters see Barr et al. (2013; Table 2) or the
documentation for the SIMGEN package.

Simulations were performed for combinations of five dif-
ferent numbers of subjects (12, 24, 36, 48, 60) and five num-
bers of items (12, 24, 36, 48, 60), for a total of 25 different
possible combinations. In the first round of simulations,
models were fitted using ML, and in the second they were
fitted using REML. All models were maximal, meaning that
they included all possible random intercepts and slopes.2

From each of these simulations, one or, if necessary, two
slopes were dropped from the models if the full model failed
to converge (1 % of cases). Type 1 error was then computed
by using the t-values provided by the models to compute p--
values from the z distribution, and then the proportion of
models that was significant at the 0.05 level was calculated.
For the ML models, a similar procedure was followed to cal-
culate Type 1 error for the LRT output as well.

The Type 1 error rates for all simulations are shown in
Fig. 1. It should be apparent from Fig. 1 that all methods of
evaluating significance were somewhat anti-conservative,
yielding Type 1 error rates as high as 0.08, and never at or
below the 0.05 level (0.05 was never within the 95 % confi-
dence interval for any of the simulations; see Fig. 1). For
models fit with ML, the Bt-as-z^ method produced consistent-
ly higher error rates than the LRT method. This difference
appears greatest for smaller numbers of subjects and items.

Interestingly, when using the t-as-z approach, REML
models produced a consistently lower Type 1 error rate than
ML models. This difference appears larger for smaller sample
sizes (number of subjects and/or items). This is not surprising,
as REML is less sensitive to small sample sizes than ML
(Pinheiro & Bates, 2000). Because the Bt-as-z^ was better
for REML-fitted models than for ML-fitted models, Type 1
error in these REML simulations were similar to those obtain-
ed using the LRTmethod for higher numbers (36+) of subjects
and items.

Also of interest is the fact that in these models, which had
crossed random effects for subjects and items, Type 1 error
rates vary as a function of the number of subjects and/or
items in a way that was independent of the number of data
points. Note that in Fig. 1 the error rates for the simulations
with 12 subjects (left-most panel) are approximately equal
for all numbers of items. Note further that the error rate for
the 24-subject and 24-item simulations was lower than that
for the 12-subject and 48-item simulations, even though the
total number of data points was the same in each case (24 *
24 = 576 = 12 * 48). This suggests that Type 1 error rates
are influenced by the number of second-level groups in the

mixed model, and not solely determined by the number of
data points (level 1 in the model).

Discussion

The results of these simulations show that p-values calculated
for linear mixed models using either of the most frequently-
used methods (LRTs, t-as-z) are somewhat anti-conservative.
Further, these p-values appear to bemore anti-conservative for
smaller sample sizes, although the p-values obtained from
LRTs appear to be less influenced by sample size. Type 1 error
rates were sensitive to both number of subjects and number of
items together, so that higher numbers of both were required
for Type 1 error to approach acceptable levels. Further, LRTs
generally had lower Type 1 error rates across all numbers of
subjects and items, making this test preferable to the t-as-z
method.

Alternate methods for evaluating significance

A number of other methods for obtaining p-values are current-
ly available. They include parametric bootstrapping and the
Kenward-Roger and Satterthwaite approximations for degrees
of freedom.3 Both the Kenward-Roger (Kenward & Roger,
1997) and Satterthwaite (1941) approaches are used to esti-
mate denominator degrees of freedom for F statistics or de-
grees of freedom for t statistics. SAS PROC MIXED uses the
Satterthwaite approximation (SAS Institute, 2008). While the
Satterthwaite approximation can be applied to ML or REML
models, the Kenward-Roger approximation is applied to
REML models only. The significance of LRTs are typically
evaluated using a χ2 distribution, but parametric bootstrapping
is an alternate method for obtaining p-values from LRTs, in
which these values are estimated by using repeated sampling.
Thus, parametric bootstrapping does not make any explicit
assumptions about degrees of freedom. As both LRTs and
the t-as-z method are somewhat anti-conservative, one or
more of these methods might prove to be preferable. The
Kenward-Roger approximation, for example, appears to pro-
vide good results when applied to generalized linear mixed
models (GLMMs; Stroup, 2015). To investigate this, more
simulations were conducted. The Kenward-Roger and
Satterthwaite approximations were tested together, and para-
metric bootstrapping was tested separately. All simulations
also included the LRT and t-as-z methods for evaluating
significance.

Because a primary goal of these sets of simulations was to
explore Type 1 error for smaller sample sizes, simulations2 An identical set of simulations was conducted with backwards-fitted

(non-maximal) models. The results of these simulations were highly sim-
ilar to those reported here, in that Type 1 error rates were consistently
inflated, especially for lower numbers of subjects and items, and that
LRTs consistently had lower Type 1 error rates than the t-as-z approach.

3 These are the primary methods available for obtaining p-values. See the
documentation for the lme4 package (Bates et al., 2015b) for options for
obtaining confidence intervals.
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were performed for combinations of two different numbers of
subjects (12, 24) and three numbers of items (12, 36, 60). To
see how the different methods compared for higher numbers
of subjects and items, simulations with 36 subjects and 60
items were also conducted, for a total of seven different pos-
sible subject/item combinations.

Kenward-Roger and Satterthwaite approximations

The Kenward-Roger and Satterthwaite approximations
were implemented using the anova function from package
lmerTest (Kuznetsova, Brockhoff, & Christensen, 2014).
This function makes use of functions from the pbkrtest
package (Halekoh & Højsgaard, 2014) to implement the
Kenward-Roger approximation. For each of these simula-
tions using the lmerTest package, 10,000 data sets were
generated from a set of population parameters using
SIMGEN, in the manner described above. This number
was chosen to make the simulations computationally fea-
sible; as noted above, the alternate methods assessed here
are significantly more computationally intensive.

Type 1 error was also calculated using LRTs (for ML-
fitted models only) and the t-as-z method (for both ML-
and REML-fitted models). For the lmerTest simulations,

these new error rates were highly similar to those obtained
in the larger simulations reported previously, differing by
an average of 0.0013.

Type 1 error was calculated for p-values obtained using
the Kenward-Roger (REML-fitted models only) and
Satterthwaite (for both ML- and REML-fitted models) ap-
proximations for degrees of freedom. The Type 1 error
rates from these simulations are shown in Fig. 2. For
smaller numbers of subjects (12 and 24), both LRTs and
the t-as-z approach were still somewhat anti-conservative,
with LRTs being less anti-conservative. The Satterthwaite
approximation applied to ML-fitted models was still slight-
ly anti-conservative, although it performed better for larger
sample sizes. The Satterthwaite approximation applied to
REML-fitted models and the Kenward-Roger approxima-
tion (REML by default) produced highly comparable error
rates, and were not noticeably anti-conservative (0.05 was
consistently within the confidence intervals for these
methods). Further, these last two approaches were the
most robust for smaller sample sizes, producing similar
Type 1 error rates for the 12- and 24-subject simulations
(see Fig. 2). For higher numbers of subjects and items (36
and 60, respectively), all methods except for ML t-as-z
appeared to produce acceptable levels of Type 1 error.

Fig. 1 Type 1 error rate, by number of items and subjects, for three
different significance tests. The blue shapes represent maximum
likelihood (ML) simulations, while the red shapes are from simulations
using restricted maximum likelihood (REML). Circles represent the
results of likelihood ratio tests (performed on ML models only).

Triangles represent Type 1 error rate using the t-as-z approach, where
the statistical significance of the t-values in the model output is
evaluated using the z distribution. Error bars represent Agresti and
Coull confidence intervals (Brown, Cai, & DasGupta, 2001)
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Parametric bootstrapping

Parametric bootstrapping was implemented using the mixed
function from R package afex (Singmann, Bolker, &Westfall,
2015). This function makes use of functions from the pbkrtest
package (Halekoh & Højsgaard, 2014). Parametric
bootstrapping is even more computationally intensive than
the other methods tested above, so these simulations were
conducted on only 1,000 data sets generated using
SIMGEN.Type 1 error was also calculated using LRTs (for
ML-fitted models only) and the t-as-z method (for both ML-
and REML-fitted models). For the afex simulations, these new
error rates were similar to those obtained in the larger simula-
tions reported previously, differing by an average of 0.0059.

Due to the smaller number of data sets, the simulation
results for parametric bootstrapping are more variable than
those for the other simulations (note the wider error bars).
Even so, it is apparent from Fig. 3 that parametric
bootstrapping produced lower Type 1 error rates than LRTs
and the t-as-z approach for all combinations of subjects and
items when applied to the same data sets. Indeed, Type 1 error
rates for parametric bootstrapping were on average 0.0076
lower than those for LRTs from the same simulations. This
is greater than the average improvement of 0.0029 for the

Satterthwaite approximation (ML models) over LRT shown
in Fig. 2 and similar to the improvement observed in Fig. 2
for the Kenward-Roger approximation (0.0085 lower than
LRT Type 1 error rates) and the Satterthwaite approximation
(REML models; 0.0083 lower than LRT Type 1 error rates).
Figure 3 thus suggests that parametric bootstrapping can pro-
duce acceptable error rates for all numbers of subjects/items.
At the same time, parametric bootstrapping does appear to be
somewhat sensitive to sample size, with higher error rates for
smaller samples.

Discussion

Several methods for evaluating significance were assessed to
see if they might be preferable to LRTs. The Satterthwaite
approximation for degrees of freedom, when applied to ML-
fitted models, produced Type 1 error rates that, while some-
what better than LRTs, were still anti-conservative at least
some of the time. However, when applied to REML-fitted
models the p-values produced by the Satterthwaite approxi-
mation were not appreciably anti-conservative and were not as
sensitive to sample size as the other methods. Likewise, the
Kenward-Roger approximation, which requires REML
models, produced acceptable rates of Type 1 error, and was

Fig. 2 Type 1 error rate, by number of items and subjects, for six
different significance tests. The blue shapes represent maximum
likelihood (ML) simulations, while the red shapes are from simulations
using restricted maximum likelihood (REML). Circles represent the
results of likelihood ratio tests (performed on ML models only).
Triangles represent the t-as-z approach, where the statistical significance

of the t-values in the model output is evaluated using the z distribution.
Squares represent the Satterthwaite approximation for degrees of
freedom, while diamonds represent the Kenward-Roger approximation.
Error bars represent Agresti and Coull confidence intervals (Brown et al.,
2001)
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also not overly sensitive to sample size. Parametric
bootstrapping, as implemented here using R package afex
(Singmann et al., 2015), also produced smaller Type 1 error
rates that were superior to those obtained from LRTs and that
are also likely not anti-conservative in most cases, although
parametric bootstrapping appeared to be more sensitive to
sample size than the other acceptable methods.

General discussion

The methods most commonly used to evaluate significance in
linear mixed effects models in the lme4 package (Bates et al.,
2015b) in R (R Core Team, 2015) are likelihood ratio tests
(LRTs) and the t-as-z approach, where the z distribution is
used to evaluate the statistical significance of the t-values pro-
vided in the model output. A series of simulations showed that
both of these commonmethods for evaluating significance are
somewhat anti-conservative, with the t-as-z approach being
somewhat more so. Further, these approaches were also sen-
sitive to sample size, with Type 1 error rates being higher for
smaller samples. At higher numbers of subjects and items the
Type 1 error rates were closer to optimal, although still slightly
anti-conservative (see Fig. 1). This was true for both ML- and
REML-fitted models. In Figs. 2 and 3, LRTs and the t-as-z

approach for REML models appear to approach acceptable
levels of Type 1 error, but the simulations represented in these
Figures included fewer iterations, and so the confidence inter-
vals were wider. Given that these common methods tend to be
anti-conservative, and given that other, less anti-conservative
methods of evaluating significance are readily available in R,
it is recommended that users be cautious in employing either
of these common methods for evaluating the significance of
fixed effects, especially when numbers of subjects or items are
small (<40–50). It is important to note that Type 1 error was
sensitive to both the number of subjects and the number of
items, so that one cannot Bmake up for^ a small number of
participants by having many items, or vice versa.

Some users replace the t-as-z approach with a rule of thumb
that a t greater than 2 is to be considered significant, in the
hopes that adopting this stricter threshold will avoid the anti-
conservative bias of the t-as-z approach. Using the results of
the first simulation set to explore this t-is-2 approach reveals
Type 1 error rates that are similar to LRTs, being slightly larger
for smaller numbers of subjects/items and slightly smaller for
larger numbers (the actual values depend on whether the mod-
el was fitted with ML or REML). Thus, while the t-is-2 meth-
od appears preferable to the t-as-z approach and may be used
as a rule of thumb, it is still sensitive to sample size, being
somewhat anti-conservative for smaller sample sizes.

Fig. 3 Type 1 error rate, by number of items and subjects, for four
different significance tests. For each combination of subjects and items,
1,000 data sets were simulated. The blue shapes represent maximum
likelihood (ML) simulations, while the red shapes are from simulations
using restricted maximum likelihood (REML). Triangles represent using

the t-as-z approach, where the statistical significance of the t-values in the
model output is evaluated using the z distribution. Circles represent the
results of likelihood ratio tests (performed on ML models only).
Diamonds represent the results of parametric bootstrapping. Error bars
represent Agresti and Coull confidence intervals (Brown et al., 2001)
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Other methods of obtaining p-values in R were also tested,
including the Satterthwaite and Kenward-Roger approxima-
tions for degrees of freedom as well as parametric
bootstrapping. When applied to ML models, the
Satterthwaite approximation was better than LRTs but still
somewhat anti-conservative. Parametric bootstrapping was al-
so preferable to LRTs and appeared capable of producing ac-
ceptable Type 1 error rates, although it seems that parametric
bootstrapping is still sensitive to sample size in the way that
LRTs are, so that for smaller samples parametric bootstrapping
might still be anti-conservative.

The Satterthwaite and Kenward-Roger approximations
produced highly comparable Type 1 error rates, at least when
the Satterthwaite approximation was applied to REML
models. Neither of these methods appeared to be noticeably
anti-conservative. Importantly, these methods produced simi-
lar Type 1 error rates across different sample sizes, while error
rates for all other methods tended to increase as sample size
decreased. Thus, these two methods may be preferred when
evaluating significance in mixed-effects models, especially
when the number of subjects and/or items is smaller. Both
lmerTest (Kuznetsova et al., 2014) and afex (Singmann
et al., 2015) have an anova function which can be used to
provide p-values for each factor, calculated from the F statis-
tic. The afex function implements the Kenward-Roger ap-
proximation, while lmerTest can be used to implement either
approximation. Both functions call the KRmodcomp function
from the pbkrtest package for the Kenward-Roger approxima-
tion (Halekoh & Højsgaard, 2014), but are somewhat simpler
to use than this function. Like LRTs, these tests provide one
p-value for each factor in the model, even if a given factor has
more than one level. If the user desires parameter-specific p--
values derived from the t-values in the lmer output, the
lmerTest package can provide these through the summary
function using either the Satterthwaite or Kenward-Roger ap-
proximation. Examples of the usage of these functions are
provided in the Appendix.

Several recommendations can be made based on the results
of these simulations. First, any of the alternate methods tested
here are preferable to LRTs and the t-as-z approach (and its
variant, the t-as-2 approach). Second, although models fitted
with maximum likelihood do not produce catastrophically
high Type 1 error rates for smaller sample sizes, REML-
fitted models still appear to be generally preferable for smaller
samples. Note that the Bsmall^ samples in these simulations
still contained a minimum of 144 data points. The advantage
for REML models persisted for larger samples as well. This
advantage for REML was most notable and consistent when
identical evaluation methods (t-as-z, Satterthwaite) were used.
While some methods for evaluating significance do not allow
a choice between ML and REML (Kenward-Roger, paramet-
ric bootstrapping), when the selected method for obtaining
p-values permits such a choice REML should be preferred.
Third, the Kenward-Roger or Satterthwaite approximations
(applied to REML models) produced the most consistent
Type 1 error rates, being neither anti-conservative nor overly
sensitive to sample size, and so these methods may be prefer-
able for users who desire to avoid Type 1 error.

Users who decide to adopt either the Kenward-Roger or
Satterthwaite approximations should be aware of two poten-
tial issues. The first issue is that these recommendations are
based on simulations using somewhat idealized data and sim-
ple, single-factor models, so the observed Type 1 error rates
might not hold up for a model with a more complex covari-
ance structure (see Schaalje, McBride, & Fellingham, 2002,
who show that the Kenward-Roger approximation, while gen-
erally robust, can lead to inflated Type 1 error rates when
complex covariance structures were combined with small
sample sizes). The second is the issue of power. The focus
of the present simulations was to identify methods that pro-
duce the most ideal Type 1 error, and so it is possible that
using the Kenward-Roger or Satterthwaite approximations
could be associated with a drop in statistical power. Given that
psychology experiments are often underpowered (Westfall,

Table 1 Results of power simulations, for 100 data sets. Methods are listed in descending order of Type 1 error

12 subjects 24 subjects

12 items 24 items 12 items 24 items

Power Power’ Power Power’ Power Power’ Power Power’

t-as-z (ML) 0.36 0.37 0.45 0.29 0.38 0.34 0.64 0.76

t-as-z (REML) 0.35 0.36 0.42 0.28 0.37 0.32 0.64 0.76

LRT 0.33 0.36 0.41 0.29 0.36 0.33 0.63 0.76

Satterthwaite (ML) 0.31 0.36 0.36 0.30 0.36 0.33 0.62 0.76

Parametric bootstrapping 0.28 0.35 0.35 0.29 0.32 0.29 0.61 0.74

Satterthwaite (REML) 0.28 0.36 0.32 0.29 0.33 0.34 0.61 0.76

Kenward-Roger 0.28 0.36 0.32 0.28 0.34 0.32 0.62 0.76
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Kenny, & Judd, 2014), even a small loss of power may be a
concern. To see if there is any power loss associated with these
methods, a set of small simulations (two different numbers of
subjects (12, 24) and items (12, 24), each with 100 data sets)
were conducted with the size of the fixed effect set to 0.8 (i.e.,
the null hypothesis was false). The power (defined as rate of
rejection of the false null hypothesis) of all methods are shown
in Table 1. The Kenward-Roger and Satterthwaite approxima-
tions (REML models) had slightly inferior power compared to
other methods across simulations. However, thesemethods also
had lower Type 1 error rates, so it is possible that this difference
in power can be attributed to the error rate differences. To test
this, corrected power (power’) was computed, as described by
Barr et al. (2013); separate simulations were conducted, identi-
cal to those described earlier in the paragraph, but with the null
hypothesis set to true. The p-value at the 5 % quantile was
computed for each of these new simulations and this p-value
was used instead of 0.05 to compute power’. This method
should provide an estimate of differences in power, controlling
for Type 1 error rate. As Table 1 shows, corrected power was
highly similar for all methods, suggesting that any differences
observed in uncorrected power can be attributed to differences
in Type 1 error rates and that using the Kenward-Roger and
Satterthwaite approximations should not result in a noticeable
loss of power. Of course, these simulations are small, so caution
in necessary when interpreting these results.

In sum, the results of these simulations suggest that
Type 1 error rates are most optimal across different sam-
ple sizes when models are fitted using REML and p-
values are derived using the Kenward-Roger or
Satterthwaite approximations. Although these approxima-
tions appear to produce good results, it is important to
note that the present simulations should not be interpreted
as establishing what the appropriate degrees of freedom
actually are for linear mixed-effects models. Instead, these
simulations serve to further underscore the complexity of
the question, as Type 1 error rates for the various tests
(although quite low overall) were not predictable from
either the number of data points (level 1) or the number
of grouping factors (level 2). Indeed, methods that assume
or approximate degrees of freedom in order to derive p-
values for the output of lmer models are Bat best ad hoc
solutions^ (Bates, Mächler, Bolker, & Walker, 2015a, p.
35). Furthermore, these simulations make it clear that re-
sults should be interpreted with caution, regardless of the
method adopted for obtaining p-values. As noted in the
introduction, there are good reasons that p-values are not
included by default in lme4, and the user is encouraged to
make decisions based on an informed judgment of the
parameter estimates and their standard errors, and not to
rely wholly or blindly on p-values, no matter how they
were obtained.

###R Code for implementing the recommended methods for obtaining p-values in lme4.

##Using R Package lmerTest to implement Satterthwaite or Kenward-Roger approximations.

library(lmerTest) #Package must be installed first

Model.REML = lmer(Response ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item), REML = TRUE,
data = MyData) #Fitting a model using REML

anova(Model.REML) #Performs F test on fixed effects using Satterthwaite approximation

anova(Model.REML, ddf = “Kenward-Roger”) #Performs F test using Kenward-Roger approximation

summary(Model.REML) #gives model output with estimated df and p values using Satterthwaite

summary(Model.REML, ddf = “Kenward-Roger”) #gives model output using Kenward-Roger

##Using Package afex to implement the Kenward-Roger approximation

library(afex) #Package must be installed first

Model.REML.afex.KR = mixed(Response ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item),
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data = MyData, REML = TRUE, method = “KR”) #Tests fixed effects using Kenward-Roger

Model.REML.afex.KR #Returns ANOVA table with F test on fixed effects using Kenward-Roger

Model.ML.afex.LRT = mixed(Response ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item),
data = MyData, REML = FALSE, method = “LRT”) #Performs likelihood ratio tests

Model.ML.afex.LRT #Returns results of Likelihood Ration Test on Fixed Effect.
#Using LRTs is not recommended unless both number of subjects and number of items are quite large (40+)

#Note 1: This code assumes that you are attempting to obtain p-values after having settled on a final random #effects structure.
Models shown here are maximal, with all possible random slopes/intercepts.
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