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The honeybee (Apis mellifera L.) is an important pollinator and a model for

pesticide effects on insect pollinators. The effects of agricultural pesticides

on honeybee health have therefore raised concern. Bees can be exposed to

multiple pesticides that may interact synergistically, amplifying their side

effects. Attention has focused on neonicotinoid pesticides, but flupyradifur-

one (FPF) is a novel butenolide insecticide that is also systemic and a

nicotinic acetylcholine receptor (nAChR) agonist. We therefore tested the

lethal and sublethal toxic effects of FPF over different seasons and worker

types, and the interaction of FPF with a common SBI fungicide, propicona-

zole. We provide the first demonstration of adverse synergistic effects on bee

survival and behaviour (poor coordination, hyperactivity, apathy) even at

FPF field-realistic doses (worst-case scenarios). Pesticide effects were signifi-

cantly influenced by worker type and season. Foragers were consistently

more susceptible to the pesticides (4-fold greater effect) than in-hive bees,

and both worker types were more strongly affected by FPF in summer as

compared with spring. Because risk assessment (RA) requires relatively lim-

ited tests that only marginally address bee behaviour and do not consider

the influence of bee age and season, our results raise concerns about the

safety of approved pesticides, including FPF. We suggest that pesticide RA

also test for common chemical mixture synergies on behaviour and survival.
1. Introduction
Pollinators provide ecosystem services that are crucial for crop production and

wild plant biodiversity [1]. The honeybee is a major pollinator [2] whose global

decline in health raises concerns about ecological impacts, including food secur-

ity and human welfare [3]. Multiple studies have focused on honeybees because

their general biochemistry and neurophysiology are better known than other

pollinators and since bees can be used to model pesticide harm to other

insect pollinators [4]. Pesticides are among the most important stressors affect-

ing bee health [5] and pose heightened risks when bees are exposed to multiple

pesticides for extended periods [6]. Attention has focused on the neonicotinoid

pesticides [7], but their use has been progressively restricted because of their

adverse effects on bees [8], and growing pesticide resistance [9]. New pesticides,

such as flupyradifurone (FPF, Sivantow, Bayer CropScience AG [10]), have

therefore entered the market [9].

FPF is a newly developed systemic insecticide [11] that shares multiple

similarities with the neonicotinoids. Its chemical structure partially overlaps

with neonicotinoids, but FPF is a butenolide insecticide because of its different

pharmacophore [12]. Nonetheless, they share the same target site (agonists of
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insects nAChRs, Insecticide Resistance Action Committee

(IRAC) group 4), are both systemic [12] and control a wide

variety of pests [12] on diverse crops through multiple

application methods [10,12]. FPF metabolites include

6-chloronicotinic acid, which is also a metabolic by-product

of most neonicotinoids [9], and can cause adverse oxidative

stress in organisms such as freshwater amphipods and algae [13].

Because FPF is relatively new, fewer pest species are resist-

ant to it as compared with the neonicotinoids [11,12,14]. FPF is

also thought to have a favourable ecotoxicological safety

profile [12] and is defined as relatively ‘bee safe’ [15]. Conse-

quently, while neonicotinoids can only be used to treat crops

in the absence of bee foraging, FPF can be used on flowering

crops when bees are actively foraging.

Relatively few studies have investigated the impacts of FPF

on bees. Hesselbach & Scheiner [16] showed that acute exposure

to a high, non-field-realistic FPF dose (1.2 mg bee21) impaired

bee taste and cognition. Tan et al. [17] demonstrated that chronic

exposure to FPF impaired olfactory learning in larval

(0.033 mg larvae d21) and adult (0.066 mg adult bee d21) Asian

honeybees (Apis cerana) at field-realistic doses. Campbell et al.
[18] tested the effects of FPF in a USA field study and observed

no significant side effects on bee colony strength. This latter

study, however, shows the difficulty of performing ecotoxicolo-

gical field trials [19]: bee-collected nectar and pollen sampled

from control fields were also contaminated with FPF.

Synergistic effects occur when combined exposure to two

factors results in an effect that is significantly greater than the

sum of individual effects. Such synergistic effects can occur

between pesticide and poor nutrition, reducing bee survival,

food consumption and energy levels [20]. Synergy can also

arise between a pesticide and disease [21] or from exposure

to multiple pesticides [22]. Chemical mixtures can have sub-

lethal effects that do not immediately reduce survival [23,24].

For example, pesticide mixtures can synergistically alter be-

haviour such as mobility in aquatic organisms [25,26]. The

combination of diseases (fungi) and pesticide (imidacloprid)

can synergistically alter beetle movement [27]. However,

there is, to date, no evidence that pesticides have significant

synergistic effects on pollinator behaviour.

Neonicotinoids and SBI (sterol biosynthesis inhibitor)

fungicides have synergistic effects on bees because SBI fungi-

cides can inhibit detoxification [28]. FPF and the fungicide,

tebuconazole, decreased FPF LD50 of in-hive bees by 6-fold

[15]. The SBI fungicide propiconazole (PRO; chemical group:

triazole; MoA code: G1, DeMethylation Inhibitors (DMI),

SBI class 1; Fungicide Resistance Action Committee (FRAC)

code: 3) is one of the most commonly used fungicides and is

found in the environment and in bee food [29–32]. Both FPF

and PRO are used on the same common crops [33]. As FPF

is a relatively new pesticide, no monitoring studies have yet

tested its co-occurrence as an environmental contaminant

with other pesticides. However, FPF is approved for many of

the same crops as the neonicotinoids [33], and neonicotinoids

co-occur with SBI fungicides in bee pollen [6]. We therefore

investigated the potential synergistic effects of two systemic

pesticides, FPF and PRO.

We also examined the effects of seasonality. Although

summer bees are typically more sensitive to pesticides than

winter bees [34–37], some studies have reported different

results [35,38]. Baines et al. [38] showed that early spring

bees (March) were more susceptible to pesticides than

summer bees. Decourtye et al. [35] found that exposure to a
neonicotinoid pesticide (imidacloprid) reduces survival of

winter bees, but reduced learning performances of summer

bees. Seasons influence the floral and food resources avail-

able, thereby altering pesticide resistance [20], toxicokinetics

and bee immunity [39]. Pesticide effects are also temperature

dependent and alter thermoregulation [40], and season could

alter bee detoxification abilities [39].

The effects of pesticides can be influenced by the age and

body weight of an organism [39,41,42]. In-hive bees are typi-

cally heavier and more resistant to pesticides than foragers

[43]. Bee responses to toxins also change as they age

[44–48], and older bees may be more sensitive to pesticides

[34]. However, to date, no studies have examined how the

toxicity of FPF varies across worker type and season. We

thus tested the effects of FPF over seasons and between

worker types, assessing its interactive effects with a

common SBI fungicide, PRO, on bee behaviour and survival.

2. Material and methods
We used six healthy honeybee colonies (Apis mellifera ligustica Spi-

nola, 1806, located at the UCSD Biology Field Station apiary, La

Jolla, USA), studied forager and in-hive honeybees, and followed

standard collection and rearing methodologies [49]. To test the

effect of season, we collected bees at two different colony develop-

mental stages: early spring (February–March 2016) and summer

(July 2016). We tested the synergistic and individual effects of

FPF exposing bees to five acute oral doses of FPF or FPF þ PRO.

Based on current guidelines [50,51], we tested FPF doses (375

and 750 ng bee21) considered field-realistic, since bees can ingest

higher FPF doses while foraging (see electronic supplementary

material for the worst-case scenario estimations).

Following previous studies [22,28,52], we used a relatively high

PRO dose that nonetheless, on its own, has no impact on bee sur-

vival (7000 ng bee21 [22,52]). PRO is one of the most commonly

used fungicides that contaminates bees and the environment

[31,32]. Bees can be simultaneously exposed to FPF and PRO (or

another SBI fungicide with similar mode of action) because they

are used on the same crops and ornamentals, including fruits

(e.g. citrus), oilseeds (e.g. soya bean, peanuts), cereals (e.g. corn,

sorghum) [10,12,15,53–55], although guidelines state that flupyra-

difurone should not be directly tank-mixed with azole fungicides

when applied to flowering crops [10]. These pesticides can be

used multiple times over a year in the same crop (and over differ-

ent seasons) and applied in multiple ways (i.e. aerial, chemigation

or ground application). In addition, bees can also be exposed to

pesticides that drift from different crops (i.e. buffer zones) or are

stored in the same hive [56,57]. FPF and PRO are easily taken

up by plants and thus contaminated soil and water may lead to

unintended absorption. This can result in prolonged, multi-year

contamination [56,58,59]. Bees can therefore be exposed to pesticide

combinations that are contraindicated in tank mixes [6].

We tested a control dose (0 ng bee21), a total of six doses of FPF

(375, 750, 1500, 3000, 6000, 12 000 ng bee21, respectively correspond-

ing to 37.5, 75, 150, 300, 600, 1200 ppm), and five doses of the

positive control dimethoate (DIM; 50, 100, 200, 400, 800 ng bee21,

respectively corresponding to 5, 10, 20, 40, 80 ppm). In the combined

FPFþ PRO treatment, each FPF dose was tested in combination

with a single sublethal dose of PRO (7000 ng bee21, corresponding

to 700 ppm). We used technical grades of all active ingredients. The

test solutions (sucrose 50% w/w, 100 ml cage21, 10 ml bee21,) were

provided inside each cage using an Eppendorf cap [60], contained

acetone as a solvent (0.7%) and were completely consumed

60 min after oral administration [60].

We measured the effects of treatment on bee survival

(1–48 h) and the frequency of bees exhibiting abnormal

behaviours (1–4 h, see below).
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Detailed methods are reported in the electronic

supplementary material.

(a) Abnormal behaviours: synergistic and individual
effects

We measured the percentage of bees exhibiting abnormal beha-

viours (i.e. the number of abnormally behaving bees per cage)

across time (1, 2 and 4 h after treatment) depending on pesticide

dose, season and worker type. We quantified the following beha-

viours: motion coordination deficits, hyperactivity, apathy,

curved-down abdomen or moribund (electronic supplementary

material, table S1) [4,15,51,60–62]. These abnormal behaviour

categories are based on official ecotoxicological guidelines

[60,63]. The unit of replication was the cage, and we observed

each bee for 6 s (a maximum of 60 s for a cage with 10 bees).

To improve the standardization and repeatability of our behav-

ioural assessments, we refined the accuracy of the definitions of

the behaviours of the official ecotoxicological guidelines [60,63]

through videos (electronic supplementary material) and descrip-

tions (electronic supplementary material, tables S1 and S2). We

measured abnormal behaviours up to 4 h because high mortality

at later time points severely reduced sample sizes in certain treat-

ments and because behavioural abnormalities primarily occurred

less than 4 h after treatment. The experimenters were blind to the

treatments and were trained using standard descriptions (elec-

tronic supplementary material, tables S1 and S2) and videos

(electronic supplementary material) of the behaviours. Before

being allowed to score behaviours, experimenters needed to

score standard videos with greater than 95% consistency.

(b) Statistical analysis
To test for synergy, we determined if the difference between the

expected and the observed effects (either mortality or presence of

abnormal behaviour) of the combined treatment could arise

by chance alone or was larger than the simple additive effect

of both pesticides.

We used the concentration addition (CA) reference model to

define biologically significant synergy of chemical mixtures [64].

Based on each worker type LD50, we calculated the model devi-

ation ratio (MDR) to determine if the FPF þ PRO interaction

caused synergistic (MDR . 2), additive (0.5 �MDR � 2), or

antagonistic (MDR , 0.5) effects [25]. To estimate the MDR, we

calculated the toxic unit (TU) of each individual pesticide (FPF,

PRO) and of the binary chemical mixture (FPF þ PRO) [51].

We calculated the risk ratio (RR) and the risk difference

(RD) to quantitatively express both relative (RR) and absolute

(RD) size of the interactive effect of the chemical mixture on

bee survival (frequency of dead bees; electronic supplementary

material, table S3) and behaviour (frequency of abnormally

behaving bees; electronic supplementary material, table S4)

[65,66]. The RR was determined by dividing the observed effects

by the expected effects and therefore cannot be calculated when

the expected effect is 0 [65,66]. The RD is the difference between

the ratio of observed and expected effects.
3. Results
(a) Pesticides synergistically increased mortality
The combination of FPF and PRO (FPF þ PRO) synergisti-

cally increased mortality of both in-hive and forager bees

(binomial proportion test, Holm correction; electronic sup-

plementary material, table S3; figure 1a,b). The synergistic

effect of FPF þ PRO significantly reduced in-hive bee survi-

val at 750 ng bee21 (1–48 h after exposure, RRMax ¼ 9,
RDMax ¼ 44; electronic supplementary material, table S3),

1500 ng bee21 (1–48 h after exposure, RRMax ¼ 5, RDMax ¼

37) and 3000 ng bee21 of FPF (1 h after exposure, RR1h ¼ 5,

RD1h ¼ 23). The synergistic effect of FPF þ PRO significantly

reduced forager survival at 750 ng bee21 (1–48 h after

exposure, RRMax ¼ 5, RDMax ¼ 64; electronic supplementary

material, table S3), 1500 ng bee21 (1 h after exposure,

RRMax ¼ 5, RDMax ¼ 27) and 3000 ng bee21 of FPF (1–2 h

after exposure, RRMax ¼ 11, RDMax ¼ 33).

These synergistic effects were weaker at higher doses

(electronic supplementary material, tables S3 and S4): FPF

alone caused higher mortality at increasing doses, approach-

ing the upper threshold of 100%, and thus reducing the

difference between combined and individual treatments.

Because synergy is better captured when the mortality of

individual treatments is low, the synergistic effect was

longer lasting for in-hive bees (i.e. 1–48 h at 1500 ng bee21),

than for foragers (i.e. 1 h at 1500 ng bee21).

The LD50 of FPF þ PRO (TUFPF,summer in-hive ¼ 0.25;

TUFPF,summer foragers ¼ 0.19; TUPRO ¼ 0.07, TUFPFþPRO,summer

in-hive ¼ 0.32, TUFPFþPRO, summer foragers ¼ 0.26) was also sig-

nificantly lower than that of either compound alone for

both in-hive (4-fold toxicity increase, MDR ¼ 3.1) and fora-

gers (5-fold toxicity increase, MDR ¼ 3.9). Because the

MDRs are higher than 2, the FPF þ PRO interaction was

synergistic for both worker types [64]. PRO alone did not

cause any significant effect on survival (x2 ¼ 0.6376, d.f.¼ 1,

p . 0.42).

The lower field-realistic FPF dose (375 ng FPF bee 1 h21)

caused a 73% mortality in bees when combined with PRO.

Thus, the FPF þ PRO LD50 was lower than 375 ng FPF bee21.

There was a significant effect of FPF dose on bee survival

(Fit proportional hazards, p , 0.0001; electronic supplemen-

tary material, table S5). Pesticide-free bees survived

significantly longer than bees exposed to 1500 ng bee21

(Kaplan–MeierDS, p , 0.049; electronic supplementary

material, table S6), 3000 ng bee21 ( p , 0.0001), 6000 ng bee21

( p , 0.0001), 12 000 ng bee21 ( p , 0.0001) of FPF.

The FPF LD50 of our study (2995 ng bee21) is 2.5 times

higher than the value reported by the US EPA

(1200 ng bee21) [15] when we compare toxicity on standard

individuals (in-hive summer bees [60], figure 2). However,

we had a slightly different protocol than the US EPA [15].

We used 1 h exposure to 10 ml, not 6 h exposure ad libitum.

Our positive control (DIM, reference toxin) met validity cri-

teria because the 24 h LD50 of DIM was within the

standard limits (0.10–0.35 mg bee21) defined by official inter-

national guidelines [60]. There was no significant effect of the

colony on bee survival ( p . 0.05; electronic supplementary

material, table S5).
(b) Pesticides synergistically increased abnormal
behaviours

FPF þ PRO synergistically increased abnormal behaviours of

both in-hive and forager bees (binomial proportion test,

Holm correction; electronic supplementary material, table

S4; figure 3). The synergistic effect of FPF þ PRO significantly

increased in-hive bee abnormal behaviours at the lower FPF

doses of 750 ng bee21 (1–4 h after exposure, RRMax ¼ 10,

RDMax ¼ 63; electronic supplementary material, table S4),

1500 ng bee21 (1–4 h after exposure, RRMax ¼ 2, RDMax ¼ 33)
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and 6000 ng bee21 of FPF (4 h after exposure, RR4h ¼ 2,

RD4h ¼ 27). The synergistic effect of FPF þ PRO significantly

increased forager abnormal behaviours at 750 ng bee21

(1–4 h after exposure, RRMax ¼ 15, RDMax ¼ 47; electronic

supplementary material, table S4), 1500 ng bee21 (2–4 h
after exposure, RRMax ¼ 2, RDMax ¼ 30) and 6000 ng bee21

of FPF (1 h after exposure, RR1h ¼ 2, RD1h ¼ 23). PRO alone

did not cause any significant abnormal behaviour. As with

survival (see above), the synergistic effects on abnormal

behaviours were more evident at lower doses.

The lower field-realistic dose of FPF (375 ng FPF bee 1 h21)

significantly increased the number of bees exhibiting abnormal

behaviours (RRMax ¼ 36, RDMax ¼ 80, p , 0.0001) when com-

bined with PRO (electronic supplementary material, table S7;

figure 3). These adverse behavioural effects started rapidly

and remained consistent after treatment (RR Range1–4h ¼ 34–

36, RD1–4h¼ 74–80, p , 0.0001; table 1; electronic supplementary

material, table S7).

There was a significant effect of dose 1, 2 and 4 h after

treatment with FPF (Mixed ModelREML, p , 0.0001; electronic

supplementary material, table S8; figure 3), DIM ( p , 0.0001)

and FPF þ PRO ( p , 0.0001). After treatment, bees showed

coordination problems fairly consistent across time. Specifi-

cally, they mostly showed hyperactivity and curved-down

abdomen in the shorter term after treatment (1 h) and

apathy later on (4 h).

(c) Pesticides were more toxic to foragers than in-hive
bees

There was a significant effect of worker type on the survival

of bees exposed to FPF and DIM (fit proportional hazards,
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Table 1. The frequency of bees exhibiting abnormal behaviours after exposure to the lower field-realistic FPF dose tested (375 ng FPF bee21), combined with
PRO. We report the effect size as the risk ratio (RR, observed/expected) and the risk difference (RD, observed – expected), which compared the effects of FPF þ
PRO (375 ng FPF bee21 and 7000 ng PRO bee21) versus either control (0 ng bee21) or the lower dose of FPF tested alone (750 ng FPF alone per bee).
Combined exposure to FPF þ PRO (375 ng FPF bee21) resulted in a higher frequency of bees exhibiting abnormal behaviours, even when compared with higher
doses of FPF administered alone (750 ng bee21; RRrange ¼ 7 – 34; RDrange ¼ 43 – 75). Because of the low effect of FPF alone at 375 ng FPF bee21, we did not
test the effects of this dose alone. We report ‘n.a.’ because the expected mortality was 0, and RR calculation is not possible when the denominator is 0.

treatment worker type
time after
treatment (h)

bees exhibiting
abnormal behaviour (%)

synergistic increase

versus
control

versus FPF
alone

RR RD RR RD

FPF þ PRO (375 ng FPF bee21) in-hive 1 76 n.a. 76 34 66

2 67 n.a. 67 30 56

4 50 n.a. 50 22 43

foragers 1 76 34 74 8 56

2 74 33 72 7 71

4 82 36 80 12 75
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p , 0.0001; electronic supplementary material, table S5). For-

agers are older than in-hive bees, and thus it is not surprising

that in-hive control bees lived longer than control foragers

(Kaplan–MeierDS, p ¼ 0.0001; electronic supplementary

material, table S6; figure 1c). As the FPF dose increased, the

survival of both bee castes decreased and, at each dose, the

difference between the survival of each caste tended to

increase (interaction FPF dose �worker type, p ¼ 0.001; elec-

tronic supplementary material, table S5; figure 1c,d ). FPF was

significantly more toxic to foragers (compared with in-hive

bees) at almost all doses tested: 1500 ng bee21 (4-fold increase
at 48 h, Kaplan–MeierDS, p ¼ 0.0002; electronic supplemen-

tary material, table S6), 3000 ng bee21 (2-fold, p , 0.0001),

6000 ng bee21 (1.2-fold, p ¼ 0.006) of FPF. At 12 000 ng bee21

of FPF, there was no significant effect ( p . 0.26) of worker

type on survival, because the mortality of in-hive and forager

bees was very high.

The LD50 assessments confirmed that FPF and DIM tox-

icity was influenced by worker type (figure 2; electronic

supplementary material, figure S2). Foragers were signifi-

cantly more susceptible to pesticides in both early spring

(FPF: 2-fold toxicity increase; DIM: 4-fold) and summer



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190433

6
(FPF: 2-fold; DIM: NS), as compared with in-hive bees.

High forager mortality in summer prevented the estimation

of the 48 h LD50 of summer foragers. Foragers were more

affected by the synergistic effects caused by FPF þ PRO

(5-fold increased mortality), as compared with in-hive

bees (4-fold).

There was a significant effect of worker type on bee

abnormal behaviours 1 h after treatment with FPF (mixed

modelREML, p ¼ 0.046; electronic supplementary material,

table S3), and 1 and 2 h after treatment with DIM ( p ,

0.005). There was no significant effect of worker type at any

other time point ( p . 0.57). There was no significant effect

of worker type on abnormal behaviours after exposure to

FPF þ PRO ( p . 0.05).

There was a significant effect of the interaction dose �
worker type after treatment with FPF (1–2 h: p , 0.049),

DIM (1–4 h: p , 0.025) and FPF þ PRO (4 h: p ¼ 0.003; elec-

tronic supplementary material, table S3; figure 3) on bee

abnormal behaviours. Foragers were more susceptible to

FPF (1500 ng bee21: p , 0.0001; electronic supplementary

material, table S9) and FPF þ PRO (375 ng bee21: p , 0.006;

electronic supplementary material, table S9) as compared

with in-hive bees.

(d) FPF was more toxic in summer
There was a significant effect of season on the survival of

bees exposed to FPF (fit proportional hazards, p , 0.0001;

electronic supplementary material, table S5). There was

also a significant effect of the interaction FPF dose �
season ( p ¼ 0.011). FPF was significantly more toxic in

summer, as compared with early spring, at 3000 ng bee21

(Kaplan–MeierDS, p ¼ 0.013; electronic supplementary

material, table S6; figure 1d) and 6000 ng bee21 ( p ¼ 0.0003).

At 12 000 ng of FPF, there was no significant effect of season

on survival, because bee mortality was too high in both

seasons ( p . 0.78).

The LD50 assessments confirmed that FPF toxicity was

influenced by season (electronic supplementary material,

figure S1). FPF was significantly more toxic in summer,

both for in-hive and forager bees (2-fold toxicity increase),

as compared with early spring.

There was a significant effect of season on bee abnormal

behaviours 1 and 2 h after treatment with FPF (mixed

modelREML, p , 0.008; electronic supplementary material,

table S8). There was no significant effect of season at 4 h

after treatment of FPF ( p . 0.51). There was a significant

effect of the interaction dose � season on bee abnormal beha-

viours after treatment with FPF (1 h: p ¼ 0.0004; electronic

supplementary material, table S8; figure S4). FPF significantly

increased bee abnormal behaviours in summer, as compared

with early spring, at 750 ng bee21 (contrast testDS, p , 0.0001;

electronic supplementary material, table S9; figure S4),

1500 ng bee21 ( p ¼ 0.012) and 3000 ng bee21 ( p ¼ 0.001).

The electronic supplementary material contains

additional results, including bee weight and DIM toxicity.
4. Discussion
We provide the first demonstration that the combination of

two pesticides can synergistically increase the frequency of

pollinators with abnormal behaviours (figure 3). We also pro-

vide the first evidence of adverse synergistic lethal
(MDRMax ¼ 4; RRMax ¼ 11; RDMax ¼ 64) and sublethal

(RRMax ¼ 15; RDMax ¼ 63) effects caused by FPF and an SBI

fungicide, PRO (electronic supplementary material, tables S3

and S4; figures 1 and 3). All FPF doses tested significantly

impaired bee behaviour as compared with the control treat-

ment (electronic supplementary material, tables S7 and S8;

figure 3). FPF can thus impair bee survival and behaviour at

field-realistic (worst-case) doses when combined with an SBI

fungicide. In addition, the toxic effect of FPF and FPF þ PRO

on bee survival and behaviour was significantly influenced

by worker type and season. Foragers were consistently more

susceptible to these pesticides (up to 4-fold; figures 1 and 3;

electronic supplementary material, figures S2–S4). This

result is troubling because the official guidelines for pesticide

risk assessment (RA) only test in-hive bees, thereby underesti-

mating the risk that pesticides pose for foragers. This is also

concerning given that foragers are particularly at risk of pesti-

cide exposure since they forage in the field. The lower weight

of foragers (211%), as compared with in-hive bees (electronic

supplementary material, table S10), is a possible reason for

their increased susceptibility to pesticides.

Our results confirm that abnormal behaviours usually

appear shortly (1 h) after exposure to pesticides [40,67,68].

However, official RA guidelines do not require a thorough

assessment of abnormal behaviours, and then only 4 h after

treatment, when many effects may have declined. Short-

term (1–2 h) behavioural alterations can be detrimental for

bee health, especially for bees carrying out risky tasks (i.e.

foraging) within this time window. We demonstrated that

adverse sublethal effects are more frequent in foragers (as

compared with in-hive bees) and could impact their foraging

efficiency, as well as their survival, if these abnormal behaviours

occur while bees are foraging in the field. Future behavioural

assessments conducted using standard assays such as loco-

motion arenas could better establish potentially harmful

effects of pesticides on beneficial insects [67,69–71].

Our results show that FPF and the neonicotinoids, both of

which target insect nicotinic acetylcholine receptors [9], have

relatively similar effects on bee health, sharing side-effects on

bee survival and behaviour [67]. The SBI fungicide, PRO,

similarly amplifies both FPF (4-fold, MDRsummer in-hive ¼

3.1, this study) and neonicotinoid (3-fold [22]) toxicity in

bees. With respect to survival, FPF toxicity (based on LD50)

is over 559 times lower than the toxicity of the N-nitroguani-

dine neonicotinoids (clothianidin, imidacloprid,

thiamethoxam), but more than five times higher than the

N-cyanoamidine neonicotinoids (acetamiprid, thiacloprid)

[33]. To assess the risk for bees, these differences need to be

considered based on actual exposure, which depends on

application methods (e.g. frequency of treatments and appli-

cation rate) and active ingredient properties (e.g. toxicity).

The FPF þ PRO synergistic effects on bee survival and

behaviour are more evident at lower doses, where the effect

of FPF is less detrimental. Our assessment suggests that

FPF, like the neonicotinoids [40], may lead to a favourable

biological response at low exposure levels (i.e. hormesis

[72]). In foragers, the low dose of FPF (750 ng bee21) resulted

in reduced mortality than the control treatment (0 ng bee21;

figure 1c,d ). Similarly, our observed synergistic behavioural

alterations (figure 3) occurred at low (750–1500 ng bee21)

and high (6000 ng bee21) doses, but not at intermediate

ones (3000 ng bee21). These non-monotonic effects of

pesticides (i.e. hormesis) should be further investigated.
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Restrictions on neonicotinoids have been increasing after

decades of research demonstrating their adverse effects on

beneficial pollinators and persistent environmental contami-

nation [20,58]. New systemic insecticides such as FPF and

sulfoxaflor, examples of the novel butenolide and sulfoxa-

mine chemical classes, are the likely successors of the

neonicotinoids [73]. While sulfoxaflor has adverse effects on

bumblebees [74], FPF is considered ‘bee safe’ and can be

used on flowering crops with actively foraging bees [12,15].

Our study raises concerns about the ecotoxicological profile

of FPF and the safety of FPF for bees.

Pesticide toxicity is amplified by multiple interacting

stressors [5,20] and thus a holistic approach that tests more

of the different conditions that bees naturally experience is

beneficial [39,75]. Although sensitivity to pesticides is influ-

enced by season, bee type and concomitant pesticide

exposure [44,76], current RA schemes implement only limited

tests, requiring only the evaluation of single pesticide effects

on in-hive summer bees [77]. Such restricted testing could

underestimate or overestimate pesticide effects [38,77]

because different worker types (i.e. in-hive bees versus fora-

gers) can be exposed to multiple pesticides over different

seasons [6]. FPF (Sivanto) labelling restricts using tank-

mixtures with azole fungicides [10]. However, bees can still

be exposed to FPF and PRO simultaneously, as discussed

above and in the electronic supplementary material.

Future RA should consider sublethal and behavioural

effects [78,79]. Studies are necessary to confirm and link lab-

oratory results to field tests, so that specific protection goals,

such as avoiding unacceptable decreases in colony popu-

lation or increases in forager mortality, can be assessed [78].

Monitoring the behaviour of multiple honeybees in a whole

colony, though feasible in observation colonies [80], intro-

duces complications [19] and costs that would be likely to

constrain general adoption in RA. Testing bees in the labora-

tory also has the benefit of greater control, ease of testing and

thus replication with more colony sources.

Because RA with honeybees is often used as an indicator

of potential harm to other bees [50], our results raise broader
concerns. However, there can be significant differences,

greater and lesser, between the individual sensitivities of

different bee species, highlighting the need for future

research.

Although risk assessors are beginning to address syner-

gistic effects on survival [79,81] and sublethal effects such

as homing behaviour and hypopharyngeal development

[51], many important synergistic and behavioural effects

that can affect colony fitness are not explored. We propose

that RA include more thorough assessments of behaviours

and synergies. Behavioural testing should be implemented

1 or 2 h after exposure, since short-term behavioural effects

can realistically impair bee survival when ingesting pesti-

cides while foraging [82]. RA could address potential

synergies on behaviour and survival by testing limited

chemical mixtures of pesticides that have a higher likelihood

of interactive effects based on the respective modes of action

(e.g. propiconazole with neonicotinoids or FPF) and co-occur

in the environment. We provide a simple way to measure

synergistic effects on bee behaviour and survival following

a standard ecotoxicological test. Our procedure could be

implemented fairly easily in pesticide RA procedures,

within the LD50 toxicity test scheme [60].
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