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Several species of bumblebees have recently experienced range contractions

and possible extinctions. While threats to bees are numerous, few analyses

have attempted to understand the relative importance of multiple stressors.

Such analyses are critical for prioritizing conservation strategies. Here, we

describe a landscape analysis of factors predicted to cause bumblebee

declines in the USA. We quantified 24 habitat, land-use and pesticide

usage variables across 284 sampling locations, assessing which variables

predicted pathogen prevalence and range contractions via machine learning

model selection techniques. We found that greater usage of the fungicide

chlorothalonil was the best predictor of pathogen (Nosema bombi) prevalence

in four declining species of bumblebees. Nosema bombi has previously been

found in greater prevalence in some declining US bumblebee species com-

pared to stable species. Greater usage of total fungicides was the strongest

predictor of range contractions in declining species, with bumblebees in

the northern USA experiencing greater likelihood of loss from previously

occupied areas. These results extend several recent laboratory and semi-

field studies that have found surprising links between fungicide exposure

and bee health. Specifically, our data suggest landscape-scale connections

between fungicide usage, pathogen prevalence and declines of threatened

and endangered bumblebees.
1. Introduction
Many bee species are experiencing range contractions and extinction threats, with

bumblebees providing some of the most conclusive data [1–5]. Evidence

suggests several factors are associated with bee declines, including lack of

floral resources, pesticides and pathogens [6]. Furthermore, current studies

suggest interactions among stressors are important. For example, pesticide

stress can influence susceptibility to pathogens [7], and diet stress can exacerbate

the impact of pesticides [8] and pathogens [9,10]. Few studies, however, have

assessed the relative importance of multiple factors associated with bee health.

This is an important knowledge gap because understanding the relative impor-

tance of stressors is crucial for implementing effective conservation programmes.

Landscape-scale analyses can provide broad insight into multiple competing

factors that may be impacting bee health. Because bumblebees typically forage sev-

eral hundred or thousand metres from their nests (see the electronic supplementary

material, table S1), landscape characteristics such as habitat composition and frag-

mentation [11,12], urbanization [13] and agricultural intensification [2] can impact

foraging behaviour, pathogen prevalence and hive performance. With this under-

standing, Williams et al. [14] performed to our knowledge the first analysis of

multiple potential factors associated with bumblebee declines, considering several
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behavioural, physiological, dietary and geographical factors.

Their analysis found that declines were greater for species that

exhibit greater climatic specialization, in areas closest to the

edges of their climatic ranges, and for species that have queens

that become active later in the year. Szabo et al. [15] built on

this study by explicitly considering landscape factors that

could be associated with bumblebee declines, including com-

mercial greenhouse density, pesticide usage summaries and

human population density in their models. While this analysis

highlighted the potential importance of greenhouse density

(and thus possible negative effects of pathogen spillover from

managed bumblebees), the link between greenhouse density

and pathogens was inferred but not assessed empirically.

Furthermore, the small number of variables considered

limit a more robust consideration of stressors. For example,

could specific pesticides, habitat types and/or land-use practi-

ces be important predictors of pathogen prevalence and

landscape-wide declines?

Previous data show that several species of US bumblebees

are experiencing range contractions, and some declining species

have elevated levels of the microsporidian pathogen Nosema
bombi [5,16,17]. Yet factors that may be causing high pathogen

levels have not been elucidated, nor has potential covariation

between pathogens, range contractions and landscape character-

istics been studied. Because myriad landscape characteristics

vary among sites, a common analytical approach for landscape

analyses is multiple regression [18]. Yet such analyses are often

limited in scope because including large numbers of predictors

in traditional multiple regression models poses a statistical

challenge. However, such analyses of high dimensional data

(i.e. high independent to dependent variable ratio) are possible

via modern machine learning techniques [19–21]. Techniques

such as stability selection [20] and least absolute shrinkage

and selection operator (LASSO) [19], are advantageous for

large datasets with many independent variables where some

automatic variable selection is desired, or for dealing with

highly correlated predictors, where standard multiple regression

will usually have regression coefficients that are too large. These

techniques are being used extensively in fields such as molecular

biology and genetics, for example, to select among large numbers

of genes in regulatory network analyses (e.g. [22,23]). However,

machine learning multi-variable model selection remains rare

in ecological and conservation-oriented studies (e.g. [24,25]),

possibly owing to lack of familiarity with the techniques.

Here, we summarize an analysis that uses stability selec-

tion [20] and LASSO [19] to assess the potential importance

of 24 habitat, land-use and pesticide usage variables for

predicting pathogen prevalence and range contractions of

bumblebees. We used one of the largest datasets to date of bum-

blebee declines in North America, a contemporary sampling

of 10 745 bumblebees across the USA that was compared to

a 73 759-specimen natural history collection database, as

described in Cameron et al. [5] and Cordes et al. [16], to ask

two questions: (i) what factors predict pathogen (N. bombi)
prevalence in four focal declining bumblebee species, and

(ii) what factors predict range contractions in declining species?
2. Methods
(a) Bumblebee sampling and pathogen screening
For full details of bumblebee sampling and pathogen screening,

see Cameron et al. [5] and Cordes et al. [16]. Briefly, between 2007
and 2009, 284 sites in 40 states throughout the USA were sampled

from June to August for bumblebees for a period of 1+0.5 s.d.

person-hours. This sampling yielded 10 745 individual bees

from 36 Bombus species. All bees were identified to species and

screened for two pathogens, N. bombi and Crithidia bombi,
under phase contrast microscopy (400� magnification). The

sampling of bees was directed to compare pathogen presence

and prevalence among eight bumblebee target species hypo-

thesized to be in decline or stable: Bombus bifarius (stable),

Bombus occidentalis (declining) and Bombus vosnesenskii (stable)

in the western USA; and Bombus affinis, Bombus pensylvanicus
and Bombus terricola (all declining), and Bombus bimaculatus and

Bombus impatiens (both stable) in the eastern USA.

(b) Landscape variable characterization and
quantification

At each of the 284 sampling sites, we quantified 24 habitat, land-

use and pesticide usage variables that could potentially be

associated with bee health. We quantified latitude, longitude

and elevation at each site using GPS coordinates from the orig-

inal dataset [5,16]. We used the 2006 National Land Cover

Database [26] to compute the areas of five land-use/land-cover

metrics: (i) cultivated crops, (ii) agriculture (pasture, hay, culti-

vated crops), (iii) forest (deciduous forest, evergreen forest,

mixed forest), (iv) developed (developed open space, low inten-

sity developed, medium intensity developed, high intensity

developed), and (v) natural area (all forest classes, wetland

classes, shrub classes, herbaceous grassland). We calculated

total areas for each metric within four buffers around

each site (500, 1000, 2500 and 5000 m), which are within the

range of typical bumblebee foraging distances (electronic

supplementary material, table S1). We used 2009 population

census data (http://www.census.gov/geo/maps-data/data/

tiger-data.html) to estimate human population density in the

four buffer areas. Blocks are the smallest territorial unit with

reportable population data. Because blocks did not always fully

overlap our buffer areas, population density was calculated as

[(block area inside buffer/total block area) � block population].

This calculation assumes population is equally distributed

across the entire block.

We used the spatial pattern analysis program FRAGSTATS,

version 3.4 [27], to quantify the fragmentation of forested and

natural areas using a ‘clumpiness index’ in the four buffer

areas around each sampling location. Clumpiness measures habi-

tat contagion and interspersion and varies from 21 (maximally

disaggregated) to 1 (maximally aggregated), with zero indicating

the expected level of aggregation under a spatially random distri-

bution. This metric was chosen over other contagion metrics

because it is not confounded by the total habitat area [28].

Finally, we used the United States Geological Survey (USGS)

National Water Quality Assessment database (http://water.usgs.

gov/nawqa/pnsp/usage/maps/) to estimate pesticide usage at

each sampling location [29]. These data originate from farm sur-

veys and capture use for all methods of application (sprays,

treated seed, soil drenches, etc.). We divided the USGS county-

level pesticide usage estimates by the area of agricultural land

(as classified above) in each county to estimate pesticide use per

agricultural cell. For each of our four buffers, we calculated: (i)

total predicted pesticide input (including all 483 potential com-

pounds), (ii) total predicted insecticides (137 potential

compounds), (iii) total predicted fungicides (124 potential com-

pounds), and (iv) total predicted herbicides (185 potential

compounds) using high and low estimates from 2009. We also cal-

culated predicted pesticide inputs for the three most widely used

insecticides (chlorpyrifos, aldicarb, clothianidin), fungicides (chlor-

othalonil, mancozeb, captan) and herbicides (glyphosate, atrazine,

2,4-D) for the four buffers (electronic supplementary material, table
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Table 1. Landscape variables predicting N. bombi presence in four declining US Bombus species (B. affinis, B. occidentalis, B. pensylvanicus and B. terricola) as
selected by LASSO and stability selection analyses.

variable LASSO coefficienta stability selection pthr
b p-valuec DAICd

log developed area 20.315 1.00 0.002 8.5

latitude 0.033 1.00 0.091 0.9

log chlorothalonil 1.825 0.94 ,0.001 107.0

longitude 20.013 0.60

natural area fragmentation 20.472 0.36

log human population 0.000 0.22

log elevation 0.040 0.18

log 2,4-D 20.409 0.10

log captan 20.240 0.07

log aldicarb 2.430 0.06

log agricultural area 20.019 0.05

log chlorpyrifos 0.119 0.02

log natural area 0.003 0.01

log atrazine 0.215 0.00

log mancozeb 21.377 0.00

log fungicides 0.880 0.00

log herbicides 20.086 0.00
aLASSO analysis of landscape variables quantified at a 1000 m buffer; l þ 1 standard error of the minimum (0.002) produced a 17-variable model.
bPer-family error rate (PFER) value of 1.5 used in stability selection analysis with cut-off value of pthr ¼ 0.75 [20]. Bold values indicate variables above the
pthr cut-off.
cp-values obtained from glmer analysis of the three-variable stability-selected model.
dDAIC ¼ the change in AIC values when each variable is individually removed from the three-variable stability-selected model.
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S2). Clothianidin was the fourth most abundant insecticide used in

2009, but it was included to represent one insecticide each from

three major chemical families (i.e. organophosphate, carbamate,

neonicotinoid).
(c) Landscape analysis of pathogen prevalence in stable
and declining bumblebee species

Following Cameron et al. [5], we focused our analyses on the

eight historically abundant US bumblebee species that were tar-

geted in their study. Previous data suggested these species had

experienced demographic trajectories ranging from population

declines to possible expansions. These data have since been con-

firmed, with the four declining species (B. occidentalis, B. affinis,

B. pensylvanicus and B. terricola) listed as vulnerable or critically

endangered and the four stable species (B. vosnesenskii, B. bifarius,

B. impatiens and B. bimaculatus) listed as stable and of least con-

cern on the current International Union for Conservation of

Nature Red List (http://www.iucnredlist.org/). Of the 7831

bees from the ‘stable’ species that were sampled, 105 bees

(1.3%) were positive for N. bombi and 246 bees (3.1%) were posi-

tive for C. bombi. Of the 762 bees from the ‘declining’ species that

were sampled, 140 bees (18.3%) were positive for N. bombi, while

only five bees (0.7%) were positive for C. bombi. Owing to the low

incidence of C. bombi in the declining species, we did not attempt

analyses for this group.

To assess which spatial scale was appropriate to conduct ana-

lyses (500, 1000, 2500 or 5000 m buffers), we first conducted a

literature review of bumblebee foraging distances. Our review

of 15 published studies comprised 13 bumblebee species and

three methods of foraging distance estimation (mark–recapture,

microsatellites, radio telemetry) found an average maximum
worker foraging distance of 2044 m and an average mean fora-

ging distance of 842 m (electronic supplementary material,

table S1). Next, to assess how spatial scale and high and low

pesticide estimates fit our data, we conducted univariate ana-

lyses for each variable as a predictor of C. bombi in stable

species or N. bombi in stable or declining species using the glm
function in R [30], comparing Akaike information criteria (AIC)

values for each model. We log-transformed 18 of the 24 variables

to improve normality of the residuals. We found that the 2500 m

spatial buffer and low pesticide estimates most often provided

the lowest AIC score for each variable (see the electronic sup-

plementary material, tables S3–S6). Thus, based on both the

foraging distance literature summary and univariate analyses,

we chose to conduct analyses using three spatial buffers (500,

1000, 2500 m) and low pesticide estimates for each variable. We

chose to present results from the 1000 m spatial buffer in the

main text (table 1 and figure 1) because this distance most closely

represents the mean foraging radius of worker bumblebees

found in our literature review (electronic supplementary

material, table S1); overall conclusions from analyses for the

three spatial buffers were very similar (tables 1 and 2; electronic

supplementary material, tables S7–10 and figures S1–S12).

We used LASSO for multi-variate model selection [19] via the

glmnet package in R. LASSO is a machine learning shrinkage

and selection method for multiple regression that penalizes the

absolute size of regression coefficients. By penalizing (or equiva-

lently constraining) the sum of absolute values of the estimates,

some parameter estimates may be exactly zero. The larger the

penalty applied, which is controlled via a tuning parameter l,

the further estimates are shrunk towards zero. We randomly

chose two-thirds of each dataset for training and performed

cross-validation (function cvfit in glmnet) on the training set to

obtain the number of variables at l minimum and within one

http://www.iucnredlist.org/
http://www.iucnredlist.org/
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Figure 1. (a) Relationship between N. bombi presence/absence in four declining Bombus species (B. affinis, B. occidentalis, B. pensylvanicus and B. terricola) and
chlorothalonil usage in the USA in 2009. Size of circles is proportional to abundance of bees sampled at each site, with red representing proportion of bees infected
with N. bombi. (b) Relationship between probability of loss of the four declining Bombus species and total fungicide usage in the USA in 2009. The size of circles is
proportional to the number of declining species expected at each site, with black indicating presence and red indicating expected presence but absent (see Methods
for expected presence details).
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standard error of the minimum (l þ 1 s.e.). Cross-validation is

the standard method for choosing an appropriate l value [31].

We visualized: (i) coefficient paths by fraction deviance

explained as variables were added to each model, and (ii) mis-

classification error across the range of l values using 10-fold

cross-validation. We assessed reproducibility of each LASSO

model at l minimum and l þ 1 s.e. by creating pathogen pres-

ence/absence predictions for each model (function predict in

glmnet), then comparing predicted error rate to an error rate

expected by chance (i.e. a zero-variable model).

Next, we used the function stabsel in the stabs package [32]

to test the fraction of times each variable was included in the

LASSO-determined multi-variable model. Stability selection is a

resampling procedure often employed in combination with techni-

ques such as LASSO to evaluate the consistency of individual

predictors in multi-variable model selection [20,21]. For example,

the technique has been used for selection of environmental vari-

ables predictive of species distributions [24]. We used a cut-off
value of pthr ¼ 0.75 (i.e. variable selected in 75% of fitted models)

and per-family error rate (PFER) value of 1.5 for all stability selec-

tion analyses [20]. Following variable selection via LASSO and

stability selection, we assessed the importance of individual varia-

bles via generalized linear mixed effects models (function glmer in

the lme4 package) with bee species as a random effect, obtaining

p-values and DAIC values for each variable.
(d) Landscape analysis of range contractions
in declining bumblebee species

Owing to recent advances in methods for niche modelling using

MAXENT software to reduce sampling bias [33,34], here we

update predictions of historical US bumblebee distributions for

each of the ‘declining’ target species summarized in Cameron

et al. [5]. Our niche model predictions are based on the original

dataset, which comprises a 73 759-specimen natural history

http://rspb.royalsocietypublishing.org/


Table 2. Landscape variables predicting presence versus expected presencea of four declining Bombus species (B. affinis, B. occidentalis, B. pensylvanicus and
B. terricola) across 284 sampling locations as selected by LASSO and stability selection analyses.

variable LASSO coefficientb stability selection pthr
c p-valued DAICe

latitude 0.161 1.00 0.001 8.4

log fungicides 0.342 0.84 ,0.001 32.5

longitude 0.023 0.64

log chlorothalonil 2.131 0.59

log developed area 0.240 0.49

log 2,4-D 20.128 0.37

log aldicarb 22.636 0.22

log captan 20.125 0.06

log human population 0.013 0.04

log atrazine 20.117 0.03

log agricultural area 20.009 0.02

log crop area 0.035 0.01

log clothianidin 20.504 0.00

natural area 0.003 0.00
aExpected presence determined via MAXENT niche modelling of historical specimen database (see Methods). Positive coefficients indicate variables that are
positively related to loss from sites.
bLASSO analysis of landscape variables quantified at a 1000 m buffer; l þ 1 standard error of the minimum (0.007) produced a 14-variable model.
cPFER value of 1.5 used in stability selection analysis with the cut-off value of pthr ¼ 0.75 [20]. Bold values indicate variables above the pthr cut-off.
dp-values obtained from glmer analysis of the two-variable stability-selected model.
eDAIC ¼ the change in AIC values when each variable is individually removed from the two-variable stability-selected model.
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collection database (USDA-ARS Bee Biology and Systematics

Laboratory: patterns of widespread decline in North American

bumblebees. doi:10.15468/kjpwz1, accessed via http://www.

gbif.org/dataset/8c04889e-a0ad-4f39-8623-06aa9cf0131d on 20

March 2017). Observations were rarefied by 5 km, which reduced

the number of observations per species (B. occidentalis: n ¼ 1,229;

B. pensylvanicus: n ¼ 1,088; B. affinis: n ¼ 385; and B. terricola: n ¼
495), thus reducing model bias. We created binary presence–

absence rasters for each species from the continuous MAXENT

models (logistic threshold ¼ 0.20), which produced relatively

conservative distribution maps for the four ‘declining’ target

species (i.e. updated maps were slightly narrower than the orig-

inal maps published in Cameron et al. [5]). For each species,

contemporary survey sites within the expected historic presence

distribution were scored as expected occurrences.

We then compared landscape variables between expected

occurrence locations where sampling did not find the species

(absent) versus expected occurrence locations where the species

was found (present). Similar to the pathogen analysis, we con-

ducted analyses using three spatial buffers (500, 1000, 2500 m)

and low pesticide estimates for each variable. We chose to pre-

sent results from the 1000 m spatial buffer in the main text

(table 2 and figure 1) because this most closely represents the

mean worker bumblebee foraging radius (electronic supplemen-

tary material, table S1); overall conclusions from analyses at the

three spatial buffers were very similar (tables 1 and 2; electronic

supplementary material, tables S7–10 and figures S1–S12). We

used LASSO and stability selection as above, assessing the

importance of individual variables via generalized linear mixed

effects models with bee species as a random effect.
3. Results
We attempted multi-variable model selection on four

datasets: C. bombi or N. bombi prevalence in the four focal
stable species (B. vosnesenskii, B. bifarius, B. bimaculatus and

B. impatiens), N. bombi prevalence in the four focal declin-

ing species (B. occidentalis, B. pensylvanicus, B. affinis and

B. terricola) and presence versus expected presence of the

four focal declining species at the 284 sampling locations.

LASSO did not provide meaningful models for C. bombi or

N. bombi prevalence in the stable species (electronic supplemen-

tary material, figures S13 and S14), probably owing to low

prevalence of positive pathogen detections (3.1 and 1.3%

positive detections for C. bombi and N. bombi, respectively).

However, LASSO did provide meaningful models for

N. bombi prevalence in the declining species, and presence

versus expected presence in the declining species. At least one

of the four declining species was expected to be present at 252

of the 284 locations sampled. We found that 8.6% of expected

locations contained B. affinis, 25.0% of expected locations con-

tained B. terricola, 54.4% of expected locations contained

B. occidentalis and 77.1% of expected locations contained

B. pensylvanicus.

When we investigated the 24 variables potentially associ-

ated with N. bombi prevalence in the four declining species

via LASSO using the 1000 m spatial buffer, we found a

17-variable model was optimal at l þ 1 s.e. (electronic

supplementary material, figure S1). The predicted error rate

(19.6%) was more accurate than the error rate expected by

chance (22.4%). When we performed stability selection on

the dataset, we found three variables remained above the

cut-off of pthr ¼ 0.75 (table 1; electronic supplementary

material, figure S2). Developed area was negatively related

to N. bombi prevalence (z ¼ 23.2, p ¼ 0.002), chlorothalonil

usage was positively related to N. bombi prevalence (z ¼ 3.8,

p , 0.001) and latitude was marginally positively related to

N. bombi prevalence (z ¼ 1.7, p ¼ 0.091) in a generalized

http://dx.doi.org/doi:10.15468/kjpwz1
http://www.gbif.org/dataset/8c04889e-a0ad-4f39-8623-06aa9cf0131d
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linear mixed model containing all three variables. Developed

area and chlorothalonil usage were not correlated ( p ¼ 0.33),

indicating both variables independently predicted N. bombi
prevalence. DAIC values, a measure of the importance of

each variable, were greatest for chlorothalonil (107.0) and

smaller for developed area (8.5) and latitude (0.9; table 1

and figure 1a). The pattern of large DAIC values and positive

relationships between chlorothalonil usage and N. bombi
prevalence were similar in parallel analyses conducted at

the 500 and 2500 m landscape variable buffers (electronic

supplementary material, tables S7 and S8 and figures S5,

S6, S9 and S10).

When we investigated the 24 variables potentially associated

with loss of the four declining species from sampling loca-

tions via LASSO, we found a 14-variable model was optimal

at l þ 1 s.e. (electronic supplementary material, figure S3). The

predicted error rate (24.5%) was more accurate than the error

rate expected by chance (66.7%). When we performed stability

selection, we found two variables remained above the cut-off

of pthr ¼ 0.75 (table 2; electronic supplementary material,

figure S4). Both latitude and total fungicides were positively

related to losses (z ¼ 3.2, p ¼ 0.001 and z ¼ 3.8, p , 0.001,

respectively) in a generalized linear mixed model containing

both variables. Total fungicides and latitude were not correlated

( p ¼ 0.19), indicating both variables independently predicted

losses. DAIC values were larger for total fungicides (32.5) than

latitude (8.4; table 2 and figure 1b). The pattern of DAIC

values and positive relationships between losses and both fungi-

cide usage and latitude were similar in parallel analyses

conducted at the 500 and 2500 m landscape variable buffers

(electronic supplementary material, tables S9 and S10 and

figures S7, S8, S11 and S12).
4. Discussion
Effective conservation of pollinators is contingent upon

knowing which stressors contribute substantially to declines

in bee health. While current research suggests multiple fac-

tors and their interactions are important [6], few studies

have sought to identify the relative importance of stressors.

Here, by analysing numerous habitat, land-use and pesticide

usage variables, we find consistent results suggesting

fungicides are the strongest predictor of both N. bombi preva-

lence and range contractions in four declining species of

US bumblebees. A handful of studies are beginning to find

surprising links between fungicides and bee health

(e.g. [35,36–39]). Our results extend this literature beyond

the laboratory by showing to our knowledge for the first

time that landscape-scale connections exist between fungicide

usage, pathogen prevalence and declines of four bumblebee

species known to be at risk. Analyses such as this can begin

to identify the relative importance of variables associated

with bee declines, which can direct manipulative follow-up

studies and inform more targeted conservation efforts.

While a great amount of attention has focused on the risks

posed to bees from certain insecticides (e.g. [40,41]), fungi-

cides are typically the most abundant pesticides found in

bumblebee [42] and honeybee [37,43–45] hive material.

Chlorothalonil, especially, has been found in great abundance

in honeybee hive residues [37,43]. This fungicide has been

linked to reduced colony growth in B. impatiens [35] and

increased likelihood of Nosema ceranae infection in honeybees
[36,37]. We found chlorothalonil usage was the strongest pre-

dictor of N. bombi prevalence in four declining species of

bumblebees, while total fungicide usage was the strongest

predictor of range contractions. While our analyses do not

allow detailed mechanistic explanations for why chlorothalo-

nil specifically, and fungicide exposure in general, may

impact bumblebees, there are multiple plausible scenarios.

For example, parts per billion levels of fungicides have

been shown to kill honeybee midgut cells, resulting in pro-

liferation of N. ceranae [38], a close relative of N. bombi.
Fungicides can also indirectly compromise mitochondrial

regeneration and ATP production in honeybees, which may

limit bees’ ability to extract sufficient energy from food [39].

Furthermore, antimicrobials have recently been shown to

alter bee microbiota, resulting in increased susceptibility to

pathogens and greater mortality of honeybees [46]. Finally,

while most fungicides are relatively non-toxic to bees, many

are known to interact synergistically with insecticides, greatly

increasing their toxicity (e.g. [47,48]).

In addition to fungicides, our stability-selected models

also showed greater N. bombi prevalence in the four declining

bumblebees in locations with less developed area and a trend

for greater N. bombi prevalence at higher latitudes (table 1).

Furthermore, the four declining species were more likely to

be lost from sites at higher latitudes (table 2). A few studies

have investigated how urbanization impacts pathogen preva-

lence in bees, finding that urbanization was positively

associated with pathogen prevalence in bumblebees [13,49]

and honeybees [50]. While our results contrast with these

studies, there are reasons to suspect a negative relationship

could occur between urbanization and bee pathogens. For

example, greater abundance and diversity of pollen and

nectar resources available in urban gardens could improve

nutrition and support bee immunity [51,52].

One recent worldwide synthesis has found that bumble-

bees are generally failing to track warming through time at

species’ northern range limits, and that range losses are

often occurring at southern range limits [53]. Our analyses

of four declining species in the USA show that loss from

sites has occurred more often towards the species’ northern

range boundaries and there was a trend for greater

N. bombi prevalence at higher latitudes. We note that the

strongest predictor of N. bombi prevalence in our study—

chlorothalonil usage—was also greater at higher latitudes

( p , 0.001, R2 ¼ 0.021). Thus, our data are consistent with

that notion that fungicides or some other geographically

specific factor may be associated with greater pathogen

prevalence in bees, which may in turn be impacting range

contractions and limiting the northward movement of bum-

blebees in response to climate change. Interestingly, while

Kerr et al. [53] did not find associations between total

pesticide or neonicotinoid usage and observed shifts in bum-

blebee species’ historical ranges, the study did not test for

associations between fungicide usage and range contractions.

Clearly, more work needs to investigate the potential impor-

tance of links between geographically specific stressors,

pathogen prevalence and latitudinal movement (or lack

thereof) of declining bumblebee species.

While suggestive, we caution against over-interpretation

of correlational patterns between pathogens and bee declines

that may not be indicative of larger patterns or causal mech-

anisms. For example, while previous data show that several

species of declining US bumblebees have elevated levels of

http://rspb.royalsocietypublishing.org/
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the microsporidian pathogen N. bombi [5,16,17], a recent

worldwide phylogenetic analysis has found that parasites

(including N. bombi) are found less often in bumblebee

species in decline [54]. This is a striking associational pattern

that runs counter to evidence from many individual empiri-

cal studies. However, biologically, this result can potentially

be explained via non-declining species carrying internal

pathogens with low fitness costs, or perhaps the pathogens

may be highly lethal to populations of declining species

and therefore act as strong ecological filters. This caution in

interpreting causation from correlational studies should also

be exercised for multi-variable model selection techniques

such as LASSO and stability selection [55].

Results from our LASSO and stability selection analyses

are a first step towards informing and complementing manip-

ulative follow-up studies. For example, while manipulative

studies have found links between chlorothalonil exposure

and bee health [35,37], we are unaware of manipulative studies

investigating the response of bumblebees to many additional

commonly used fungicides in the USA, such as mancozeb,

captan and pyraclostrobin. We suggest such studies are
warranted, given our results. With both landscape-scale ana-

lyses and controlled manipulative experimental data,

conservation biologists and policy makers will have a broader

information base upon which to make more informed

decisions and improve pollinator health.

Data accessibility. This article has no additional data.

Authors’ contributions. S.H.M., C.U. and S.M. conceived the analyses and
collected the data. S.H.M. analysed the data and drafted the manu-
script. S.H.M., C.U., S.M., R.E.I. and L.S.A. edited the manuscript
and gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. This work was supported in part by USDA NIFA 2012-67012-
19854 to S.H.M., and an NSF Graduate Research Fellowship supporting
C.U. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

Acknowledgements. We thank Jacob Bien and Lynn Johnson for guidance
with statistical analyses, and Sydney Cameron, Lee Solter, Nils
Cordes, Jamie Strange, Terry Griswold, Jeff Lozier, Jonathan Koch
and Wei-Fone Huang for sharing the data. Pete Graystock, Laura
Figueroa and Kaitlin Deutsch provided helpful comments on the
manuscript.
References
1. Bartomeus I, Ascher JS, Gibbs J, Danforth BN,
Wagner DL, Hedtke SM, Winfree R. 2013 Historical
changes in northeastern US bee pollinators related
to shared ecological traits. Proc. Natl Acad. Sci. USA
110, 4656 – 4660. (doi:10.1073/pnas.1218503110)

2. Goulson D, Lye GC, Darvill B. 2008 Decline and
conservation of bumble bees. In Annual review of
entomology (ed. A Fallon), pp. 191 – 208. Palo Alto,
CA: Annual Reviews.

3. Williams PH, Osborne JL. 2009 Bumblebee
vulnerability and conservation world-wide. Apidologie
40, 367 – 387. (doi:10.1051/apido/2009025)

4. Kosior A, Celary W, Olejniczak P, Fijal J, Krol W,
Solarz W, Plonka P. 2007 The decline of the bumble
bees and cuckoo bees (Hymenoptera: Apidae:
Bombini) of Western and Central Europe. Oryx 41,
79 – 88. (doi:10.1017/S0030605307001597)

5. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes
N, Solter LF, Griswold TL. 2011 Patterns of
widespread decline in North American bumble bees.
Proc. Natl Acad. Sci. USA 108, 662 – 667. (doi:10.
1073/pnas.1014743108)

6. Goulson D, Nicholls E, Botias C, Rotheray EL. 2015
Bee declines driven by combined stress from
parasites, pesticides, and lack of flowers. Science
347, 1435 – 1439. (doi:10.1126/science.1255957)

7. Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F,
Goka K, Desneux N. 2016 Are bee diseases linked to
pesticides?—a brief review. Environ. Int. 89 – 90,
7 – 11. (doi:10.1016/j.envint.2016.01.009)

8. Renzi MT, Rodriguez-Gasol N, Medrzycki P, Porrini C,
Martini A, Burgio G, Maini S, Sgolastra F. 2016
Combined effect of pollen quality and
thiamethoxam on hypopharyngeal gland
development and protein content in Apis mellifera.
Apidologie 47, 779 – 788. (doi:10.1007/s13592-016-
0435-9)
9. Di Pasquale G, Salignon M, Le Conte Y, Belzunces
LP, Decourtye A, Kretzschmar A, Suchail S, Brunet
JL, Alaux C. 2013 Influence of pollen nutrition on
honey bee health: do pollen quality and diversity
matter? PLoS ONE 8, e72016. (doi:10.1371/journal.
pone.0072016)

10. Brunner FS, Schmid-Hempel P, Barribeau SM. 2014
Protein-poor diet reduces host-specific immune
gene expression in Bombus terrestris. Proc. R. Soc. B
281, 20140128. (doi:10.1098/rspb.2014.0128)

11. Redhead JW, Dreier S, Bourke AF.G., Heard MS,
Jordan WC, Sumner S, Wang JL, Carvell C. 2016
Effects of habitat composition and landscape
structure on worker foraging distances of five
bumble bee species. Ecol. Appl. 26, 726 – 739.
(doi:10.1890/15-0546)

12. Jha S, Kremen C. 2013 Resource diversity and
landscape-level homogeneity drive native bee
foraging. Proc. Natl Acad. Sci. USA 110, 555 – 558.
(doi:10.1073/pnas.1208682110)
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2011 Decomposing environmental, spatial, and
spatiotemporal components of species distributions.
Ecol. Monogr. 81, 329 – 347. (doi:10.1890/10-
0602.1)

25. Gerber BD, Kendall WL, Hooten MB, Dubovsky JA,
Drewien RC. 2015 Optimal population prediction

http://dx.doi.org/10.1073/pnas.1218503110
http://dx.doi.org/10.1051/apido/2009025
http://dx.doi.org/10.1017/S0030605307001597
http://dx.doi.org/10.1073/pnas.1014743108
http://dx.doi.org/10.1073/pnas.1014743108
http://dx.doi.org/10.1126/science.1255957
http://dx.doi.org/10.1016/j.envint.2016.01.009
http://dx.doi.org/10.1007/s13592-016-0435-9
http://dx.doi.org/10.1007/s13592-016-0435-9
http://dx.doi.org/10.1371/journal.pone.0072016
http://dx.doi.org/10.1371/journal.pone.0072016
http://dx.doi.org/10.1098/rspb.2014.0128
http://dx.doi.org/10.1890/15-0546
http://dx.doi.org/10.1073/pnas.1208682110
http://dx.doi.org/10.1098/rspb.2016.0561
http://dx.doi.org/10.1111/j.1523-1739.2009.01176.x
http://dx.doi.org/10.1111/j.1755-263X.2012.00234.x
http://dx.doi.org/10.1016/j.jip.2011.11.005
http://dx.doi.org/10.1016/j.jip.2011.11.005
http://dx.doi.org/10.1073/pnas.1525266113
http://dx.doi.org/10.1073/pnas.1525266113
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1186/s12859-015-0575-3
http://dx.doi.org/10.1186/1752-0509-6-145
http://dx.doi.org/10.1186/1752-0509-6-145
http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1890/10-0602.1
http://dx.doi.org/10.1890/10-0602.1
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20172181

8

 on November 15, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
of sandhill crane recruitment based on climate-
mediated habitat limitations. J. Anim. Ecol. 84,
1299 – 1310. (doi:10.1111/1365-2656.12370)

26. Fry J, Xian G, Jin S, Dewitz J, Homer C, Yang L,
Barnes C, Herold N, Wickham J. 2011 Completion of
the 2006 national land cover database for the
conterminous United States. Photogr. Eng. Remote
Sens. 77, 858 – 864.

27. McGarigal K, Cushman SA, Neel MC, Ene E. 2002
FRAGSTATS: spatial pattern analysis program for
categorical maps. Computer software program
produced by the authors at the University of
Massachusetts, Amherst. See http://www.umass.
edu/landeco/research/fragstats/fragstats.html.

28. Neel MC, McGarigal K, Cushman SA. 2004 Behavior
of class-level landscape metrics across gradients
of class aggregation and area. Landscape Ecol.
19, 435 – 455. (doi:10.1023/B:LAND.0000030521.
19856.cb)

29. Baker N, Stone W. 2015 Estimated annual
agricultural pesticide use for counties of the
conterminous United States, 2008 – 12: U.S.
Geological Survey Data Series 907, 9 p. See https://
dx.doi.org/10.3133/ds3907.

30. R Core Team. 2015 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. See http://
www.r-project.org/.

31. Tibshirani RJ, Tibshirani R. 2009 A bias correction for
the minimum error rate in cross-validation. NASA 2,
822 – 829. (doi:10.1214/08-AOAS224)

32. Hofner B. 2017 Stability selection with error control.
See https://github.com/hofnerb/stabs.

33. Boria RA, Olson LE, Goodman SM, Anderson RP.
2014 Spatial filtering to reduce sampling bias can
improve the performance of ecological niche
models. Ecol. Modell. 275, 73 – 77. (doi:10.1016/j.
ecolmodel.2013.12.012)

34. Radosavljevic A, Anderson RP. 2014 Making better
Maxent models of species distributions: complexity,
overfitting and evaluation. J. Biogeogr. 41,
629 – 643. (doi:10.1111/jbi.12227)

35. Bernauer MO, Gaines-Day RH, Steffan AS. 2015
Colonies of bumble bees (Bombus impatiens)
produce fewer workers, less bee biomass, and have
smaller mother queens following fungicide
exposure. Insects 6, 478 – 488. (doi:10.3390/
insects6020478)

36. Pettis J, vanEngelsdorp D, Johnson J, Dively G. 2012
Pesticide exposure in honey bees results in increased
levels of the gut pathogen Nosema.
Naturwissenschaften 99, 153 – 158. (doi:10.1007/
s00114-011-0881-1)

37. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J,
Rose R, vanEngelsdorp D. 2013 Crop pollination
exposes honey bees to pesticides which alters their
susceptibility to the gut pathogen Nosema ceranae.
PLoS ONE 8, e70182. (doi:10.1371/journal.pone.
0070182)

38. Huang W-F, Solter LF, Yau PM, Imai BS. 2013
Nosema ceranae escapes fumagillin control in honey
bees. PLoS Pathog. 9, e1003185. (doi:10.1371/
journal.ppat.1003185)

39. Mao WF, Schuler MA, Berenbaum MR. 2017
Disruption of quercetin metabolism by fungicide
affects energy production in honey bees
(Apis mellifera). Proc. Natl Acad. Sci. USA 114,
2538 – 2543. (doi:10.1073/pnas.1614864114)

40. Rundlof M et al. 2015 Seed coating with a
neonicotinoid insecticide negatively affects wild
bees. Nature 521, 77 – 80. (doi:10.1038/
nature14420)

41. Woodcock BA et al. 2017 Country-specific effects of
neonicotinoid pesticides on honey bees and wild
bees. Science 356, 1393 – 1395. (doi:10.1126/
science.aaa1190)

42. Botı́as C, David A, Hill EM, Goulson D. 2017
Quantifying exposure of wild bumblebees to
mixtures of agrochemicals in agricultural and urban
landscapes. Environ. Pollut. 222, 73 – 82. (doi:10.
1016/j.envpol.2017.01.001)

43. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds
R, vanEngelsdorp D, Pettis JS. 2010 High levels of
miticides and agrochemicals in North American
apiaries: implications for honey bee health.
PLoS ONE 5, e9754. (doi:10.1371/journal.pone.
0009754)

44. Sanchez-Bayo F, Goka K. 2014 Pesticide residues and
bees: a risk assessment. PLoS ONE 9, e94482.
(doi:10.1371/journal.pone.0094482)

45. McArt SH, Fersch AA, Milano NJ, Truitt LL, Boroczky
K. 2017 High pesticide risk to honey bees despite
low focal crop pollen collection during pollination of
a mass blooming crop. Sci. Rep. 7, 46554. (doi:10.
1038/srep46554)

46. Raymann K, Shaffer Z, Moran NA. 2017 Antibiotic
exposure perturbs the gut microbiota and elevates
mortality in honeybees. PLoS Biol. 15, e2001861.
(doi:10.1371/journal.pbio.2001861)

47. Tsvetkov N, Samson-Robert O, Sood K, Patel HS,
Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V,
Zayed A. 2017 Chronic exposure to neonicotinoids
reduces honey bee health near corn crops. Science
356, 1395 – 1397. (doi:10.1126/science.aam7470)

48. Pilling ED, Jepson PC. 1993 Synergism between EBI
fungicides and a pyrethroid insecticide in the
honeybee (Apis mellifera). Pesticide Science 39,
293 – 297. (doi:10.1002/ps.2780390407)

49. Goulson D, Whitehorn P, Fowley M. 2012 Influence
of urbanisation on the prevalence of protozoan
parasites of bumblebees. Ecol. Entomol. 37, 83 – 89.
(doi:10.1111/j.1365-2311.2011.01334.x)

50. Youngsteadt E, Appler RH, López-Uribe MM, Tarpy
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