
COIS 400 1–11

1
2

3Q1

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16

17

18

19

20

21 

22 

23 

24 

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
Genomes of the Hymenoptera
Michael Branstetter1, Anna K Childers2, Diana Cox-Foster1,
Keith R Hopper3, Karen M Kapheim4, Amy L Toth5 and
Kim C Worley6

Available online at www.sciencedirect.com

ScienceDirect
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
Although Hymenoptera is the second-most sequenced

arthropod order, with 52 publically archived genomes (71 with

ants, reviewed elsewhere), these genomes do not capture the

breadth of this very diverse order (Figure 1, Table 1). These

sequenced genomes represent only 15 of the 97 extant

families. Although at least 55 other genomes are in progress in

an additional 11 families (see Table 2), stinging wasps represent

35 (67%) of the available and 42 (76%) of the in progress

genomes. A more comprehensive catalog of hymenopteran

genomes is needed for research into the evolutionary

processes underlying the expansive diversity in terms of

ecology, behavior, and physiological traits within this group.

Additional sequencing is needed to generate an assembly for

even 0.05% of the estimated 1 million Hymenopteran species,

with premier level assemblies for at least 0.1% of the >150,000

named species dispersed across the order. Given the

haplodiploid sex determination in Hymenoptera, haploid male

sequencing will help minimize genome assembly issues to

enable higher quality genome assemblies.

Addresses
1 Pollinating Insect-biology, Management, Systematics Research Unit,

USDA-ARS, Logan, UT 84322, United States
2Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, United

States
3Beneficial Insects Introduction Research Unit, USDA-ARS, Newark, DE

19713, United States
4Utah State University, Department of Biology, Logan, UT 84322, United

States
5 Iowa State University, Department of Entomology, Ames, IA 50011,

United States
6Human Genome Sequencing Center, and Department of Molecular and

Human Genetics, Baylor College of Medicine, One Baylor Plaza,

Houston, TX 77030, United States

Current Opinion in Insect Science 2017, 25:xx–yy

This review comes from a themed issue on Insect genomics

Edited by Stephen Richards

https://doi.org/10.1016/j.cois.2017.11.008

2214-5745/ã 2017 Elsevier Inc. All rights reserved.
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr Opi

www.sciencedirect.com 
Introduction
The order Hymenoptera with fossils dating back to the

Triassic [1], is both ancient and hyper-diverse, with

over 150,000 described and one million estimated species

[2,3]. One of the ‘big four’ insect orders, Hymenoptera

comprise diverse species including sawflies and wood

wasps (‘Symphyta’), parasitoid wasps (‘Parasitica’), and

stinging wasps (Aculeata), which includes the ubiquitous

and ecologically dominant ants, bees and social wasps.

With an astonishing diversity of biologically interesting

traits Hymenoptera have significant economic impact

(e.g. biological control and pollination) and thus was

one of the first insect orders to benefit from genome

sequencing [4]. Despite additional genomes sequenced

(Table 1) or in preparation (Figure 1, Table 2), genomic

resources remain lacking for most major lineages, which

comprise 28 superfamilies, 97 families, and 8422 genera.

Herein we discuss insights gained and opportunities for

improvements for Hymenopteran genomics (noting that

ants are reviewed separately).

State of hymenopteran genomic resources
Features of hymenopteran genomes

Hymenopteran genomes possess some notable and

unique features. Hymenoptera are haplodiploid: unfertil-

ized eggs produce haploid males and fertilized eggs

produce diploid females [5]. Haplodiploidy engenders

interesting biology related to sex determination [6], con-

trol of sex ratios, and relatedness [7], but is also useful

for whole genome sequencing. Enough DNA can be

extracted from a single large haploid male to provide

material for whole genome sequencing without genetic

variation (e.g. [8]). Another notable feature of some

Hymenoptera is extremely high recombination rates,

especially in social species such as the honey bee, where

recombination rates are among the highest known for any

organism [9].

Among sequenced examples, hymenopteran genomes

are moderate in size (80% are between 180 and

340 Mb) with a few exceptions [10,11,12��]. Most possess

12,000–20,000 genes (note counts are highly annotation-

pipeline and assembly contiguity dependent [13�]), with

a relatively low content of repetitive and transposable

elements. One unusual feature is low GC content,

which ranges from 30 to 45% depending on the species

[8]. Although the reason for low GC content is not
n Insect Sci (2017), https://doi.org/10.1016/j.cois.2017.11.008
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Table 1

Hymenoptera genomes in INSDC. Family Formicidae 19 genomes are omitted (reviewed elsewhere).

Family Scientific Name Representative Assembly Reference

Agaonidae Ceratosolen solmsi GCF_000503995.1 [103]

Apidae Apis cerana GCF_001442555.1 [104]

Apidae Apis dorsata GCF_000469605.1 [105]

Apidae Apis florea GCF_000184785.2 * [12��]
Apidae Apis melliferay GCF_000002195.4 [4,13�]
Apidae Bombus impatiensy GCF_000188095.1 [106]

Apidae Bombus terrestrisy GCF_000214255.1 [106]

Apidae Ceratina calcarata GCF_001652005.1 [107]

Apidae Eufriesea mexicana GCF_001483705.1 [12��]
Apidae Euglossa dilemma GCA_002201625.1 [10]

Apidae Habropoda laboriosay GCF_001263275.1 [12��]
Apidae Melipona quadrifasciata GCA_001276565.1 [12��]
Braconidae Cotesia vestalis GCA_000956155.1 * [108]

Braconidae Diachasma alloeum GCF_001412515.1 [109]

Braconidae Fopius arisanus GCF_000806365.1 [17]

Braconidae Macrocentrus cingulum GCA_002156465.1 [110]

Braconidae Microplitis demolitor GCF_000572035.2 [65]

Cephidae Cephus cinctus GCF_000341935.1 [111]

Diprionidae Neodiprion lecontei GCF_001263575.1 [112]

Encyrtidae Copidosoma floridanum GCF_000648655.1 [113]

Figitidae Leptopilina clavipes GCA_001855655.1 [114]

Halictidae Dufourea novaeangliae GCF_001272555.1 [12��]
Halictidae Lasioglossum albipes GCA_000346575.1 [115]

Megachilidae Megachile rotundatay GCF_000220905.1 [12��]
Orussidae Orussus abietinus GCF_000612105.1 [116]

Pteromalidae Nasonia giraulti GCA_000004775.1 [117�]
Pteromalidae Nasonia longicornis GCA_000004795.1 [117�]
Pteromalidae Nasonia vitripennis GCF_000002325.3 [117�]
Pteromalidae Trichomalopsis sarcophagae GCA_002249905.1 [22�]
Tenthredinidae Athalia rosae GCF_000344095.1 [116]

Trichogrammatidae Trichogramma pretiosum GCF_000599845.1 [113]

Vespidae Polistes canadensis GCF_001313835.1 [18]

Vespidae Polistes dominula GCF_001465965.1 [8]

y Important pollinators.
* Genome unpublished but included in collection.

C

et understood, it may be related to GC-biased gene

onversion and high recombination rates [14]. Due to

eir relatively small size and simple structure, Hyme-

opteran genomes are readily assembled and highly trac-

ble for genome sequencing [15�].

enomes generate biological understanding

he Hymenoptera include everything from herbivores to

ollinators to predators to parasites, and the species filling

ach of these ecological roles are endowed with a complex

t of physiological and behavioral adaptations. Genomic

udies have informed applied questions related to polli-

ator health [16] and biological control using parasitoid

asps [17]. Comparative genomics approaches have

nlocked some understanding of the molecular evolu-

onary basis for these adaptations, including the evolu-

on of eusociality [8,12��,18], social parasitism [19,20�],
enom function [19,20�,21,22�], and behavioral host spec-

city [23,24�].
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr O
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Potential genomic insights into Hymenoptera

biology

Pollinator health and management research has greatly

benefited from the availability of reference genomes for

many important pollinators (Table 1). Genomic

approaches to pollinator health allow us to screen for

disease, elucidate the effects of parasites, and investigate

the immune response to environmental stressors and

pathogens. Examples include developing new biomark-

ers of honey bee colony health [25–29], characterizing

environmental stress responses and optimal developmen-

tal temperature regimes for the alfalfa leafcutting bee (an

intensively managed solitary pollinator) [30,31] and

developing other genomic and transcriptomic indicators

of health in wild and managed pollinators [32–39]. Honey

bee genomic nutrition research has been fruitful in gen-

erating insights into mechanisms of bee health [40–43].

Expanding this emerging field to native, unmanaged bees

can provide a comparative perspective on how wild bee

health is influenced by environmental diet restriction due
pin Insect Sci (2017), https://doi.org/10.1016/j.cois.2017.11.008
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Figure 1

Hymenoptera phylogeny and genome assemblies. Phylogeny based upon [83��,88��], with dotted lines marking lineages of uncertain placement,

branches not to scale (=cladogram). Major groups shown on right, individual superfamilies listed with columns indicating the numbers of Families,

Genera, Species, Genomes in NCBI (in Progress).
to habitat loss [44]. This approach can also improve our

understanding of innate and acquired immunity function

among bees, which is critical for management and con-

servation efforts [45,46].

The vast majority of Hymenoptera species are parasitoids

(green in Figure 1 and Table 2). The majority of insect

species are attacked by at least one species of parasitic

Hymenoptera [47–51], with complex and intimate host-

parasitoid interactions [52] and narrow host ranges [53]

which may drive ecological speciation [54,55]. Parasitoids

are economically important as biological control agents of

invasive pests, reducing pest abundance and impact,

providing a safe, cost-effective alternative to insecticides

[56], so understanding the genetic architecture and evo-

lution of traits like climatic adaptation and host specificity

is critical. Such research is revealing diverse mechanisms

by which parasitoid wasps overcome the host immune

system, including venoms, immunosuppressive factors

such as polydnaviruses and virus-like particles,
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr Opi
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specialized embryonic cells (teratocytes), and larval secre-

tions [57–59]. Parasitoids can also co-opt host endocrine

systems, disrupting host development [60] or manipulat-

ing host behavior [61,62]. Recent findings have revealed

evolutionary changes in some wasp lineages in association

with microbes that affect the interactions with their host,

suggesting much remains to be discovered. Turnover of

integrated viral genomes within Braconidae and Ichnue-

monidae wasp genomes are more complex than once

anticipated [63,64�,65]. Genomes in progress for three

parasitoids with a common host have revealed that each

has separate mechanisms to overcome host immunity and

other defenses (M. Strand, personal communication)

demonstrating that comparative genomics can reveal

more information than phylogeny alone as illulstrated

by the rich collection of research stemming from genomes

in the genus Nasonia (Pteromalidae; [66] introduces the

collection), though annotation of these genomes lever-

aged the extensive history of research on Nasonia genetics

[67]. Comparable research on species from other families
n Insect Sci (2017), https://doi.org/10.1016/j.cois.2017.11.008
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Table 2

Hymenoptera Families with Genera andQ8 Species counts and Genomes in NCBI, otherwise published (Pub), in progress (Prog), and

proposed here(Prop). Classification citations (Class) follow [2,3] with updates from [47,83��,118]. Counts of genera and species are

modified from [2] with richness sources cited (Rich). *20 are low coverage genomes.

Superfamily Family Genomes Species Rich Class

Total NCBI Pub Prog Prop Genera

Aculeata/Vespomorpha Thynnoidea Chyphotidae – – – – 1 2 65 [119] [118]

Thynnidae – – – – 2 67 1000 [120] [118]

Tiphioidea Tiphiidae – – – – 2 53 1000 [1] [118]

Pompiloidea Pompilidae – – – – 3 125 4855 [1] [118]

Mutillidae – – – – 2 200 4252 [1] [118]

Sapygidae – – – – 1 12 66 [121] [118]

Myrmosidae – – – – 1 10 50 [120] [118]

Sierolomorphoidea Sierolomorphidae – – – – 1 2 11 [122] [83��]
Vespoidea Rhopalosomatidae – – – – 1 4 72 [1] [118]

Vespidae 14 2 – 12 – 268 4932 [1] [118]

Formicoidea Formicidae 20 19 1 n/a n/a 299 12,199 [123] [118]

Apoidea Ampulicidae 1 – – 1 – 6 200 [124] [118]

Heterogynaidae – – – – 1 1 8 [124] [118]

Sphecidae – – – – 1 17 716 [124] [118]

Crabronidae* 1 – – 1 3 242 8773 [124] [118]

Apoidea: Anthophila Apidae 12 11 – 1 – 209 5749 [125] [118]

Andrenidae 1 – – 1 1 77 2917 [125] [118]

Megachilidae 3 1 – 2 – 76 4096 [125] [118]

Melittidae – – – – 1 15 187 [125] [118]

Halictidae 19 2 17 – 79 4327 [125] [118]

Stenotritidae – – – – 1 2 21 [125] [118]

Colletidae – – – – 2 86 2547 [125] [118]

Scolioidea Scoliidae – – – – 1 143 560 [1] [118]

Bradynobaenidae s.s. – – – – 1 8 123 [119] [118]

Chrysidoidea Bethylidae 1 – – 1 1 84 2340 [1] [118]

Chrysididae 6 – – 6 – 81 2500 [1] [118]

Dryinidae – – – – 2 41 1605 [1] [118]

Embolemidae – – – – 1 2 39 [1] [118]

Plumariidae – – – – 1 7 22 [1] [118]

Sclerogibbidae – – – – 1 3 20 [1] [118]

Scolebythidae – – – – 1 4 6 [1] [118]

Parasitica* Megalyroidea Megalyridae – – – – 1 8 43 [2] [3]

Trigonalyoidea Trigonalidae – – – – 1 16 92 [2] [3]

Evanioidea Aulacidae – – – – 1 2 185 [2] [3]

Evaniidae – – – – 1 21 449 [2] [3]

Gasteruptiidae – – – – 1 6 496 [2] [3]

Stephanoidea Stephanidae 1 – – 1 – 11 342 [2] [3]

Chalcidoidea Eulophidae 1 – – 1 2 334 4969 [2] [3]

Pteromalidae 5 4 – 1 – 619 3544 [2] [3]

Torymidae 1 – – 1 – 82 900 [2] [3]

Agaonidae 1 1 – – – 20 762 [2] [3]

Leucospidae – – – – 1 4 134 [2] [3]

Eurytomidae – – – – 2 97 1453 [2] [3]

Azotidae – – – – 1 1 92 [2] [2]

Chalcididae – – – – 2 90 1469 [2] [3]

Cynipencyrtidae – – – – 1 1 1 [2] [2]

Encyrtidae 1 1 – – 1 493 4058 [2] [3]

Eriaporidae – – – – 1 5 22 [2] [2]

Trichogrammatidae 1 1 – – – 97 881 [2] [3]

Aphelinidae – – – – 1 29 1078 [2] [3]

Eucharitidae – – – – 1 57 427 [2] [3]

Eupelmidae – – – – 1 51 931 [2] [3]

Mymaridae 1 – 1 1 96 1437 [2] [3]

Ormyridae – – – – 1 3 125 [2] [3]

Perilampidae – – – – 1 17 284 [2] [3]

Rotoitidae – – – – 1 2 2 [2] [3]

Signiphoridae – – – – 1 4 78 [2] [3]

Tanaostigmatidae – – – – 1 9 93 [2] [3]

Tetracampidae – – – – 1 15 44 [2] [3]

Diapriidae Diapriidae 23 1 – 21* – 190 2048 [2] [3]

Ismaridae – – – – 1 1 29 [2] [2]

Current Opinion in Insect Science 2017, 25:1–11 www.sciencedirect.com
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Table 2 (Continued )

Superfamily Family Genomes Species Rich Class

Total NCBI Pub Prog Prop Genera

Monomachidae – – – – 1 2 30 [2] [3]

Maamingidae – – – – 1 1 2 [2] [3]

Mymarommatoidea Mymarommatidae – – – – 1 3 10 [2] [3]

Proctotrupoidea Pelecinidae – – – – 1 1 3 [2] [3]

Vanhorniidae – – – – 1 3 5 [2] [3]

Roproniidae – – – – 1 2 20 [2] [3]

Austroniidae – – – – 1 1 3 [2] [2]

Heloridae – – – – 1 1 12 [2] [3]

Peradeniidae – – – – 1 1 2 [2] [3]

Proctotrupidae – – – – 1 28 403 [2] [3]

Proctorenyxidae – – – – 1 2 2 [2] [3]

Platygastroidea Platygastridae – – – – 3 236 5385 [2] [3]

Cynipoidea Cynipidae – – – – 2 74 1412 [2] [3]

Figitidae 1 1 – – 1 148 1571 [2] [3]

Liopteridae – – – – 1 10 153 [2] [3]

Ibaliidae – – – – 1 3 20 [2] [3]

Austrocynipidae – – – – 1 1 1 [2] [3]

Ichneumonoidea Braconidae 5 4 – 1 4 1057 19,205 [2] [3]

Ichneumonidae 3 – – 3 9 1575 24,025 [2] [3]

Ceraphronoidea Megaspilidae – – – – 1 15 304 [2] [3]

Ceraphronidae – – – – 1 12 299 [2] [3]

Symphyta* Orussoidea Orussidae 1 1 – – – 16 82 [2] [3]

Cephoidea Cephidae 2 1 – 1 – 21 160 [2] [3]

Xiphydrioidea Xiphydriidae – – – – 1 28 146 [2] [3]

Siricoidea Siricidae – – – 1 1 11 111 [2] [3]

Anaxyelidae – – – – 1 1 1 [2] [3]

Xyeloidea Xyelidae 1 – – 1 – 5 63 [2] [3]

Tenthredinoidea Argidae – – – – 1 58 897 [2] [3]

Blasticotomidae – – – – 1 2 12 [2] [3]

Cimbicidae – – – – 1 16 182 [2] [3]

Diprionidae – – – – 1 11 136 [2] [3]

Heptamelidae – – – – 1 2 38 [126,127] [3]

Pergidae – – – – 1 60 442 [2] [3]

Tenthredinidae 1 1 – – 2 398 5462 [2] [3]

Pamphilioidea Pamphiliidae – – – – 1 1 42 [2] [3]

Megalodontesidae – – – – 1 10 291 [2] [3]

Family counts 26 15 1 20 81

Sum totals 128 52 1 75* 108 8422 152,658
will be needed to fully realize the potential of genomics

for parasitic Hymenoptera.

Mechanisms and evolution of social behavior are an

emphasis of Hymenoptera genomic research. Aculeata

are known for sophisticated social behavior within colo-

nies of some ants, bees, and wasps, with eusociality arising

multiple times within this clade [68,69]. Glimpses into

the molecular basis for this cooperative lifestyle were

among the most anticipated findings from the initial

sequencing of the honey bee genome [4] while more

recent comparative genomic approaches have placed

these initial findings within a broader phylogenetic con-

text [8,12��,18]. Comparative methods are particularly

useful for understanding the molecular basis for hyme-

nopteran behavior given the impressive diversity of social

niches [70�,71]. Although social wasps have been a model

lineage for understanding the evolution of sociality [72],

there are currently only two published genomes for this

group, both within the paper wasp genus Polistes [8,18].
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr Opi
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While most of the focus of hymenopteran genomics has

been on social evolution, the Hymenoptera offer many

opportunities to further investigate the molecular basis

for other aspects of development and animal behavior

including maternal care, social parasitism, and foraging/

hunting behavior. In some cases, the conceptual frame-

work and predictions are already in place (e.g., social

parasitism [73], development [74–79]), others can be

enhanced by those generated for other taxonomic groups

(e.g., venom evolution in snakes [80], genomic basis of

diet shifts [81,82]).

Taxa that are underrepresented in genomics
Given the deep evolutionary distances between major

hymenopteran families [83��], selecting appropriate taxa

for comparison presents a substantial challenge. Crown-

group Hymenoptera originated 250–300 mya and spans

evolutionary distances more than 3-fold those of modern

birds [1,83��,84]. Bees shared a common ancestor

�100 mya, and bees + apioid wasps diverged from ants
n Insect Sci (2017), https://doi.org/10.1016/j.cois.2017.11.008
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C

145 mya, similar to the split between marsupial and

lacental mammals (>160 mya) [85]. Increasing the num-

er of taxa sampled within each lineage, as well as the

tal number of lineages sampled will provide higher

solution to interpret genomic signatures of key pheno-

pes. In addition, we suggest specific groups that may be

articularly appropriate for additional comparisons.

xpanding sampling of Hymenoptera genomes to

clude one or several genomes per family would provide

 useful framework for future evolutionary studies within

e order. Although significant recent progress has been

ade resolving higher-level phylogenetic relationships

3��,86,87,88��], important uncertainties remain at the

perfamily (Figure 1) and family levels, especially out-

de of the Aculeata. Having genomic data for all 97 fami-

es would help overcome common phylogenetic pro-

lems, such as insufficient data, incomplete lineages

rting, base composition bias, and long-branch attraction.

ultiple carefully chosen representatives of each family

ould even further reduce issues related to poor taxon

mpling [83��]. While producing phylogenies with entire

enomes is still too expensive for most multi-taxon stud-

s, having a high quality genome for each family would

nable more economical reduced-representation phylo-

enomics across more taxa [89,90]. Having a complete

mpling of Hymenoptera genomes at the family level,

ould also provide a better evaluation of genome size

ariation and gene family evolution over the entire order.

or developmental biology examinations, species should

clude samples that are readily available for experiments

ch as embryological and larval time series sampling for

ene expression and localization.

arasitoids are an immensely diverse group for those

terested in biological control applications and evolu-

onary biology [91,92], however the genomes of only

4 species in five families have been published, with

raft genomes of �30 more species (one additional fam-

y) in progress (Figure 1, Table 1). To study polyembry-

nic development [78], genomes from the four families

ave this trait and comparative genomics across these

milies would be informative. Two have been

quenced (Table 1, M. cingulum (Braconidae) and C.
oridanum (Encyrtidae)); thus including at least one

olyembryonic species from the Platygastridae and Dryi-

idae families is a priority that would fit in the 0.05%

ecies sample. Because different families of parasitoids

se different taxa of hosts with very different biologies,

nderstanding mechanisms parasitoids use in overcoming

ost immunity and host choice will benefit by having

enomes of at least one parasitoid species per family.

cluding additional samples to allow comparisons of

arasitoids sharing the same host, such as Drosophila,
nd pairing with genomes of the hosts will greatly enable

omparative studies across lineages and host/parasite

teractions [93].
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr O
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Comparative genomic approaches to understanding the

evolution of eusociality will benefit from increasing the

depth of coverage within key wasp and bee families,

especially the Vespidae, Apidae and Halictidae. Each

of these families includes a diversity of social lifestyles,

along with closely related solitary individuals. In a few

key lineages such as vespid wasps and carpenter bees

(Apidae: Xylocopinae), there are also opportunities to

compare genomes within lineages in which the entire

spectrum of sociality occurs, from solitary to weakly social

to highly eusocial [71]. These highly informative species,

though underrepresented in previous genome sequenc-

ing efforts, have currently projects underway to fill these

gaps, with eventual insight into the full spectrum of

sociality evolution [94��]. The sweat bees (Halictidae)

are also particularly useful for social evolution compara-

tive studies, representing at least two independent origins

of eusociality, a dozen lineages that have reverted back to

a solitary lifestyle [95–97], and with several species in the

genera Halictus, Lasioglossum, and Megalopta with faculta-

tive expression of eusociality (where individuals or popu-

lations vary in solitarily or socially nesting). Understand-

ing the genomic basis for intra-specific variation in social

behavior can illuminate the evolutionary processes that

may have been particularly important at the origins of

eusociality. We propose including ten additional samples

to enhance comparative genomics of social behavior

corresponding to environmental factors, such as latitude

or elevation [98–100], genetic influences [70�] and within
population variation due to foundress reproductive strat-

egy [101] with dense sampling at fine phylogenetic scales.

Development of genomic resources for taxa from the non-

social aculeate wasp families will provide a critical picture

of the genomic substrate from which eusociality evolved,

and additionally provide insight into the genomic signa-

tures of other behavioral innovations, such as central place

foraging (i.e., nesting), maternal care, and social parasit-

ism. Particularly useful families include the spider wasps

(Pompilidae), velvet ants (aka ‘cow killers’) (Mutillidae),

thread-waisted wasps such as mud daubers (Sphecidae),

and cicada killers and bee wolves (Crabronidae, including

an independent origin of wasp eusociality). These groups

are closely related to vespids and bees, and exhibit

remarkable diversity in parental care, dietary breadth,

parasitism, and venom function. Additionally, because

wasp families are cosmopolitan and conspicuous, their

genomes can be studied in the context of well-described

behavior and natural history information.

Challenges
Several challenges may impede sequencing and assem-

bly, as well as annotation, of the genomes of Hymenop-

tera including sample quantity, heterozygosity, and avail-

ability; functional interpretation, and unknowns. Though

obtaining high quality DNA may be difficult because

samples are lacking (especially for parasitoids), for
pin Insect Sci (2017), https://doi.org/10.1016/j.cois.2017.11.008
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Chalcidoidea, the US National Science Foundation has

funded a phylogenetics project that could make available

high molecular weight DNA from 388 species in 294 gen-

era in 24 families (John M. Heraty, personal communica-

tion). For bees, pinned specimens for many groups may

be available from the U.S. National Pollinating Insect

Collection at the USDA-ARS-PWA Pollinating Insect

Research Unit. In addition, ARS scientists are routinely

collecting new material in North America and could

provide genome quality specimens (recently collected

and identified) to interested collaborators for some fami-

lies found in North America. Additionally, some available

samples (also many parasitoids) are very small and yield

�100 ng of DNA per wasp. Although enough DNA for

short-read sequencing library preparation, extractions

from many individuals are needed to provide sufficient

DNA for long-read technologies and heterozygosity in

these pooled samples contributes to assembly challenges.

Theoretically this can be solved by inbreeding for multi-

ple generations, however some species cannot be inbred

(e.g. those with complementary sex determination, in

which homozygosity causes mortality or sterile diploid

males). Concerning annotation, genes that underlie inter-

esting differences in biology often evolve rapidly, making

it difficult to find homologs in species where gene func-

tions are well known. Therefore there is a need for

experimentally determined functions (e.g. tissue specific

expression and gene knockout/knockin). This is particu-

larly true where differences in expression underlie differ-

ences in biology and distant actuators/enhancers and

epigenetic modifications, may underlie differences in

some key traits (e.g. diapause differences among Nasonia
vitripennis populations [102�]). Finally, newly sequenced

hymenopteran species may have genomic features that

reduce genome assembly quality including large size,

complex structure and high GC content.

A complete catalog is possible
Although many strategies can be envisioned for future

hymenopteran genomics, we suggest a three-pronged

strategy focused on breadth, biology and diversity.

Increasing the breadth of genome coverage across taxa

of this hyper-diverse order will provide long-term scien-

tific benefits, we propose obtaining high quality genomes

from at least one representative of each family (81 sam-

ples). For the 15 families with more than 50 genera or

more than 100 species we propose sampling an additional

0.05% of the species (27 samples, Table 2). For families of

particular interest such as pollinators and parasitic wasps,

we propose adding 42 species, bringing the total to 150 or

0.1% of the species. Premier genomes are less expensive

than in the past, but still expensive so this may not be

possible for all of these samples. Short read assemblies or

30x comparative mapping studies can be used to fill in the

phylogenetic sampling with additional closely related

species. Including transcript sequencing (with high qual-

ity long read data) is a cost effective adjunct to enhance
Please cite this article in press as: Branstetter M, et al.: Genomes of the Hymenoptera, Curr Opi
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the value of lower quality assemblies. With available

samples, robust technologies and more reliable methods,

this is a feasible task with the potential to impact studies

for years into the future.
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