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Comparative studies of insect behaviour based on evolutionary

trees are currently blossoming, because of the increasing ease

of phylogeny estimation, the availability of new trait data to

analyze, and a vast and growing array of statistical techniques

for exploring data and testing hypotheses. These studies

address not only the selective forces and constraints on insect

behaviour, which are the realm of traditional behavioural

ecology, but also their ecological and evolutionary

consequences. Recent studies have significantly increased our

understanding of foraging behaviour, interspecific interactions,

locomotion and dispersal, communication and signalling, mate

choice and sexual selection, parental care and the evolution of

sociality. The curating of trait data remains a significant

challenge to maximize the future potential of insect

comparative studies.
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Introduction
Comparative analyses take variation across taxa as a

source of data with which to test hypotheses [1,2]

(Figure 1). Such tests often draw together large numbers

of observations to provide a more holistic picture than

studies on individual species can, and they relate to real-

world situations (the data are often traits observable in the

field), which is not necessarily true of experimental

studies. Cross taxonomic data are also often readily avail-

able, and can show much wider variation than is obtained

from single species or experimental studies. For these

reasons they have wide appeal. The main limitations of

comparative studies are that they are observational and

often correlative in nature, hence cannot so robustly

inform causation, and they are mostly limited to existing

variation, which experimental studies are not. However,

comparative analyses and experimental studies do
Please cite this article in press as: Mayhew PJ: Comparative analysis of behavioural traits in inse
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overlap in the form of meta-analyses, where the results

of many experimental studies, often involving several

species, can be brought together to give holistic experi-

mental tests of hypotheses [3�,4�].

Because cross-taxonomic variation potentially has an

evolutionary basis, and the hypotheses that are tested

are frequently explicitly evolutionary in nature, this

brings analytical challenges that were first widely formal-

ized in the 1980s, coincident with the development of

computational methods for reconstructing phylogenies. It

was then recognized that phylogenies themselves can

help overcome those challenges [1]. In those days, phy-

logeny-based comparative approaches were often pre-

sented as ways to avoid falling into naı̈ve statistical traps

(such as treating species as independent data points), but

more recently, since the development of likelihood-based

and Bayesian computational techniques, along with infor-

mation theoretic approaches, the emphasis has been on

finding appropriate evolutionary models that explain the

data well [2]. Techniques have diversified to incorporate

an increasingly sophisticated range of data types and

approaches (Table 1), although these can mostly be

reduced to a small number of basic tasks, such as recon-

structing of ancestral states and detecting evolutionary

associations between traits (Figure 1, Table 1). To apply

these techniques, a well resolved, and preferably dated,

phylogeny is often essential [2].

In the past, and still to some extent today [5], phyloge-

netic requirements could present an obstacle for compar-

ative studies, especially of insects. However, good quality

phylogenetic information for insects is becoming more

and more routinely produced thanks to widely available

molecular markers [6,7], the development of whole

genome and transcriptome approaches [8,9], and an

increasingly better-known fossil record that provides

the calibration points for dating analyses [10,11]. In

addition to studies collecting primary morphological or

molecular data, pipelines are now available that harvest

existing molecular data from publically available data-

banks to produce trees [6,7,12], as well as compile existing

phylogenies into larger meta-trees [13,14]. Large num-

bers of insect comparative studies now incorporate the

development of bespoke phylogenies as an explicit step,

and it is common for studies whose main output is a

phylogeny to piggyback a comparative study as a selling

point [15–17].

In addition to more trees on which to base studies, there

are also more traits to analyze. Whole genomes and

transcriptomes now allow us to investigate the evolution
cts, Curr Opin Insect Sci (2018), https://doi.org/10.1016/j.cois.2018.02.018
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A schematic diagram of the stages of a comparative analysis. Trait

data are gathered across taxa (X and Y represent different traits, and

the numeric subscripts indicate that each species is assigned a value

for each trait from observation), and phylogenetic information

assembled. This information is then integrated through one or more of

a battery of analytical methods (Table 1) to produce a variety of

outcomes (Table 1), the most common of which are ancestral state

reconstruction (i.e. estimating the values of X and Y for ancestors of

the living species for which we have data) and detecting evolutionary

correlations between traits (i.e. whether evolutionary change in Y tends

to be associated with evolutionary change in X).

C

f the genes that control phenotypic traits of interest

8�,19]. There has been a flowering of studies of macro-

volutionary (speciation and extinction) rates, which can

e inferred from the branching pattern on phylogenies

0–22,23��], or, in the case of extinction, from conserva-

on designations [24]. From the perspective of beha-

ioural traits, this means that we are better able to explore

ot only the causes of variation in behaviour across taxa

.g. such as the selective pressures and constraints con-

olling them), but also their consequences (both ecologi-

al and evolutionary). Entomologists also study esoteric

ut fascinating questions, such as the function of halters

 locomotion [25] and the choreography of silk spinning

6], which result from the unique variation in pheno-

pes produced by one of the world’s most impressive

daptive radiations.

ere I collate recent comparative studies addressing the

auses and consequences of variation in insect beha-

ioural traits to illustrate the range of potential
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applications of comparative methods to such studies,

and what they can tell us. I choose studies to illustrate

a wide range of focal behaviours, although many

studies illustrate well how these different categories of

behaviour overlap and interact or influence each other

[27��,28�,29,30�,31–33].

Recent comparative studies of behaviour
Foraging behaviour

Finding food, and a habitat that provides it, is necessary

for all animals, and several recent studies have addressed

how insects do this [3�,4�,34]. Patterns of host use in

phytophagous insects are basis of terrestrial food webs,

and may be shaped by experience, such that species are

more likely to accept hosts they have previously encoun-

tered. Such conditioning may be adaptive if it facilitates

decision-making in a complex community of potential

hosts. Across 196 studies that had tested for this condi-

tioning, such responses are indeed the norm, are just as

common in monophagous as polyphagous species, and are

just as likely to be produced by larval and adult experi-

ences, but pupal experiences less so [3�]. Closely related

species also show similar responses. Thus, previous con-

ditioning likely exerts a powerful effect on realized

patterns of host use in nature.

Other studies have addressed the consequences of forag-

ing choices and habitat selection [20,22,23��,31,34,35].
For example, the phylogeny of skipper butterflies sug-

gests that they fed ancestrally on dicot (broadleaved)

plants, but some groups transitioned to monocot plants

(grasses and allies) on which net diversification has been

faster [22]. This is mainly attributable to two increases in

net diversification rate within the monocot feeding clades

which may have been triggered by climatic events which

favoured the expansion of grasses first in forested, and

then in more open habitats. This scenario suggests that

behavioural (host choice) and abiotic forces (climate)

have interacted to produce macroevolutionary effects

mediated through the hosts, and intuitively this seems

likely to be common in phytophagous insects.

Interspecific interactions

Recent comparative studies of predator-prey interactions

have uncovered interesting associated trait variation

[27��,32,36�]. In tiger moths and their relatives for exam-

ple, hidden contrast colours (e.g. brightly coloured hindw-

ings used to startle predators if crypsis fails) are more

common in larger species [27��]. A theoretical model

shows that contrast colours can evolve in larger species

if larger species are easier for predators to detect when

cryptic, and if larger signals can more effectively startle

predators [27��]. Experiments with robotic moth models

show that this is indeed the case.

The origin of some specialized trophic interactions, com-

mon in insects, is the focus of enduring interest [37,38].
ects, Curr Opin Insect Sci (2018), https://doi.org/10.1016/j.cois.2018.02.018
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Table 1

Analytical methods applied by recent comparative studies of insect behaviour.

Method Type of output Computer applications Recent studies

Ancestral state reconstruction with

parsimony

A set of most parsimonious ancestral

states

‘Mesquite’ [35,43]

Bayesian ancestral state reconstruction A set of most likely ancestral states and

models of change

‘RASP’ [46] [42]

Maximum likelihood ancestral state

reconstruction

A set of most likely ancestral states for a

given model of change

‘ape’ [47] and ‘corHMM’ [48] in R,

‘Mesquite’

[35,40,41]

Reconstruction of ancestral

biogeographic ranges

A set of most likely ancestral ranges and

models of change

‘BioGeoBEARS’ in R [49],

‘Lagrange’ [50]

[43]

Blomberg’s K estimate of phylogenetic

similarity

Metric of phylogenetic similarity across

species for a trait

‘geiger’ in R [51] [26,33,52]

Sister-clade comparisons Evolutionary associations between

traits

N/A [21,35]

Phylogenetically independent contrasts

(PICs)

Evolutionary associations between

traits

‘caper’ and ‘ape’ in R [47,53],

‘Mesquite’

[19,26,41]

Lynch’s phylogenetic mixed model [54] Evolutionary associations between

traits

‘ape’ in R [47] [31]

Phylogenetic autoregression Evolutionary associations between

traits

‘adephylo’ in R [55] [4�]

Pagel’s discrete character association

test [56]

Evolutionary associations between

traits

‘Mesquite’ [32]

Concentrated changes test for binary

characters

Evolutionary associations between

traits

‘MacClade’ [32]

Bayesian modelling of trait evolution Evolutionary associations between

traits and transition rates between

states

‘BayesTraits’ [57] [5]

Generalized estimating equations [58] Evolutionary associations between

traits

‘ape’ in R [47] [23��]

Phylogenetic ANOVA [59] Evolutionary associations between

traits

‘phytools’ in R [60] [36�]

Phylogenetic Generalized Least

Squares (PGLS) and Pagel’s l metric

of phylogenetic constraint

Evolutionary associations between

traits

‘caper’ in R [24,27��,43,44�,61]

Phylogenetic Generalized Least

Squares extended to incorporate

measurement error

Evolutionary associations between

traits, metric of phylogenetic constraint

Bespoke R script [34] based on [62] [34]

Phylogenetic multivariate mixed models Evolutionary associations between

traits

‘MCMCglmm’ in R [43,63] [3�,28�,39��]

Phylogenetic logistic regression [64] Evolutionary associations between

traits

‘Phylolm’ in R [24]

Stochastic linear Ornstein–Uhlenbeck

modelling

Evolutionary associations between

traits

‘SLOUCH’ in R [65] [20]

Ornstein–Uhlenbeck modelling of

predator-regime specific dynamics

Model that best describes how

predators affect evolution of a

continuous trait

‘OUwie’ in R [66] [40]

Phylogenetic principle component

analysis

Reduction of multivariate cross-

taxonomic data to principle

components

‘phytools’ in R [60] [26,36�]

Multivariate trait evolution modelling Tempo and mode of evolution of

multivariate traits

‘MVmorph’ in R [67] [30�]

Bayesian analysis of speciation and

extinction (BiSSE) [68]

Effect of a binary trait on speciation and

extinction rates

‘diversitree’ in R [69] [22]

Event-based analysis of co-

phylogenetic structure

Type of events that best explain the co-

phylogenetic structure

‘Jane’ [70] [38]

Distance-based analysis of co-

phylogenetic structure

Assessment of the congruence of two

phylogenies

‘Parafit’ [71], ‘PACo’ [72] [38]

Network analysis with approximate

Bayesian computation

Rates of co-speciation and host shifting

across phylogenies of interacting

species

‘abctools’ in R [73] [37]
A large data-base of global host records of phytophagous

insects indicates that Lepidoptera which attack particular

host orders are less likely use others (the main trade-off in

host-use is between woody and non-woody plants, with
Please cite this article in press as: Mayhew PJ: Comparative analysis of behavioural traits in inse
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insects being largely restricted to one of these groups but

not both). These negative associations between host-use

were mainly seen when comparing higher insect taxa, not

closely related species, so the failure to detect host-use
cts, Curr Opin Insect Sci (2018), https://doi.org/10.1016/j.cois.2018.02.018
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ade-offs in laboratory selection experiments does not

ecessarily mean they do not emerge over longer time-

ales. In Hemiptera, trade-offs in host use were not

enerally detected, so cannot explain host specialization

 that group [39��]. The specificity of interspecific inter-

ctions such as these can also have wider ecological and

volutionary consequences [20,40]: a phylogeny of

mbrosia beetles for example suggests that genera with

roader host ranges tend to have diversified faster [20].

his might be because host switching facilitates repro-

uctive isolation between incipient species.

ispersal and locomotion

ispersal and locomotion ability are traits of ecological

portance addressed by several recent studies

3��,24,41]. In the semi-aquatic bug group Gerromorpha,

ere is a variety of locomotion styles, from tripod-walk-

g to rowing across the water surface (water striders).

hylogenetic reconstructions show that the ancestral

abitat of the group was probably terrestrial or waterside

egetation, and a transition to living on the water surface

as associated with an increase in locomotion speed

cross species, necessitated perhaps by increased preda-

on risk and the need to move faster than the water when
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water is flowing, in order to maintain position. The

increase in speed is correlated with the lengthening of

legs and increasing body size, and adoption of a rowing

action which decreases stroke rate, increasing efficiency

[41]. The macroevolutionary consequences of locomotory

and dispersal behaviour are also known to be far-reaching.

In European butterflies, it is one of the life history traits

that predicts a lower extinction risk, alongside high vol-

tinism, and overwintering in later life history stages,

presumably because it facilitates metapopulation persis-

tence [24].

Communication and signalling

Explaining the diversity of animal signals is another

enduring challenge to which recent comparative studies

have contributed [29,33]. In ladybird beetles, for exam-

ple, the wing cases (elytra) show a variety of colour

patterns (often red or yellow against black), which are

thought to warn predators of their toxicity. Comparing

toxicity (determined experimentally) and colour patterns

across several species, it can be shown that brighter

colours are correlated with increased toxicity (Figure 2)

suggesting that aposematic signalling is honest, implying

evolutionary mechanisms which maintain this honesty.
ects, Curr Opin Insect Sci (2018), https://doi.org/10.1016/j.cois.2018.02.018
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A further experiment with model ladybirds showed that

brighter colours are also more effective at deterring pre-

dators [33]. Fireflies are another group of beetles that

show colour variety in their signals, this time produced by

bioluminescence. Again, the signal is correlated with

other species traits. Male fireflies that are active in early

evening in vegetated habitats (when the background

vegetation still reflects green) are predicted to produce

light that contrasts better with the green background.

This indeed is the case, as they tend to produce yellow

light instead of green. Sedentary females and later active

males however can use green light to their advantage

in the dark to maximize reflectance from vegetation so

their signals are more obvious, and their light is indeed

greener [29].

Mate choice and sexual selection

Mate choice and sexual selection have produced impres-

sive phenotypic variation addressed by comparative stud-

ies [18�,21,30�,42]. Male orchid bees attract females by

perfumes which they construct by collecting volatile

substances from orchid flowers, and which they store in

specialized leg pouches. Traits like these that evolve by

persistent strong sexual selection are predicted to evolve

more rapidly than other traits. Mapping perfume traits

across a phylogeny of 65 species, perfume chemistry was

shown to display faster rates of evolution and a higher

disparity compared to non-signalling traits, matching

theoretical expectations. The complexity of the perfume

increased with the number of sympatric congeners, sug-

gesting that other species are one selective agent increas-

ing signal diversity [30�]. Such sexually selected signals

have also long been suspected to increase diversification

rates. Recent evidence from insect and other animal

species showing bioluminescent displays is consistent

with this: those using lights in their courtship displays

are more species rich than their relatives without these

displays, but this is not true for non-courtship displays,

suggesting that sexual selection indeed promotes species

richness [21].

Parental care

Compared to birds and mammals, insects are not widely

known for their parental care, but it is found in hundreds

of species in many different taxonomic groups. The

selective pressures that lead to care in one or either

sex may depend on the ancestral states from which

different types of care evolved. Across a dataset of over

2000 insect species, the ancestral care state was found to

be no-care, and female-only-care was the most common

type of care, evolving directly from no care, and some-

times transitioning to biparental care. Male-only-care also

evolved from no-care in Hemimetabola, although quite

rarely, whilst in a few cases biparental care evolved

directly from no-care [5] (Figure 3). These findings are

very different to those in vertebrates, where biparental

care and male-only-care are more common, and female-
Please cite this article in press as: Mayhew PJ: Comparative analysis of behavioural traits in inse
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only-care often evolves from biparental care. The lack of

male care in insects may be the result of widespread

sperm competition, which encourages males to desert and

re-mate. The selective pressures favouring care have also

been addressed in some studies: in acanthosomatine bugs

maternal care is found in species which lack a protective

covering for their eggs, suggesting that predation on

offspring drives the evolution of care, and that there is

a trade-off between different mechanisms of providing

offspring protection [32].

Social evolution

Insect comparative studies have provided important evi-

dence about the causes [43] and consequences

[19,28�,44�] of sociality. Polistes paper wasps sometimes

nest solitarily and sometimes cooperatively. Sheehan

et al. [43] georeferenced data on nest foundress number

worldwide, and then correlated it against climate data for

those locations. They showed that cooperative nesting

was more common in locations with short term instability

in temperature, whilst the number of foundresses was

lower in harsh environments. This suggests that coopera-

tion is driven by selective responses to environmental

conditions, but that the forces that regulate cooperation

and foundress number may be different.

Kapheim et al. [19] compared the genomes of ten bee

species with a variety of social structures to investigate

the genetic mechanisms and consequences behind social

evolution. They found that increasing social complexity

(i.e. from solitary at one extreme to obligate complex

eusociality at the other) was associated with increased

capacity for gene regulation (more transcription factor

binding sites in promotor regions, as well as the number of

genes predicted to be methylated, which affects gene

expression, and more rapid evolution of regulatory genes).

Hence social evolution appears to have produced more

complex gene networks.

Other behaviours

Entomologists often study more unique behaviours that

do not fit easily into the standard pantheon of animal

behavioural repertoires. Silk spinning, unknown in verte-

brates, is widely used by spiders and insects to form

structures (extended phenotypes) with obvious adaptive

purposes, and likely macroevolutionary consequences

[45]. One of the lesser known insect groups that does

this is the Embioptera (webspinners), relatives of stick

insects [8] which live in silk-lined burrows mainly in the

tropics. The group is morphologically very uniform, but

varies in silk-spinning behaviours, produced from modi-

fied forelimbs. By coding the movements of the legs and

transitions between spin-steps and correlating them with

other traits across a phylogeny, body size was shown to

explain much of the diversity in spinning choreography

across species [26], and there were also some differences

between species inhabiting different microhabitats (such
cts, Curr Opin Insect Sci (2018), https://doi.org/10.1016/j.cois.2018.02.018
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Transition rates (events per unit branch length on the phylogeny) between parental care states, estimated from Bayesian analysis of phylogenies of

hemimetabolous insects. Abbreviations: NC, no care; MC, male-only-care; FC, female-only-care; BP, biparental care. Histograms show the

frequency distributions of rate estimates over the modelled posterior distribution. f(Z) = frequency at which the transition rate was zero. Arrow

thickness is proportional to transition rates, and dotted lines are where the median rate (x) � standard deviations (given in the histograms) overlap

zero. The highest transition rates are between no care and female-only-care (and vice versa), and also male-only-care to no care.

Source: Reproduced from Figure 4a of [5] under the Creative Commons Attribution License (CC BY).
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as tree trunks vs soil). Web spinning behaviours therefore

seem to have evolved in concert with both transitions in

microhabitat and morphology.

Conclusion
The insects contain the greatest adaptive radiations that

can be seen with the naked eye [6,8,35]. There is arguably

no greater resource to learn about the evolution of phe-

notypic diversity. To exploit it to the full we need to have

access to phylogenies, trait data and analytical methods.

Phylogenies and analytical techniques are much more

accessible and useful to comparative biologists now than

only a few years ago, but insect trait data still lie scattered

across a vast heterogeneous landscape of natural history

books, encyclopaedias, museum collections, scientific

journals and other sources. To exploit the promise of

insect comparative studies to the full, we need global

digital data depositories that will collate, store and curate

this information. Such trait-data hubs will finally bring

comparative entomology fully into the information age.
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